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Abstract

Representing convection at kilometre-scale resolution (also known as the ‘grey-zone’) has been a

challenge for numerical modellers. Conventional parameterisation approaches rely on assumptions

only valid for very coarse resolution simulation and so cannot be applied at this resolution. However,

the ‘grey zone’ is not sufficiently fine to fully resolve convective updraughts. A new approach

towards solving the problem is proposed. The new Stochastic Explicitly Prognostic Mass Flux

(SEP-MF) scheme features a stochastic triggering function based on the occurrence and strength of

boundary layer thermals, as well as a fully prognostic (growth) plume model in which prognostic

equations representing the evolution of sub-grid convection are solved explicitly. The SEP-MF

scheme was tested in a case featuring a diurnal cycle of convection, a phenomenon which is known

to be difficult to simulate. Results from this study suggest that the SEP-MF scheme is capable of

producing scale-independent solutions of the diurnal cycle of convection, as well as improving the

overall performance of kilometre-scale models in representing convection.
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Chapter 1

Introduction

1.1 Why study atmospheric convection?

Convection is a heat transfer mechanism exclusive to fluids due to internal motions induced by

density perturbations. As hot air rises and cold air sinks, energy becomes more evenly distributed

within the fluid over time. However, convection in the atmosphere is complicated by phase changes

of water vapour in the air, in which latent heat transfer may alter the density difference between

air parcels and the surrounding environment. This may lead to the formation of rapidly rising air

columns known as convective updraughts. This type of atmospheric convection is referred to as

moist convection and is the primary focus of this project.

Atmospheric convection is capable of triggering severe weather events such as heavy precipitation,

lightning, large hail, strong gusts and tornadoes, and can cause loss of lives and properties. On 16

August 2004, sustained convective storms brought over 200 mm of rain to Boscastle, Cornwall,

England within 24 hours. Heavy rain caused the river level to rise by 2 m in one hour and led to

flash floods. The event ultimately brought extensive damages to local villages, with approximately

100 homes and businesses destroyed and 80 vehicles, with several buildings washed into the sea

(Fenn et al., 2005; Golding et al., 2005; metoffice.gov.uk, 2015). In the United States, an average of

1000 tornadoes, a type of weather phenomenon associated with severe thunderstorms, are observed

every year (Schaefer and Edwards, 1999), with 1,150 reported tornado-related deaths annually

(Fricker, 2019). Over the tropical oceans where heat and moisture supplies are abundant, convective
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Chapter 1: Introduction

thunderstorms may persist and aggregate into tropical cyclones. These rotating storms may release

100 PetaWatts of power, equivalent to 70 times the worldwide energy consumption (Emanuel,

1999) and are capable of bringing extreme winds and storm surges to coastal areas. Super Typhoon

Haiyan in November 2013 was among the strongest tropical cyclones ever observed. It remains

the strongest tropical cyclone to make landfall over the Philippines today, claiming 6000 lives and

an economic loss of USD 5.8 million with its extreme winds and storm surge (Mori et al., 2014;

Lagmay et al., 2015; bbc.com, 2019). Accurate forecast of convection could lead to better decisions

being made to mitigate severe weather threats and reduce casualties and economic loss.

In addition to local weather, convection drives intra-seasonal variations and affects the global

climate. In the tropics, the rainfall pattern is governed by the Madden-Julian Oscillation (MJO),

an intra-seasonal variability in the form of an eastward propagating circulation (Madden and

Julian, 1972). The associated circulation alternatively enhances and suppresses convective activities

across the tropical oceans, affecting the intermittency of the Asian Summer Monsoon (Tong et al.,

2009; Pai et al., 2011, e.g.), tropical cyclogenensis (Liebmann et al., 1994; Sobel and Maloney,

2000; Maloney and Hartmann, 2001) and rainfall over higher latitude regions (e.g. the Pineapple

Express, Weller et al., 2012). Surface wind anomalies over the tropical Pacific ocean associated

with MJO and other convective events (such as westerly wind bursts (WWB) associated with twin

tropical cyclones scenarios, Seiki and Takayabu, 2007) can lead to an onset of the El-Niño Southern

Oscillation (ENSO) event. Both the warm phase (El Niño) and cool phase (La Niña) are capable of

affecting the weather patterns of the tropics and subtropics, including the rainfall, strength of the

Asian Summer Monsoon (Qian et al., 2010) and tropical cyclone tracks (Camargo and Sobel, 2005).

The impact of ENSO may extend beyond its source region to the entire globe via teleconnections

(Yeh et al., 2018). Thus, predicting convection accurately is essential towards a reliable forecast of

short-term climate and long-term climate change.

Numerical models are common tools for modern weather and climate predictions. They numerically

solve the Navier-Stokes equations, the governing set of fluid dynamic equations, to simulate

the evolution of the atmosphere. Yet, the spatial precision of models, commonly known as

their resolution, is often insufficient to resolve (i.e. directly simulate) convection. Given its

significant impact on the large-scale flow, models often represent the effect of convection through

parameterisation; the vertical structure and strength of convection must be estimated based on

features of the resolved-scale flow. The effect of the parameterised convection on the resolved-scale

flow is then estimated, based on additional assumptions about the interactions between convection

2



Chapter 1: Introduction

and the resolved scale features. As I will discuss in detail in this chapter, conventional assumptions

only hold true for low-resolution simulations. This limits the applicability of traditional convective

parameterisation schemes, especially in high-resolution modelling.

The goal of this project is to develop a convection scheme for high-resolution simulations. We shall

begin with understanding the nature and characteristics of convection, followed by the conventional

ideas behind convective parameterisation and their limitations. Sections 1.2 and 1.3 describe the

nature of atmospheric convection. Section 1.4 explains daytime convective development. Section

1.5 introduces convective parameterisation and identifies the challenges in representing convection

in high-resolution simulations. Section 1.6 explains the motivation and defines the scope of this

study.

1.2 The nature of moist convection

1.2.1 The physics of buoyancy

To understand how buoyancy drives convection, one may first recall the vertical momentum

equation:
Dw
Dt

= −1
ρ

∂p
∂z
− g (1.2.1)

where w is the vertical velocity, p is the air pressure, ρ is the air density and g is the acceleration due

to gravity. One may split each variable into its background state and a corresponding perturbation,

i.e.

ρ = ρ̄ + ρ′ (1.2.2)

p = p̄ + p′ (1.2.3)

w = w̄︸︷︷︸
=0

+w′ = w′ (1.2.4)

where an overbar and a prime denote the background state and perturbation respectively. It follows

that Equation (1.2.1) may be written as

(ρ̄ + ρ′)
Dw
Dt

= −∂ p̄
∂z
− ρ̄g︸ ︷︷ ︸

=0, hydrostatic balance

−∂p′

∂z
− ρ′g (1.2.5)

3



Chapter 1: Introduction

Thus, Equation (1.2.5) becomes
Dw
Dt

= −1
ρ

∂p′

∂z
− ρ′

ρ
g (1.2.6)

where the second term on the R.H.S. is generally known as buoyancy.

Consider the hydrostatic pressure distribution underneath an air parcel with a negative density

perturbation. The local pressure directly below the perturbed parcel is smaller than that of the

surrounding environment. Air responds to the resultant horizontal pressure gradient and converges

towards the perturbed parcel from underneath. As a result, the air parcel is displaced upwards and

rises. The opposite holds true for an air parcel with a positive density perturbation.

It is often more convenient to consider perturbation of temperature and moisture in the atmosphere

rather than density directly. Consider the ideal gas equation

p = ρRdTv (1.2.7)

where Rd is the specific gas constant of dry air and Tv is the virtual temperature of air defined as

Tv = T(1 + 0.61q) (1.2.8)

where q is the specific humidity in kg kg−1 and T is the temperature of air in K.

Considering a linear perturbation to Equation (1.2.7) yields

p̄ + p′ = (ρ̄ + ρ′)Rd(T̄v + Tv
′) (1.2.9)

expanding which gives

p̄ + p′ = ρ̄RdT̄v + ρ̄RdT′v + ρ′RdT̄v + ρ′RdTv
′ (1.2.10)

Choosing the background state so that the idea gas law holds true

p̄ = ρ̄RdT̄v (1.2.11)

and ignoring quadratic terms in perturbation variables, one obtains

ρ′ =
p′

RdTv
− ρ̄

Tv
′

Tv
(1.2.12)

4



Chapter 1: Introduction

It follows that b the buoyancy acceleration can be expressed as

b = −g
ρ′

ρ
= −g

p′

p︸ ︷︷ ︸
∼0

+g
ρ̄

ρ︸︷︷︸
∼1

Tv
′

Tv
(1.2.13)

= g
Tv
′

Tv
(1.2.14)

Scale analysis (not shown) reveals that the first term on the R.H.S. is related to the propagation of

sound waves through the fluid and is relatively small. Hence, the density perturbation is largely

contributed by the virtual temperature perturbation. Equation (1.2.13) indicates that a positive

temperature anomaly leads to a positive buoyancy acceleration.

1.2.2 Quantifying atmospheric instability

An atmospheric state conducive to convection is referred to be unstable. Atmospheric instability

can be quantified by the total buoyancy acceleration an air parcel encounters during an ascent, via

Dw
Dt

= g
Tv
′

Tv
(1.2.15)

Recognising that
Dw
Dt

=
Dw
Dz

Dz
Dt

= w
Dw
Dz

(1.2.16)

the change in vertical velocity due to buoyancy over a vertical distance z is given by

∫
w dw = g

∫ Tv
′

Tv
dz (1.2.17)

Integrating Equation (1.2.17) yields the relationship

1
2

wz2
2 − 1

2
wz1

2 = g
∫ z2

z1

Tv
′

Tv
dz (1.2.18)

Equation (1.2.18) implies that the vertical velocity of an unstable air parcel is governed by the

contribution from buoyant energy and the initial vertical kinetic energy. In addition, it implies that

an air parcel can overshoot into stable environment given sufficient vertical velocity.

5



Chapter 1: Introduction

1.2.3 The role of moist processes

Moist convection differs from its dry counterpart due to phase changes of water vapour taking

place in ascending air. Saturation is defined as the equilibrium between the rates of evaporation and

condensation. The vapour pressure at which saturation occurs is known as the saturation vapour

pressure. It is a function of temperature and is governed by the Clausius-Clapeyron relation defined

as follows:

es = e0 exp

{
L

Rv

(
1
T0
− 1

T

)}
(1.2.19)

where Rv is the specific gas constant for water vapour, and e0 is the reference saturation vapour

pressure at the reference temperature T0.

In an ascending (and thus cooling) parcel, saturation occurs when the saturation vapour pressure is

reduced to the vapour pressure of water vapour, forming cloud droplets and eventually rain drops

if cooling continues. Latent heat is released during condensation and reduces the rate of cooling

during the ascent (known as the lapse rate). This increases the density perturbation of the air parcel

and thus its buoyancy acceleration. This is further discussed in the next section.

1.3 Characteristics of atmospheric convection

An atmospheric convective cell consists of three major components, namely the convective up-

draught, convective downdraught and the ambient compensating subsidence (Byers and Braham Jr,

1948; Emanuel et al., 1994; Smith, 2013; Plant and Yano, 2015). Each component is discussed in

turn below.

1.3.1 The convective updraught

A convective updraught is a column of warm and moist air rising through the atmosphere. It is the

direct response to atmospheric instability as explained in the previous section. Its thermodynamic

trajectory on a tephigram, as shown in Figure 1.1, can be divided into two components, namely

the dry ascent and the moist ascent. As a starting point, it is often assumed that the convective

updraught is either adiabatic (i.e. no heat exchange between updraught and environment) or pseudo-

adiabatic (i.e. no heat exchange processes other than that of latent heat between the updraught and

environment).

6
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1.3.1.1 Dry ascent

The dry stage is characterised by the thermodynamic profile of an unsaturated lifted parcel beneath

the cloud base, or lifting condensation level (LCL) as shown in Figure 1.1. The profile is governed

by the first law of thermodynamics:

dq = cpdT − αdp (1.3.1)

where dq is the external heat exchange, cp is the specific heat capacity of air at constant pressure, α

is the specific volume (the reciprocal of density, 1/ρ), dT is the change in temperature and dp is

the change in pressure. For an adiabatic process, Equation (1.3.1) becomes

dT
dp

=
α

cp
(1.3.2)

Assuming the atmosphere is in hydrostatic balance and the pressure of the air parcel instantaneously

adjusts to that of the environment, it follows that

dT
dz

=
dT
dp

dp
dz

=
α

cp

(
−ρg

)
= − g

cp
= −Γd (1.3.3)

where Γd is known as the dry adiabatic lapse rate (DALR). For the atmosphere of the Earth,

cp ∼ 1000 J kg−1 and g ∼ 10 m s−2, which yields Γd ≈ 10 K km−1, i.e. a lifting parcel cools by

1 K per 100 m before it reaches the LCL.

1.3.1.2 Moist ascent

Upon reaching the LCL, water vapour begins to condense into water droplets and latent heat is

released. Assuming the process is pseudo-adiabatic, the first law of thermodynamics becomes

cpdT − αdp = −Ldrs (1.3.4)

where ε = Rd/Rv is the ratio of specific gas constant of dry air to that of water vapour and

rs = εes/(p− es) is the saturation water vapour mixing ratio. It follows that

cpdT − αdp = −L

(
∂rs

∂T
dT +

∂rs

∂p
dp

)
(1.3.5)
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(
cp + L

∂rs

∂T

)
dT =

(
α + L

∂rs

∂p

)
dp (1.3.6)

Using Equation (1.3.6) and assuming hydrostatic balance, the moist adiabatic lapse rate is given by

Γw = g
RdT2 + LrT

cpRdT2 + L2rε
(1.3.7)

where r = εe/(p − e) is the water vapour mixing ratio of the air parcel. Although Γw varies

with temperature and mixing ratio, the multiplication factor ≤ 1 guarantees that Γw < Γd. Thus,

the rate of cooling reduces above the LCL as latent heat is released, before Γw = Γd at the

limiting case r = 0 (i.e. all water vapour is condensed into liquid) as shown by the moist adiabats

(thermodynamic trajectory of pseudoadiabatic process) on Figure 1.1.

1.3.1.3 CAPE and CIN

Depending on the thermodynamic profile of the atmosphere, buoyancy may change sign along the

ascent. This may be easily identified on a tephigram by comparing the updraught trajectory with the

temperature profile of the environment, as shown in Figure 1.1.The area bounded by the updraught

trajectory and environmental trajectory is proportional to its buoyant energy. Positive buoyant

energy, represented by areas bounded by environment temperature profile and parcel temperature

trajectory where Tp > Te, is known as convective available potential energy (CAPE), while its

negative counterpart is known as convective inhibition (CIN). For an atmospheric profile where

there is only one layer of CAPE above one layer of CIN, the lower height bound of CAPE is known

as the level of free convection (LFC), while the upper bound is known as the equilibrium level

(EL). As shown in section 1.2.2, the buoyant energy is conveniently expressed in terms of virtual

temperature. Hence,

CAPE =
∫ EL

LFC
−g

(
Tvparcel − Tvenv

Tvenv

)
dz (1.3.8)

CIN =
∫ LFC

zBL

g
(Tvparcel − Tvenv

Tvenv

)
dz (1.3.9)

where zBL is the height of the boundary layer top (See section 1.4.1). As the name suggests, CIN

acts to delay or inhibit the onset of convection so that CAPE is not immediately available to generate

convection.
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Figure 1.1: A sample tephigram of a convective atmospheric profile with key metrics annotated.

1.3.1.4 Entrainment and detrainment

While the parcel perspective assumes an ascent is isolated from its surroundings, a real convective

updraught is diluted due to mixing of air with the environment. The intrusion of environmental

air into the updraught is known as entrainment and the reverse is known as detrainment. At the

cloud base, environmental air entrains into the updraught. At the cloud top, cloudy air detrains

away from the convective updraught. This is known as forced detrainment and governs the outflow
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of the convective updraught at cloud top.

Since environmental air is typically drier and cooler than the updraught, entrainment tends to cool

and dry the updraught. At the same time, the environment is conditioned by detrained moist and

warm air from the updraught. Each process acts to reduce the buoyancy of the updraught, resulting

in a shallower and weaker updraught compared to the idealised parcel ascent. However, detrainment

of shallow convection increases the specific humidity via evaporation of cloud droplets into the

unsaturated environment. This reduces the negative effect of entrainment and is found to play an

important role in the late onset of deeper convection (Blyth and Latham, 1993; Brown and Zhang,

1997; Bechtold et al., 2004b; Cetrone and Houze Jr, 2006).

1.3.2 Convective downdraught

A convective downdraught is a column of cool, dry and rapidly descending air from a convective

cloud caused by the evaporation of water droplets and rain drag. Upon reaching the surface, the

downdraught diverges into a cold pool, the enclosing boundary of which is known as gust fronts

(Wakimoto, 1982; Mahoney III, 1988; Henneberg et al., 2020). Depending on the intensity of

the downdraught and the surface mean wind, convective gusts could reach up to 49 m s−1 and

cause damages (Nakamura et al., 1996). In addition, enhanced convergence near the surface gust

front could also trigger new convection (Weisman and Klemp, 1986; Kingsmill, 1995; Abulikemu

et al., 2019). Thus, convective downdraught is an important factor towards predicting the onset of

convection.

Similar to the moist phase of the convective updraught, a convective downdraught may reasonably

be idealised as a pseudo-adiabatic descent such that its temperature profile follows a pseudo-adiabat

on a tephigram (Gilmore and Wicker, 1998; Market et al., 2019). The area on the tephigram bounded

by the environment temperature profile and the parcel temperature trajectory where Tp < Te, is

known as downdraught convective available potential energy (DCAPE) (Li, 2004).

1.3.3 Compensating subsidence

Compensating subsidence is the downward motion observed in the cloud-free environment which

compensates for the net upward convective motions (Bretherton and Smolarkiewicz, 1989). As a

convective updraught reaches the tropopause and detrains into the surrounding atmosphere, gravity

waves with alternating upward and downward motions are generated and propagate away from the

convective cloud. Downward branches, associated with upper-level horizontal convergence, induce
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downward motions over an extensive area at a relatively slow rate. The typical vertical velocity

of compensating subsidence is O(0.1 m s−1). Compensating subsidence removes instability by

warming the large scale environment which reduces the buoyancy of ascending parcels.

1.4 The diurnal cycle of convection

The diurnal cycle of convection is the change of convection over a day driven by the diurnal variation

of solar radiation and the associated surface heating (Soden, 2000; Hendon and Woodberry, 1993;

Chaboureau et al., 2004). As the surface of the Earth absorbs solar radiation, convective instability

grows as the boundary layer heats up. The convection later subsides towards sunset when the

boundary layer begins cooling as a result of radiation. Since the land has a lower specific heat

capacity than the ocean, the diurnal cycle of convection is significantly more pronounced over land

than the ocean (Yang and Slingo, 2001; Zhang and Klein, 2010). To understand this phenomenon,

one must understand how the convective boundary layer evolves during the day.

1.4.1 The convective boundary layer

The boundary layer is the lowest part of the Earth’s atmosphere in direct contact with the surface and

its structure and characteristics are directly influenced by surface processes including surface energy

fluxes and friction (Clarke, 1970; Stull, 1988). It is characterised by turbulence as the air flow is

disrupted by surface friction, obstacles (such as vegetation, trees, topography and settlements) and

thermals, which are columns of rising air in the boundary layer due to solar heating. It is primarily

turbulence which redistributes and transports heat and moisture within the boundary layer (Garratt,

1994).

The boundary layer is typically convective during the daytime when radiation from the sun heats

up the surface of the Earth (Kaimal et al., 1976; Yang et al., 2004). Figure 1.2 shows the typical

structure of the convective boundary layer, which is vertically partitioned into three layers with

distinctive characteristics (Stull, 1988):

• The surface layer

The surface layer is the lowest part of the convective boundary layer in direct contact with

the surface. It is superadiabatic, indicating net upward sensible heat flux (i.e. the surface

heats the air above). Moisture also decreases of with height, which indicates a net upward
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transfer of moisture (i.e. surface moistens the air). Furthermore, this layer is characterised by

strong shear of the horizontal wind with height due to surface friction. Both the buoyancy

and shear contribute to the generation of turbulence. The vertical profiles are governed by

the Monin-Obukhov Similarity Theory (Monin and Obukhov, 1954).

• The mixed layer

Located above the surface layer, the mixed layer is dominated by convective overturning.

Turbulence is predominantly produced via buoyancy and mixing leads to small variations of

thermodynamic variables in the vertical.

• The entrainment zone

The entrainment zone is the buffer between the boundary layer and the free troposphere,

where convective overturning is dampened by negative buoyancy due to the stable condition

of the free troposphere marked by increasing potential temperature with height. Boundary

layer thermals with high vertical momentum are able to overshoot into the free troposphere.

This penetration leads to mixing of boundary layer air into the free troposphere as well as

entrainment of free tropospheric air downward into the mixed layer. Moisture decreases

rapidly with height while wind speed increases sharply with height.

Figure 1.2: The vertical profile of the daytime convective boundary layer. From Stull (1988).
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1.4.1.1 The evolution of the daytime convective boundary layer

As the energy flux into the boundary layer originates from the surface via absorption of solar

radiation, it is important to understand the energy exchange at the surface. The surface energy

budget is governed by (Stull, 1988; Flerchinger et al., 1996; Senay et al., 2007; Timmermans et al.,

2007):

Rn − G0 = H + λE (1.4.1)

where Rn is the net surface irradiance representing the net radiation gained or lost at the Earth’s

surface, G0 is the ground heat flux, H and λE are the sensible and latent heat fluxes respectively

which are defined as (Stull, 1988; Grant, 1997):

H = ρcpw′θ′ (1.4.2)

λE = ρLw′q′ (1.4.3)

where w′θ′ and w′q′ are the eddy covariances between perturbation vertical velocity w and potential

temperature θ and specific humidity q. The definitions of H and λE are based on Reynolds averaging

at the surface where the mean vertical velocity w is zero.

Rn exhibits a diurnal cycle peaking at local midday when the solar zenith angle is at the minimum.

Rn − G0 is known as the available energy from the sun into the atmosphere, which is partitioned

into H and λE. Thus, the evolution of H and λE follow the diurnal cycle exhibited by Rn.

As turbulence is mainly driven by buoyancy in the CBL, convective overturning becomes increas-

ingly rigorous as H increases during the day due to surface heating. The depth of the boundary

layer exhibits a diurnal cycle as shown in Figure 1.3, which is divided into the following four stages

(Stull, 1988):

1. Formation of the initial shallow mixed layer

At sunrise, the surface layer begins to heat up and convective overturning commences. Yet,

thermals are initially unable to reach the well-mixed neutral residual layer due to inversion

through the stable nocturnal boundary layer, resulting in a slow growth of the mixed layer.

2. Rapid growth

The initial shallow well-mixed layer warms and becomes coupled with the residual layer

where boundary layer thermals begin penetrating into. This results in the rapid deepening of
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the boundary layer.

3. Quasi-constant phase

As the thermals reach the capping inversion, vertical motion is dampened. As thermals

overshoot into the capping inversion, entrainment is induced and free tropospheric air

subsides into the boundary layer and therefore prevents additional deepening of the boundary

layer.

4. Decay

Upon sunset, the surface layer begins to cool and the nocturnal stable layer forms. Surface-

based convective overturning ceases and the well-mixed layer decouples from the surface to

become the residual layer, marking the breakdown of the convective boundary layer.

Figure 1.3: The evolution of the convective boundary layer. From Stull (1988).

1.4.1.2 The role of boundary layer thermals in triggering moist convection

If the boundary layer is sufficiently moist, cumulus clouds can form as thermals reach their

respective lifting condensation levels (LCL). Boundary layer thermals contribute to the formation

of three types of clouds defined by Gentine et al. (2013b):

14



Chapter 1: Introduction

• Forced clouds

While a thermal may reach its LCL, it may not be able to reach its level of free convection

(LFC) due to insufficient positive buoyancy in spite of the release of latent heat. Clouds

associated with this type of thermal are classified as forced clouds as they rely on the

continued forcing by the parent thermals to exist. They are largely present in the capping

inversion.

• Active clouds

If a thermal is sufficiently strong to reach LFC after reaching its LCL, an active cloud is trig-

gered. Clouds of this nature create their own pressure perturbations in the horizontal, leading

to the establishment of a convective circulation even in the absence of the parent thermal.

Thus, active clouds may exist beyond the lifetime of the boundary layer thermals responsible

for triggering them. In addition, air leaves the mixed layer into the free troposphere, which

decreases the rate of growth of the boundary layer.

• Passive clouds

Active clouds may decouple from the mixed layer upon maturity; air is no longer drawn

from the mixed layer into the cloud base. Thus, cloud near to its original base dissipates via

evaporation and gradual mixing with the environment.

1.4.2 The significance of the diurnal cycle

Over the tropics where other types of convective forcing (such as large-scale mechanical lifting and

cold fronts) are absent, surface heating is the main driver of convection (Hendon and Woodberry,

1993). As boundary layer thermals become increasingly energetic due to increasing solar heating

during the first part of the day, the strength and coverage of associated moist convection also

increases (Hendon and Woodberry, 1993). Thus, surface-based convective activities exhibit a

diurnal cycle coupled with that of the convective boundary layer (Yang and Slingo, 2001). The

existence of the capping inversion means that the onset of convection is often delayed or suppressed,

allowing instability to accumulate before convection initiates (Yang and Slingo, 2001). Therefore,

continental convection is sometimes more vigorous than its marine counterpart, and is often known

as ‘afternoon thunderstorms’ (Chen et al., 2014). An extreme and example of capped convection is

the severe weather outbreaks in central United States. In spring, intense heating over the elevated
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terrain creates an elevated mixed layer as air moves east towards lower terrain. This acts as a strong

capping inversion above the convective boundary layer over Central United States which allows

instability to accumulate with CAPE reaching 5000 J kg−1 (Williams and Renno, 1993). The

arrival of an upper level trough induces large-scale upward motion and cooling in the mid-to-upper

troposphere. If the capping inversion weakens either due to sufficient surface heating or large-scale

cooling, boundary layer thermals may overcome the layer of CIN and become extremely buoyant

convective updraughts with vertical velocity exceeding 50 m s−1, creating severe thunderstorms

capable of producing hailstones the size of softballs (Barry and Chorley, 2009; Markowski and

Richardson, 2011). With a favourable wind profile, thunderstorms may rotate to become supercells

which are capable of producing tornadoes (Weisman and Klemp, 1986; Esterheld and Giuliano,

2008).

1.5 Modelling convection

1.5.1 The concept of parameterisation

The resolution defines the lower end of the range of scales a numerical model can simulate.

Meteorological phenomena with characteristic length/time scales that are smaller/shorter than

the spatial/temporal resolutions cannot be explictly represented by the model. As an example,

if the horizontal grid-length is 10 km, the model is able to resolve the evolution of synoptic-

scale (characteristic length scale = 1000 km) features such as cold fronts and Rossby waves, but

not small-scale processes such as isolated convective cells (characteristics length scale = 1 km),

boundary-layer turbulence (characteristic length scale = 1 mm to 1 km) and radiation (molecular

scale). While increasing the resolution may allow the model to resolve some sub-grid features, this

option is often infeasible due to the limitation in computation resources and heightened costs of the

simulations.

However, as discussed below, unresolved processes have an important effect on resolved-scale

behaviour and must be captured to obtain a good simulation at resolved scales. This has led to

the introduction of parameterisation: the effect of these processes must be estimated based on the

resolved flow. The properties of an unresolved feature (e.g. convective updraught, downdraught

and compensating subsidence) are first estimated based on observed relationships between the

resolved flow and the sub-grid process. The sub-grid feature is then represented as a forcing on

the resolved flow based on how it is observed to modify the larger-scale environment. Despite its
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empiricism, parameterisation is found to improve the performance of numerical simulations (e.g.

Ooyama, 1964; Irannejad et al., 2003).

1.5.2 The ‘grey-zone’ of convective parameterisation

With a characteristic length scale of 1 km (Emanuel et al., 1994; Miyamoto et al., 2013; Houze,

2014), convection should be parameterised in models with grid-length greater than approximately 1

km. Its importance became more fully appreciated when Ooyama (1964) proposed and implemented

a simple convective parameterisation based on the theory of Conditional Instability of Second

Kind (CISK, Charney and Eliassen, 1964) and led to the first successful simulation of tropical

cyclone development at ∆x ≥ 50 km. However, modern models are run at higher resolutions for

better simulation of convective phenomena such as squall lines and thunderstorms (e.g. Weisman

et al., 1997; Romero et al., 2001; Done et al., 2004). For instance, the UK Met Office operates a

regional numerical weather forecasts for the British Isles (UKV) with varying resolutions down

to a grid-length of 1.5 km using the Unified Model (Davies et al., 2005). As the grid-length

approaches 1 km, part of the spectrum of convective motions may be represented explicitly by the

model dynamics, a regime for which conventional convective parameterisation schemes (convection

schemes hereafter) are not designed. This implies that employing conventional schemes at such

resolutions may yield undesired representation of convection such as scale-dependence of results

(see Chapter 2 for further discussion). The range of resolutions within which convection is partially

resolved is known as the ‘grey-zone’ of convective parameterisation.

1.6 Project motivation

Given that convection affects the evolution of the atmosphere and can bring significant weather risks,

it is important to simulate convection correctly for accurate forecasts and research. Responding to

the movement of modelling at kilometre-scale resolutions, it is worthwhile to explore a solution to

the ‘grey-zone’ problem in convective parameterisation when:

• neither the use of conventional schemes nor no scheme is a reasonable approach in the

‘grey-zone’ (shown in Chapter 6);

• simulating at O (100 m) to fully resolve convection (Bryan and Rotunno, 2005; Petch, 2006)

may not become practical in the near future (especially for climate modelling); and
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• there is a demand for good ensemble numerical weather predictions at ‘grey-zone’ resolutions.

Another motivation comes from the fact that conventional schemes produce convection too early in

a diurnal cycle (Yang and Slingo, 2001; Lean et al., 2008) (see Chapter 2 for detailed discussions).

Given its significance, as discussed in Section 1.4.2, improving the simulation of the diurnal cycle

at ‘grey-zone’ resolution would be an important goal for the project.

1.7 Research aim

The aim of this project is to develop a new scheme to parameterise convection in ‘grey-zone’

simulations in order to improve simulations of the diurnal cycle of convection over land. Thus, the

objective of this research is to better predict the onset time and strength of the convective diurnal

cycle over land. Through this approach, this research focuses on answering two research questions:

1. Is it possible to construct a convection scheme that produces results that are relatively

resolution independent in the ‘grey-zone’?

2. Is an accurate parameterisation of boundary layer turbulence important for a successful

simulation of diurnal cycle of convection in the ‘grey-zone’?

1.8 Chapter summary

This chapter has introduced the characteristics and physics of moist convection in the atmosphere,

followed by the concept of convective parameterisation and the ‘grey-zone’, and a justification of

the motivation and necessity of this project. The following chapter will describe the conventional

convective parameterisation approach, including the underlying non scale-aware assumptions and

how they ultimately lead to unrealistic representation of convection in simulations at ‘grey-zone’

resolutions.
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The conventional convective parameterisation

2.1 Introduction

Prior to finding a solution, it is important to explain the problems of conventional convection

schemes when implemented in simulations at ‘grey-zone’ resolutions. This chapter describes in

detail the underlying conventional assumptions made for convective parameterisation and identifies

the limitations of these assumptions in the ‘grey-zone’. Section 2.2 describes the conventional

assumptions on the interactions between sub-grid plumes and the resolved-scale flow. Section 2.3

introduces the conventional algorithms of triggering a convection scheme (a.k.a. trigger functions).

Section 2.4 identifies how the traditional assumptions are violated when the resolution of the

simulation increases.

2.2 Representing the cloud-environment interactions

2.2.1 Determining properties of sub-grid updraughts

Instead of scenario-specific approaches (e.g. Yanai, 1971; Bates, 1972; Ogura, 1972), Arakawa and

Schubert (1974) proposed a generalised convection scheme by evaluating the effect of an ensemble

of cumulus clouds on the large-scale environment, after Gray (1972) showed that detrainment is

the primary mechanism through which cumulus clouds modify the static energy and moisture of

the surrounding environment. Arakawa and Schubert (1974) emphasised that for the entire cloud
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ensemble, the detrainment rate D is related to the entrainment rate E and its mass flux Mc via the

mass continuity equation, i.e.

E− D =
∂Mc

∂z
+ ρ

∂σc

∂t
(2.2.1)

where

Mc = ∑
i

Mi = ∑
i

ρwi (2.2.2)

where wi is the vertical velocity of an individual convective updraught i and σc is the fractional

area covered by cumuli. As there exist various cloud types λ in a cumulus ensemble, Mc may also

be expressed as the integral of mass fluxes across all cloud type, i.e.,

Mc =
∫

M(λ) dλ (2.2.3)

Assuming ∂σc/∂t = 0, ∂Mc/∂z could be diagnosed via Equation (2.2.1). For parameterisation,

Mc must be expressed in terms of large-scale processes. Arakawa and Schubert (1974) normalised

Mc by the mass flux at cloud base Mb and argued that the mass flux distribution of a cumulus

ensemble should be related to the kinetic energy budget of convective updraughts, i.e.,

dK(λ)
dt

= A(λ)Mb(λ)− D(λ) (2.2.4)

where K(λ) is the kinetic energy of convective updraughts and D(λ) is its dissipation rate. The

first term on the R.H.S. of (2.2.4) denotes the generation of K(λ), which is calculated as the work

done by buoyancy force. They coined the term A(λ) the cloud work function and define it as:

A(λ) =
∫ zD(λ)

zB

g
cpT(z)

η(z, λ)[svc(z, λ)− sv(z)] dz (2.2.5)

where svc and sv are the virtual dry static energy of the cloud and the environment respectively, and

η(z, λ) is the normalised time-averaged mass flux distribution.

Without an existing theory which relates the convective mass flux distribution to a single cloud work

function, Arakawa and Schubert (1974) assumed that the number of sub-grid convective clouds is

sufficiently large so that the average properties of local sub-grid plumes equal the ensemble mean.

This simplification was sensible for simulations at their time with grid lengths of order O(100 km).

This allowed Arakawa and Schubert (1974) to assume that all sub-grid updraughts at any given
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time may be represented by a bulk plume, and thus

∫
Mb(λ) dλ ≈ NspMb (2.2.6)

where Nsp is the number of sub-grid plumes (which is effectively σc) and Mb is the cloud base

mass flux of the bulk plume.

To determine σc (a.k.a. the closure problem), Arakawa and Schubert (1974) examined the budget of

the cloud work function
dA
dt

=
dA
dt

∣∣∣∣∣
C

+
dA
dt

∣∣∣∣∣
LS

(2.2.7)

where the subscripts C and LS refer respectively to cloud-scale and large-scale processes. The

consumption of cloud work function by clouds occurs with a time-scale of the life cycle of a cloud.

Arakawa and Schubert (1974) assumed that this time-scale, which they referred to as the convective

adjustment time-scale, is much shorter than that of the production of cloud work function by large-

scale processes. Although the large-scale forcing can vary with time and the exact balance between

consumption and generation will never be reached, Arakawa and Schubert (1974) argued that the

large-scale forcing is only relevant over the period characterised by the adjustment time-scale. The

dependence of convection on the past history of the large-scale forcing vanishes when τLS, the

time scale of the large-scale forcings, is significantly larger than τC, the convective adjustment

time-scale. In other words, the amplitude of the convective response may be estimated with the

current large-scale forcing only since the sub-grid convection reacts sufficiently quickly to remove

the cloud work function (i.e. instability) that is being generated by large-scale processes, i.e.

dA
dt

= 0 (2.2.8)

Under these assumptions, the state of the sub-grid cumulus ensemble follows a sequence of quasi-

equilibria with the large-scale forcing. Arakawa and Schubert (1974) coined this assumption

the ‘quasi-equilibrium assumption’, and it became the fundamental concept of closure for later

convective parameterisation techniques. In addition to closing the parameterisation, the quasi-

equilibrium assumption also enables the estimation of properties of the cloud ensemble based on a

steady-state (i.e. fully developed) plume. This is realistic as long as τLS � τc such that sub-grid

clouds are able to complete their full life cycle in less than τLS. As a consequence, the properties of

the bulk plume can be diagnosed based on the current large-scale environment, further simplifying
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the parameterisation problem.

Another consequence of impairing the quasi-equilibrium assumption is that the model dynamics

should not be able to generate explicit convection at the resolved scale. This is because the

quasi-equilibrium assumption ensures that nearly all of the instability is removed by sub-grid

convection such that the resolved flow is always convectively stable. For simulations with grid

lengths greater than 10 km, this consequence is desirable since it is unrealistic to represent any

resolved convective updraught with such a scale. In other words, the quasi-equilibrium assumption

implies that convection is exclusively represented by the convection scheme by suppressing explicit

convection.

2.2.2 Modelling compensating subsidence

To parameterise its stabilisation effect of compensating subsidence on the resolved scale flow,

Arakawa and Schubert (1974) made use of two observations about the relationship between the

sub-grid convection and the large-scale environment. The first is that over a large area, convection

only occupies a small fractional area while the majority of the convective area is dominated by the

dry environment in which compensating subsidence takes place, i.e.

σc � 1 (2.2.9)

The second assumption is that the net mass flux is zero over the area represented by a grid box as

a result of continuity, which Arakawa and Schubert (1974) enforced within each grid column. In

other words, all compensating subsidence occurs in the same grid-column as the driving convection

and reduces convective parameterisation to a one dimensional problem.

With these two assumptions, the magnitude of the compensating subsidence at each height is given

by

we(z) =
(w(z)− σcwc)

1− σc
(2.2.10)

where z is the height, w is the vertical velocity, σ is the fractional area, the overbar signifies the

grid-mean value and the subscript e refers to the dry environment.

2.2.3 Calculating the forcing on the resolved-scale flow

Arakawa et al. (2011) considered that the grid-mean value of an arbitrary quantity ψ̄ is the combined
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effect of a convective contribution ψc and the environmental contribution ψ̃, i.e.

ψ̄ = σcψc + (1− σc)ψ̃ (2.2.11)

This is true for w and for the vertical transport of the quantity wψ, i.e.

w = σcwc + (1− σc)w̃ (2.2.12)

wψ = σcwcψc + (1− σc)w̃ψ̃ (2.2.13)

Taking the Reynolds averaging of the vertical eddy transport of ψ yields

wψ− w̄ψ̄ = σc(1− σc)(wc − w̃)(ψc − ψ̃) (2.2.14)

Given a grid length ∆x which is substantially greater than the characteristic horizontal length scale

of a single plume xi, i.e.

xi � ∆x (2.2.15)

it follows that the total area of the convective plume is significantly smaller than the area of the grid

box (∆x)2. If the total area of all convective plumes Ac is also small, it follows that

σc =
Ac

(∆x)2 � 1 (2.2.16)

For the regime in which σc is small, (2.2.12) can be approximated as

w ≈ w̃ (2.2.17)

Since the vertical velocity in a convective updraught is of the order of 10 m s−1 and the synoptic

scale vertical velocity is of the order of 1 cm s−1, w̃ � wc and it follows, according to (2.2.17),

that

w� wc (2.2.18)

This allows the effect of convection to be represented by the convective flux of ψ via

ρ
(
wψ− w̄ψ̄

)
= ρσcwc(ψc − ψ̃) (2.2.19)
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where ρ is the density of air. It follows that the tendency of ψ due to sub-grid convection is given by

∂ψ

∂t

∣∣∣∣∣
conv

= −1
ρ

∂

∂z

[
ρ
(
wψ− w̄ψ̄

)]
= −1

ρ

∂

∂z
[
ρσcwc(ψc − ψ̃)

]
(2.2.20)

This equation implies that if the cumulative mass flux due to all sub-grid convection is known, its

effect on the large-scale atmosphere can be represented. Together with the ensemble assumption,

this assertion gives rise to the ensemble bulk plume approach, which represents the entire population

of convective elements within the grid box as one single bulk convective plume. The advantage of

such an assumption is that one can simply calculate the convective characteristics (ψc and ρσcwc)

of the bulk plume instead of performing an averaging of some assumed distributions of convection.

A typical implementation of the conventional convective parameterisation is as follows (Fritsch and

Chappell, 1980):

1. Calculate the properties of the bulk updraught, including temperature, moisture, cloud

precipitates and vertical velocity.

2. Assuming a small fractional area, calculate the properties of the local compensating subsi-

dence using the zero net mass flux argument.

3. Compute the new grid-mean values due to the effect from the bulk plume.

4. Iterate steps 1 - 3 until the closure assumption is satisfied, i.e. all instability generated by the

large-scale within a time-step is removed.

2.2.4 Variations and refinements within the conventional framework

There have been some key developments based on the approach by Arakawa and Schubert (1974).

Instead of the cloud work function, Fritsch and Chappell (1980) used CAPE to close their convection

scheme. In their approach, the vertical profile of the bulk plume is calculated via an undiluted parcel

ascent which originates from the surface if the triggering condition is satisfied (see Chapter 3).

Fritsch and Chappell (1980) also used a microphysics scheme to calculate the properties of the bulk

moist downdraught. Since moist downdraughts also act to stabilise the atmosphere, the inclusion

of this feature led to a more realistic parameterisation. Their scheme iterates the parameterisation

procedure until at least 90% of the instability generated by large-scale processes is removed, which

is a relaxation of the quasi-equilibrium assumption.
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Based on Fritsch and Chappell (1980), Kain and Fritsch (1990) adopted a steady-state entraining

and detraining plume model to estimate the properties of the bulk plume for more realistic cloud-

top heights. Instead of assuming a single entrainment/detrainment rate for the updraught, Kain

and Fritsch (1990) introduced the buoyancy sorting entrainment/detrainment parameterisation, a

concept based on the turbulent mixing between cloudy air and environmental air at the edge of

clouds. Negatively buoyant mixtures leave the updraught and detrain into the environment while

positively buoyant mixtures entrain into the updraught.

Kain and Fritsch (1990) began by estimating the rate at which dry environmental air mixes with the

updraught air δMe via

δMe = Mu0(−0.03δp/Ru) (2.2.21)

where Ru is the radius of the updraught, Mu0 is the cloud-base mass flux and δp is the vertical

pressure interval between two model levels. The total rate of air entering the region in which mixing

occurs δMt is thus given by

δMt = δMe + δMu (2.2.22)

where the subscript u denotes the property of the updraught. Suppose a probability distribution

function f (x) describing the frequency distribution of mixtures is known, it follows that

δMt

∫ 1

0
f (x) dx = δMe + δMu (2.2.23)

which further implies that

δMe = δMt

∫ 1

0
x f (x) dx (2.2.24)

δMu = δMt

∫ 1

0
(1− x) f (x) dx (2.2.25)

The exact form of f (x) was tunable and a sensitivity test was performed in Kain and Fritsch (1990).

Gregory and Rowntree (1990) proposed a similar scheme to that from Kain and Fritsch (1990).

However, instead of sorting buoyancy on cloud-environment mixtures, they followed Simpson and

Wiggert (1969) and Simpson (1971) to parameterise the entrainment rate ε as

ε =
0.2
Ru

(2.2.26)

and set ε = δ, where δ is the fractional entrainment rate. Gregory and Rowntree (1990) also differ

from Arakawa and Schubert (1974), Fritsch and Chappell (1980) and Kain and Fritsch (1990) in the
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closure assumption. Instead of closing the parameterisation with the quasi-equilibrium assumption,

the initial cloud base mass flux MI is set to be proportional to the buoyancy excess one layer below

the initiation layer, i.e.

MI = 10−3c{[(θv
P)k−1 − (θv

E)k−1 − b]/∆σk−1} (2.2.27)

where θv is the virtual temperature and the superscripts P and E denote “parcel” and ”environment”

respectively. b is a tunable constant representing the minimum buoyancy excess required to initiate

the scheme. ∆σ is the interval between two σ-levels in a terrain following vertical grid and k labels

the initial level. Gregory and Rowntree (1990) argued that this allows the initiation of sub-grid

convection in the absence of large-scale forcing. However, these convective updraughts are likely

to cease over a rather short time-scale as no large-scale forcing exists to maintain the availability of

instability to further convective activities. Despite not explicitly enforced, Gregory and Rowntree

(1990) showed that their approach would also achieve quasi-equilibrium.

2.3 Trigger function

In a convection scheme, the trigger function determines whether the scheme is activated in a grid

column over a time-step. Although a mean profile may be stable, the use of a trigger function

recognises that sub-grid variability may cause a fraction of a column to be favourable for deep

convection. Conventional convection schemes incorporate threshold-based trigger functions, a few

of which are described below.

2.3.1 Instability thresholds

A classic approach is to evaluate parameters associated with buoyant energy available since this

must be present for convection to occur. Arakawa and Schubert (1974) selected the level of

maximum moist static energy to be the source of sub-grid convection but did not specify a threshold

for triggering the scheme. Moorthi and Suarez (1992) and Anderson et al. (2004) used a fixed value

of cloud work function as the threshold for triggering the scheme, while Lee et al. (2007) opted to

trigger convection if the lifting condensation level (LCL) of the lifted parcel is within 150 hPa of the

surface. Zhang and McFarlane (1995) triggers their convection scheme if CAPE exceeds 70 J kg−1

based on an adiabatic parcel ascent originated from the level of maximum moist static energy below

600 hPa, while a threshold of the generation rate of CAPE by the large-scale advective processes is
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also used instead as the triggering criterion in some studies (Xie and Zhang, 2000; Zhang, 2002;

Zhang and Mu, 2005; Zhang and Wang, 2006; Wu et al., 2007; Song and Zhang, 2009; Zhang and

Song, 2010). Simpler buoyancy-related trigger criteria have also been introduced. For instance, the

Gregory and Rowntree (1990) scheme is triggered when an entraining parcel, lifted from any layer

in the model with a positively perturbed temperature (0.2 K), remains buoyant with a temperature

excess over 0.2 K at the next model level.

The presence of buoyant energy is necessary but not sufficient to initiate convection. Torn and

Romine (2015) determined that the presence of CIN plays a role in delaying the onset of convection.

Bennett et al. (2006) argued that dynamical factors such as convergence, upper-level forcings and

orography also affect the initiation of convection. Hence, schemes which use instability alone as

a trigger function may perform poorly in certain convective scenarios. For example, Lean et al.

(2008) found that the scheme by Gregory and Rowntree (1990) led to early or unrealistic convective

initiation in the diurnal cycle of convection where CIN is present.

2.3.2 Dynamical thresholds

Since dynamical forcing also plays an important role in triggering convection, an alternative

approach is to trigger convection based on dynamical criterion. Fritsch and Chappell (1980)

introduced a temperature excess threshold ∆T between an adiabatic lifted parcel and the grid-mean

environment at the LCL as the triggering criteria for sub-grid deep convection. ∆T varies according

to w (in cm s−1) in the form of

∆T = −c1w1/3 (2.3.1)

where c1 is a constant with dimensions °C s1/3 cm−1/3. Kain and Fritsch (1990) employed the

same temperature perturbation approach but with a different quantification of ∆T of the form

∆T = k
[
w− c(z)

]1/3 (2.3.2)

where k is a constant and c(z) is the threshold vertical velocity which varies with height. Bechtold

et al. (2001) employed a modified version of the temperature perturbation threshold which depends

on a grid-mean vertical velocity normalised by the domain size of the simulation in the form

∆T =
w
|w| cw

∣∣∣∣∣w
√

A
∆x

∣∣∣∣∣ (2.3.3)
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where cw is a constant, A is the size of the domain in km2 and ∆x is the grid-length of the simulation

in km.

While the above schemes do take the dynamics of the resolved model state into account, they do

not directly address the amount of resolved CIN. Deep convection initiates once the CIN layer is

eroded by ascent cooling of the mid-troposphere or is breached by a sufficiently buoyant thermal.

Donner (1993); Donner et al. (2001) introduced a trigger function which requires the time integrated

large-scale forcing be sufficient to lift the parcel from its initiation level to the LFC, and that CIN

must not exceed an arbitrary threshold (10 J kg−1 in the original scheme, modified to 100 J kg−1

by Wilcox and Donner (2007)).

2.3.3 Other types of thresholds

A modified version of the Zhang-MacFarlane scheme (Xie and Zhang, 2000; Zhang, 2002) requires

the relative humidity at the initiating level of the parcel ascent to be greater than 80%. The original

Tiedtke scheme (Tiedtke, 1989) also requires the lower level atmosphere to be sufficiently close

to saturation, with a relative humidity of at least 90%. It also assesses the large-scale moisture

convergence as an indicator for triggering convection, following studies which suggested that

moisture convergence is an important quantity which controls convective activities (e.g Kuo, 1965,

1974).

2.4 Limitations of the conventional approach

2.4.1 The scale-unawareness of assumptions

Traditional assumptions on cloud-environment interactions are scale-dependent. Firstly, the number

of clouds a grid box can accommodate is very limited for grid-boxes with grid-lengths of O(1 km).

The deterministic bulk plume approach is unable to replicate variations among grid-columns due to

sampling error (Craig and Cohen, 2006; Cohen and Craig, 2006) over a horizontally homogeneous

domain. This may also be suppressed by threshold-based trigger functions which activates a

convection scheme in all grid-columns with similar properties. This scale-unawareness has been

found to prevent simulations from producing sensible wave spectra in the middle atmosphere

(Ricciardulli and Garcia, 2000; Horinouchi et al., 2003), affecting the performance of models.

Variability implies that local sub-grid plumes could also be in different stages of development,

implying that the quasi-equilibrium may not hold over the local grid column. This suggests that
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a steady-state solution from a deterministic closure becomes inappropriate to represent sub-grid

convection in ‘grey-zone’ resolution simulations. Secondly, σc can approach unity at ‘grey-zone’

resolutions and enforcing Equation (2.2.10) for large values of σc will lead to very large we with

very small σe. It also implies that convection is partially resolved at ‘grey-zone’ resolution and

explicit convection could take place. Thus, the complete suppression of resolved convection due to

the quasi-equilibrium assumption is no longer realistic.

2.4.2 The problem of the diagnostic nature

The negligence of the tendency term in Equation (2.2.1) makes convention schemes diagnostic; the

properties of sub-grid plumes are parameterised based on the instantaneous state of the resolved-

scale flow. For this to be realistic, a clear distinction between the convective-scale and large-scale

tendencies is required, which Pan and Randall (1998) described as “ambiguous and subjective”.

The distinction becomes undefined at kilometre-scale simulations, making conventional schemes

not appropriate for ‘grey-zone’ simulations.

2.4.3 Performance in simulations of the diurnal cycle

Conventional convection schemes are known to perform poorly in simulations of the diurnal cycle

of convection over land, which is a case of non-equilibrium convection (Slingo et al., 1992; Betts

and Jakob, 2002; Bechtold et al., 2004a). The common issue is that convection initiates too early in

the diurnal cycle, which is a result of convection schemes responding immediately to the generation

of CAPE by boundary layer forcings and neglecting the presence of CIN. For example, results from

Lean et al. (2008) showed that at a grid-length of 4 km, the onset of convection from Gregory and

Rowntree (1990) is approximately an hour earlier than radar observation as shown in Figure 2.1. In

addition, the early removal of instability leads to a lower peak instability such that the strength of

the convective activities are underestimated. This is also evident in Figure 2.1 where rain rate is

weaker in the 4-km run. In addition, since the domain was not homogeneous (the study aimed to

investigate how different approaches affect simulations of convection over the British Isles), the

conventional scheme induced large horizontal temperature gradients at places. This in turn led to

spurious local explicit convection (a.k.a. grid-point storms).
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Figure 2.1: Evolutions of precipitation in different simulations of a diurnal cycle of convection over the UK.
From Lean et al. (2008)

2.5 Chapter summary

This chapter has explained how the break-down of assumptions regarding the interactions between

convection and the resolved-scale flow leads to poor performance of conventional schemes as

the grid length approaches the length scale of a convective updraught. With convection partially

resolvable, a ‘grey-zone’ convection scheme must separate the spectrum into the resolved and

unresolved parts, and represent the unresolved range without fully suppressing explicit convection.

Moreover, the convection scheme must also produce scale-dependent variability over a horizontally

homogeneous domain to replicate sample error due to limited number of plumes over individual

grid columns. The next chapter will discuss the latest efforts on parameterising convection in the

‘grey-zone’.
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Existing ‘grey-zone’ convection schemes

3.1 Introduction

As discussed in Chapters 1 and 2, many conventional assumptions must be relaxed in order for a

convection scheme to represent convection realistically in ‘grey-zone’ simulations. With this in

mind, some newer schemes designed for the ‘grey-zone’ use relaxed or even new assumptions. This

chapter discusses the development of ‘grey-zone’ convection schemes, focusing on closure and

trigger functions in Section 3.2 and treatment of compensating subsidence in Section 3.3.

3.2 Non-equilibrium closure

3.2.1 Relaxed quasi-equilibrium approach

To improve the performance of conventional schemes in simulations of the diurnal cycle of

convection, Bechtold et al. (2013) proposed a relaxation term in the quasi-equilibrium assumption

such that
∂CAPE

∂t

∣∣∣∣∣
CONV

= −CAPE
τ
− α

1
T∗

∫ h

0

∂Tv

∂t

∣∣∣∣∣
BL

dz (3.2.1)

where

α =
τBL

τ
(3.2.2)
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where τ is the convective adjustment time-scale, τBL is the boundary layer adjustment time-scale

and h is the height of the boundary layer. T∗ scales as c−1
p gh. This closure prevents the convection

scheme from always producing sub-grid convection which consumes all the CAPE generated by

the large-scale forcings in the free troposphere. Bechtold et al. (2013) defined τBL as

τBL =


τc over land

hcb

uBL
over water

where τc is the convective overturning time-scale defined as H/wu, with H being the average

cloud depth and wu being the vertically averaged updraught velocity. hcb is the height of the cloud

base and uBL is the mean horizontal wind velocity in the sub-cloud layer. Rather than an assumed

constant, Bechtold et al. (2013) defined τ as

τ = τc f (n); f (n) = 1 +
264
n

(3.2.3)

where n is the spectral truncation of the model simulation.

Two major concerns exist in the approach by Bechtold et al. (2013). Firstly, the definition of τBL is

based on the overturning of an entire deep convective plume instead of the boundary layer thermals,

which may not reflect the adjustment time-scale of the boundary layer. Secondly, their approach

assumes a steady-state plume which always reaches its maximum height, which does not always

hold as will be discussed in Section 3.2.3.

3.2.2 Stochastic closure

Stochasticity has been introduced in some convection schemes to promote variability in convective

mass fluxes in smaller grids. Palmer (2001) employed a cellular automaton in a convection scheme,

while Bright and Mullen (2002) introduced randomness in the trigger function of the Kain-Fritsch

scheme (Kain and Fritsch, 1990). Majda and Khouider (2002) and Khouider et al. (2003) proposed

a stochastic method to quantify the fractional area of sub-grid updraughts. Lin and Neelin (2003)

proposed a modified version of the Zhang-McFarlane scheme (Zhang and McFarlane, 1995) which

perturbed the assessed CAPE or derived vertical heating profile of sub-grid convection to produce

variability. However, many of these perturbations are based on arbitrary assumptions on the

temporal and spatial variability in the convective state, hence lacking the physical reasoning behind

the perturbation and the appropriate scale-awareness.
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Plant and Craig (2008) developed a stochastic CAPE closure, in which the convective response

perturbation is based on the equilibrium statistics of convection from the CRM studies conducted

by Cohen and Craig (2006). Craig and Cohen (2006) showed that for non-interacting clouds in

equilibrium, the distribution of total cloud base mass flux p(M) can be described by an exponential

pdf with the equation

p(M) =
1
〈m〉

√
〈M〉
M

exp

(
−M + 〈M〉

〈m〉

)
× I1

(
2
〈m〉

√
〈M〉M

)
(3.2.4)

where 〈M〉 is the ensemble mean total cloud base mass flux, 〈m〉 is the mean cloud-base mass

flux of a single cloud and I1 denotes the modified Bessel function of order 1. The large-scale

environment is defined as the horizontal average of vertical thermodynamic and moisture profiles

of the atmosphere over a region centred at each grid point. The size of the averaging region is set to

be proportional to L2, where L =
√
〈m〉/〈M〉 is a length scale which represents the separation

distance between convective plumes. A spectrum of plumes with radii r ranging up to 2 km, which

is binned into 50 equal intervals, is initiated with initial cloud base mass fluxes of each binned

plume m varying by

m =
〈m〉
〈r2〉 r

2 (3.2.5)

The profile of each plume is computed using the plume model employed in the Kain-Fritsch scheme

and an initial guess of the total convective mass flux is obtained. The final total convective mass

flux 〈M〉 is then obtained by scaling the initial guess such that at least 90% of the dilute CAPE is

removed over the closure time-scale Tc, which is given by Tc = kL where k is a tunable parameter

with dimensions s m−1.The equilibrium convective distribution is then obtained using (3.2.4) with

the calculated value for 〈M〉 and an assumed value for 〈m〉. In addition, the probability of a plume

with radius between r and r + dr initiating in a single time step of duration dt is computed as

〈N〉p(r)dr
dt
T

=
〈M〉
〈m〉

2r
〈r2〉 exp

(
−r2

〈r2〉

)
dr

dt
T

(3.2.6)

where 〈N〉 is the ensemble-mean number of convective clouds given by 〈M〉/〈m〉, and T is the

lifetime of a plume which is chosen to be 45 minutes. The large-scale tendencies due to the newly

initiated population of sub-grid convection is then computed.

Plant and Craig (2008) is a first step towards the development of a fully scale-aware convection

scheme for the ‘grey-zone’. However, it is still based on the statistics of plumes in quasi-equilibrium.
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Hence, the scheme might not perform well in non-equilibrium conditions such as the diurnal cycle

of convection where significant CIN might be present. Since this project focuses on the diurnal

cycle, other options must be explored.

3.2.3 Prognostic closure

To represent the evolution of sub-grid plumes in non-equilibrium cases, Pan and Randall (1998)

derived a prognostic relaxation to the quasi-equilibrium assumption by Arakawa and Schubert

(1974). They define the bulk convective kinetic energy (CKE) K as

K =
1
2

∫ zT

zS

ρ0u2
i dz (3.2.7)

where zS and zT are the heights of the surface and maximum cloud top respectively, ρ0 is the

reference state density and ui is the mean three dimensional velocity vector of a convective

updraught. It is important to realise that the bulk CKE includes kinetic energy from all components

of the sub-grid convective ensemble, including convective updraughts/downdraughts and the

horizontal wind.

By making an analogy to the budget equation for turbulent kinetic energy, Pan and Randall (1998)

proposed that the evolution of CKE for each cloud type λ is governed by

∂K(λ)
∂t

= B(λ) + S(λ)− D(λ) (3.2.8)

where B is the buoyancy production term, S is the shear production term and D is the vertically-

integrated dissipation term. Neglecting the shear production term and parameterising D(λ) as

K(λ)/τD where τD is the dissipation time-scale for CKE, Pan and Randall (1998) arrived at

∂K(λ)
∂t

= MB(λ)A(λ)− K(λ)
τD

(3.2.9)

where MB(λ) is the cloud base mass flux and A(λ) is the cloud work function introduced by

Arakawa and Schubert (1974). Following Xu et al. (1992), MB is parameterised as

MB =

√
K
α

(3.2.10)

where α is a parameter with unit m4 kg −1 that governs the conversion coefficient from CKE to

convective mass flux. The amount of sub-grid convection is then quantified according to the rate of
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change of CKE obtained via Eq. (3.2.9). With their approach, the quasi-equilibrium assumption is

relaxed as the prognostic closure allows the accumulation of CKE. In the limiting case that τD is

sufficiently small, quasi-equilibrium becomes the steady-state solution of Pan and Randall (1998).

However, similar to Bechtold et al. (2013)’s approach, Pan and Randall (1998) does not recognise

the fact that the bulk ensemble does not reach the steady-state vertical extent instantly. Moreover,

their parameterisation of the cloud-base mass flux, as well as the remaining parameterisation

procedures, are based on the assumption that σu is small. Hence, although Pan and Randall (1998)

offered the insight of a prognostic closure, it is not suitable as being a convection scheme for the

‘grey-zone’.

Gerard and Geleyn (2005) also proposed a convection scheme with a prognostic closure. Rather than

CKE, they derived prognostic equations for the fractional area and vertical velocity of updraughts

based on the budget of moist static energy. Expressed in pressure coordinates, the evolution of the

the relative vertical velocity of updraught ω∗u, which is defined as ωu −ωe, is

∂ω∗u
∂t

= − g2

1 + γ′
p

Rd

Tvu − Tv

TvTvu

+
ω∗u

2

p

{
1 + (λu +

Kdu

g
)RdTvu

}
− 1

2
∂ω∗u

2

∂p
(3.2.11)

where Kdu is the aerodynamic friction coefficient, γ′ is an apparent mass coefficient.

For the evolution of the updraught fractional area σu, Gerard and Geleyn (2005) followed the

prognostic closure proposed by Chen (1991) and Bougeault (1985). The evolution of σu is governed

by
∂σu

∂t

∫ pb

pt

(
hu − h

) dp
g

= L
∫ pb

pt

σuωu
∗ ∂q

∂p
dp
g

+ L · TMC (3.2.12)

where h is the moist static energy, q is the specific humidity and TMC is the total moisture

convergence towards the local grid box.

Nonetheless, Gerard and Geleyn (2005) assumed other properties of the updraught, such as temper-

ature and moisture, to be in steady-state such that they are diagnostic quantities. Most importantly,

similar to Pan and Randall (1998), they assumed that the vertical cloud extent is always at steady-

state, neglecting the time for the updraught to develop. Using a typical updraught velocity of 5

m s−1, they estimated that the time required for the updraught to reach the top of the troposphere

would be of the order 20 minutes. The large-scale adjustment time-scale due to the diurnal cycle

is of the order 10 minutes, which is comparable to the convective overturning time-scale. Hence,

assessing the effect of sub-grid convection based on a fully-developed plume might result in

earlier-than-expected conditioning of the troposphere via detrainment.
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Tan et al. (2018) proposed a prognostic eddy diffusivity mass flux (EDMF) convection scheme for

unified representation of sub-grid turbulence and convection and solved the prognostic equations

explicitly to simulate the vertical growth of sub-grid plumes. They considered the general budget

equation
∂
(
ρuσuψu

)
∂t

+
∂
(
ρuwuψu

)
∂z

+∇h •
(
ρuψuσuuh

)
= Sρuψuσu (3.2.13)

where Sρuψuσu represents all the source terms of ψu, σu is the fractional area of the updraught, uh is

the horizontal velocity vector. Decomposing the horizontal model domain into subdomains, they

use Equation (3.2.13) to govern five prognostic variables in each subdomain: updraught scalars,

updraught vertical velocity, environmental scalars, environmental covariances and the environmetal

turbulent kinetic energy (TKE). Specifically, the prognostic equations for scalars ψ and vertical

velocity w of updraught and environment (represented by subscripts u and 0 respectively) are as

follows:

∂
(
ρσuψu

)
∂t

+
∂
(
ρσuwuψu

)
∂z

+∇h •
(
ρψuσuuh

)
= ρσuwu

(
εψuj − δψui

)
+ ρσuSψ (3.2.14)

∂
(
ρσuwu

)
∂t

+
∂
(

ρσuw2
u

)
∂z

+∇h •
(
ρwuσuuh

)
=

ρσuwu

(
εwuj − δwui

)
+ ρσuBu − ρσu

∂p
∂z

(3.2.15)

∂
(
ρσ0ψ0

)
∂t

+
∂
(
ρσ0w0ψ0

)
∂z

+∇h •
(
ρψ0σ0uh

)
=

ρσ0w0

(
εψ0j − δψ0i

)
+

∂

∂z

(
ρσ0K

∂ψ0

∂z

)
+ ρσ0Sψ (3.2.16)

∂
(

ρσ0ψ′0w0

)
∂t

+
∂
(

ρσ0w0ψ′0w0

)
∂z

+∇h •
(

ρσ0ψ′0w0uh

)
=

∂

∂z

(
ρσ0K

∂w0

∂z

)
+ ρσ0w0

(
ε0w0j − δ0w0i

)
+ ρσ0B0 − ρσ0

∂p
∂z

(3.2.17)

where the subscript j represents the quantity from the neighbouring subdomains. Their results, as

shown in Figure 3.1, suggest that solving the budget equations for the plume variables is promising

towards simulating non-equilibrium convection. However, they only present solutions of their

equations in one dimension.

36



Chapter 3: Existing ‘grey-zone’ convection schemes

Figure 3.1: Comparison of simulated cloud fraction in the BOMEX shallow convection case between LES
and parameterised simulations using prognostic EDMF and diagnostic EDMF schemes. From Tan et al.
(2018).

3.2.4 Boundary layer closure

In line with studies (Mapes and Houze, 1992; Neggers et al., 2004; Sobel et al., 2004; Kuang

and Bretherton, 2006) showing that correlation between CAPE and cloud-base mass flux is weak,

Raymond (1995) proposed the theory of boundary layer quasi-equilibrium (BLQ) as a closure for

cloud-base mass flux. In BLQ, the equivalent potential temperature in the mixed layer is regulated

at a constant convective threshold value via a balance between the production of conditional

instability by surface fluxes and its removal by convective downdraughts. However, BLQ failed

to replicate observed large diurnal and synoptic-scale variability of the mixed-layer equivalent

potential temperature over land.

Through examining large eddy simulations, Grant and Brown (1999) revealed that the convective

cloud-base mass flux is proportional to the boundary layer convective velocity scale w∗ (a.k.a.
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Deardorff velocity, see Deardorff (1970)), given by

w∗ =

(
gHh

ρCp〈θv〉

) 1
3

(3.2.18)

where 〈θv〉 is the vertical average of the ensemble-mean θv. This finding shows that boundary layer

turbulence is tightly connected with the cloud-base mass flux. Mapes (2000) also emphasised the

role of boundary layer turbulence in triggering convection and proposed that the fractional area of

sub-grid convective updraught σc is quantified by

σc = exp
(
−k

CIN
TKE

)
(3.2.19)

where TKE is the turbulent kinetic energy and k is a constant. This paved the path for identifying σc

as the probability of a thermodynamic quantity exceeding a threshold given by a known or assumed

probability distribution function.

Fletcher and Bretherton (2010) followed the approach of Mapes (2000) and proposed a CIN closure

for the cloud-base mass flux mcb of the form

mcb = c1W exp
(
−c2

CIN
TKE

)
(3.2.20)

where c1 and c2 are constants which, via analysing results from cloud resolving model simulations,

are chosen to be 0.06 and 1 respectively. They also recommended W to take the form

W = 0.28
√

TKE + 0.64 m s−1 (3.2.21)

i.e. the cloud-base vertical velocity of convection is a function of the strength of turbulence in the

boundary layer.

Following methods to model sub-grid moisture variability in cloud parameterisation schemes (e.g.

Sommeria and Deardorff, 1977; Chen and Cotton, 1987), Golaz et al. (2002) proposed that the

sub-grid variability in buoyancy near the surface can be represented by a joint double Gaussian pdf

of vertical velocity w, potential temperature θ and water vapour specific humidity q. The variance

and skewness of the distribution is found by parameterising higher-order turbulence moments.

Cheinet (2003, 2004) proposed a simpler approach which represents the sub-grid variability with a

composite pdf. Their scheme modelled the variability of w in the surface layer with a pdf, in which
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the branch of w < 0 is a delta function while the branch w > 0 is Gaussian-shaped. The same

form of pdf is also used to model the variation in θ. The variance in the Gaussian pdf is governed

by free convection similarity. They introduced a vertical velocity scale ws given by

ws = u∗

(
− zs

L

)1/3

=

[
κgzs

(
Fθv

)
S

θv

]1/3

(3.2.22)

where u∗ is the friction velocity, L is the Monin-Obukhov length, κ is the von-Karman constant, g

is acceleration due to gravity,
(

Fθv

)
S is the surface buoyany flux, θv is the mean virtual potential

temperature of the surface layer and zs is any height within the surface layer. Drawing from

Wyngaard et al. (1971), they suggested that the standard deviations of θ and w, denoted as σθ and

σw respectively, take the form

σw = Cwws

σθ = Cθ

(
Fθv

)
S

θv

(3.2.23)

where Cw and Cθ have the values of 1.9 and 0.95 respectively. To quantify the updraught mass-flux,

the w pdf where w > 0 is discretised into 512 intervals, each representing the initial vertical

velocity of an updraught wi which originates from the surface layer. The updraught mass flux

(which is not necessarily saturated) is thus the weighed mean of all wi by fractional area. A

steady-state entraining plume model governs the vertical profile of each updraught, with equations

for the vertical velocity wi and a conserved quantity Xi as follows:

∂Xi

∂z
= −εiX′i

∂wi
2

∂z
= 2a

g
θv
(θ′v)i − 2bεiwi

2
(3.2.24)

where a and b are dimensionless constants, while εi is the lateral entrainment rate which is

updraught-dependent and is given by

εi = max
(

1
τwi

,
1

Csz

)
(3.2.25)

where τ is the plume turnover time and Cs is set to be 3.

Gentine et al. (2013a,b) developed the probabilistic bulk convective model (PBCM) for dry and

shallow convection, the concept of which is similar to that of Cheinet (2003, 2004). They repre-

sented the surface variability of θ, w and q with a Gaussian pdf which is centred at the respective
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grid-mean values θ, w and q. Based on Stull (1988), a similarity relationship was applied to quantify

the variances of the pdfs (w′2, θ′2 and q′2) such that

w′2 = 0.33w∗2

θ′2 = 5θ∗
2

q′2 = 5q∗2

(3.2.26)

where w∗ is the convective velocity scale as defined in (3.2.18), while θ∗ and q∗ are defined as

θ∗ =
w′θ′v(0)

w∗

q∗ =
w′q′(0)

w∗

(3.2.27)

where w′θ′v(0) and w′q′(0) are the surface buoyancy and latent heat fluxes respectively. They

classified cloud-forming thermals into three regimes as mentioned in Chapter 1:

1. Forced clouds which do not reach the top of the boundary layer, i.e. thermals with θ′v that

θ′v,LCL < θ′v ≤ θ′v,h, where θ′v,h is the minimum potential temperature departure from θv an

updraught must possess to reach the top of the boundary layer at height h.

2. Forced clouds which reach the top of the boundary layer but not the LFC, i.e. thermals

with θ′v satisfying θ′v,h < θ′v ≤ θ′v,LFC, where θ′v,LFC is the minimum potential temperature

departure from θv an updraught must possess to reach its LFC.

3. Active clouds formed by thermals with θ′v where θ′v > θ′v,LFC.

In this framework, the total fractional area of cloud cover generated from the θ′v pdf σc is

σc =
1
2

erfc

(
θ′v,LCL√

2sθv

)
, (3.2.28)

the fractional area of updraughts σu is

σu =
1
2

erfc

(
θ′v,h√
2sθv

)
(3.2.29)

and the fractional area of active convective updraughts σa is

σa =
1
2

erfc

(
θ′v,LFC√

2sθv

)
(3.2.30)
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In (3.2.28), (3.2.29) and (3.2.30), sθv is the standard deviation of the pdf of θv. This is given by

sθv = sθ + θγsq, where sθ =

√
θ′2, sq =

√
q′2 and γ is the ratio of the density of water vapour to

that of dry air.

A boundary layer closure makes no scale-specific assumption on the population of deep convective

updraughts or their interactions with large-scale processes. In addition, the framework by Gentine

et al. (2013a,b) paved the path towards a unified parameterisation of both shallow and surface-

driven deep convection. D’Andrea et al. (2014) followed this and introduced ice physics in moist

adiabats and precipitation in the updraught formulation. In addition, the lateral entrainment of the

updraughts is modified for deep convection, marked by the arrival of precipitation at the surface. A

unified parameterisation approach ensures better consistency between the properties of both types

of convection.

3.3 Non-local compensating subsidence

Recognising the limitation of the conventional no-net-mass-flux assumption at the ‘grey-zone’,

Grell et al. (2014) spreads the compensating subsidence across a 3×3 grid area based on Grell and

Dévényi (2002),. However, the size of spread is arbitrarily chosen and does not vary with resolution

of the simulation, lacking physical reasoning as well as scale-awareness.

In non-hydrostatic models, it is possible to allow the model dynamics to resolve the compensating

subsidence. Kuell et al. (2007) first implemented this approach in Lokal-Modell (LM) of Deutscher

Wetterdienst (Doms and Schättler, 2002; Doms et al., 2007) and found good results. For hydrostatic

models, Malardel and Bechtold (2019) introduced a new convection–dynamics coupling to represent

compensating subsidence with a modified continuity equation of the dynamical core.

3.4 Chapter summary

In this chapter, solutions to individual aspects of the ‘grey-zone’ problem of convective param-

eterisation have been discussed. The stochastic approach by Plant and Craig (2008) produces a

scale-aware variability in convective mass fluxes. Schemes with boundary-layer closure have been

developed to recognise the role of the convective boundary layer in the diurnal cycle of convection.

Prognostic treatment of sub-grid convection by Gerard and Geleyn (2005) and Tan et al. (2018)

have improved the representation of non-equilibrium convection in models. Kuell et al. (2007),

Grell et al. (2014) and Malardel and Bechtold (2019) relaxed the ‘zero net mass flux’ assumption
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and allowed the effect of compensating subsidence to spread beyond one grid-column. Yet, a

convection scheme which unifies the above new solutions is yet to be seen. Thus, designing and

evaluating such a scheme is an appropriate research direction for this project.

In the next chapter, a new mass-flux convection scheme, namely Stochastic Prognostic Mass Flux

(SPMF), will be described. It features a stochastic trigger function based on scale-aware convective

boundary-layer scalings, a prognostic closure and non-local treatment of compensating subsidence.

The scheme will then be evaluated in later chapters.
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The Stochastic Prognostic Mass Flux Scheme

4.1 Introduction

A convection scheme for representing the diurnal cycle of convection at ‘grey-zone’ resolutions

simulations should:

• produce scale dependent horizontal variability across a homogeneous resolved-scale flow,

• use a stochastic trigger function,

• incorporate a prognostic boundary-layer based closure to represent non-equilibrium convec-

tion, and

• not restrict compensating subsidence from sub-grid convection to one grid column.

The above forms the fundamentals of the Stochastic Prognostic Mass Flux Scheme (SPMF), which

is to be described in this chapter. Section 4.2 describes the stochastic trigger function based on the

occurrence of thermals within the convective boundary layer. Section 4.3 introduces prognostic

equations used to represent the vertical growth of sub-grid convection. Section 4.5 explains how

SPMF treats compensating subsidence induced by sub-grid convection. Section 4.4 describes how

the forcing on the resolved-scale flow due to sub-grid convection is calculated.
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4.2 The stochastic boundary layer trigger function

4.2.1 Stochastic occurrence of boundary layer thermals

SPMF features a trigger function which combines the probabilistic thermal approach of Gentine

et al. (2013a,b) and D’Andrea et al. (2014) with the stochastic approach by Plant and Craig (2008).

The trigger function assumes that the area of all of the cloud-base thermals present in a grid box at

a time-step Aun is a first order autoregressive stochastic process. In other words, a fraction of Aun

is contributed by thermals that persist from previous time-steps Aun−1, while the other fraction

originates from the new ones triggered at the time-step. Mathematically,

Aun = µAun−1 +
Nn

∑
r=1

∆Aur (4.2.1)

where Nn is the number of CBL thermals which have been initiated in time-step n and ∆Aur is

the cloud-base area delivered by each of these. The parameter µ ∈ [0, 1) controls the decay of the

pre-existing cloud-base area. Aur is zero for thermals which are unable to penetrate the CIN layer

in order to deliver a non-zero contribution at cloud base. The number of independent boundary

layer thermals generated at a time-step is modelled by a Poisson process, while the vertical velocity

of each thermal wT is determined by randomly drawing numbers from a pdf. Both the Poisson

process and the pdf of wT are controlled by convective boundary layer scalings.

4.2.1.1 Scalings of a convective boundary layer

Surface-driven convection is associated with a convective boundary layer (CBL) with height h in

which solar heating provides a positive surface buoyancy flux, given by

H = ρcp
〈
w′θ′v

〉
0 = ρcpw∗θ∗ (4.2.2)

where
〈
w′θ′v

〉
0 the ensemble mean of the covariance of fluctuations of vertical velocity and virtual

potential temperature at the surface. The fluctuations of vertical velocity is scaled by w∗, while the

parameters h, H and 〈θv〉 in Equation (3.2.18) are assumed to be known. In addition, the condition

H > 0 must be satisfied to qualify for a CBL, and no sub-grid convection is triggered by a stable

boundary layer.

44



Chapter 4: The Stochastic Prognostic Mass Flux Scheme

4.2.1.2 The Poisson process

The probability of a random discrete event occurring over a given time and space interval is

represented with a Poisson distribution. The only parameter that determines a Poisson distribution

is the expected mean of event occurrence E. Therefore, a relationship between the mean number of

sub-grid thermals and the properties of the boundary layer must be found. The trigger assumes that

only thermals associated with the largest eddies within the boundary layer can contribute to the

onset of deep convection. This is in contrast to the real-world situation where a large spectrum of

turbulence exists within the boundary layer. While such an assumption neglects the contribution

from thermals associated with the rest of the turbulence spectrum, it nonetheless serves as a starting

point. A next step might be to use a method similar to Plant and Craig (2008) to produce a size

spectrum of boundary layer thermals.

Each occurrence of a boundary layer thermal is considered as an entirely random and independent

event with probability p per unit area per unit time. It follows that the probability that a boundary

layer thermal develops within a time ∆t over an area ∆A, is

Pr(n) =
(

p∆A∆t
)n

n!
e−(p∆A∆t) (4.2.3)

where n is the number of thermals. If a single thermal circulation occupies an area At over a period

of time τt, it follows that

p =
1

Atτt
(4.2.4)

which implies that

Pr(n) =
λn

n!
e−λ (4.2.5)

with

n = λ ≡ ∆A∆t
Atτt

(4.2.6)

τt is assumed to be the characteristic eddy turnover time τ∗ = (k1h) /w∗ where k1 is a constant.

For At, one can employ a simple model of a large eddy which has a symmetric circulation in 3D

space, giving

At = k2h2 (4.2.7)

so that Atτ∗ = k3h3/w∗ with c3 = k1k2. It is reasonable to assume k1 ∼ 1 as τ∗ and w∗ are both

characteristic scales of the boundary layer. For k2, which determines the relative size of the rising
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branch (thermal) of the large eddy circulation, one may refer to Lenschow and Stephens (1980),

who, via aircraft measurements, suggested that the average length d of thermals in a CBL is

d
h
= 0.16

(
z
h

)1/3 (
1− 0.25z

h

)
(4.2.8)

where z is the height. They noted that if all thermals are assumed to be identical circular structures

in the horizontal with a random chance of overlapping, the values of d above would then relate to a

thermal diameter D = (4/π)d. It follows that the area of a thermal would be (π/4)D2, implying

that one could estimate k2 to be

k2 =
πD2

4h2 = (π/4)(4/π)20.162
(

z
h

)2/3 (
1− 0.25z

h

)2

(4.2.9)

For thermals at the top of the boundary layer (i.e. z = h),

k2(z = h) = (4/π)0.162 (0.75)2 = 0.018 (4.2.10)

One should note that k2(z) within the range 0 < z ≤ h is a montonically increasing function and

so k2(z = h) is the maximum possible k2. However, given that this is a fairly weak function of z

(e.g. k2(z = 0.5h) = 0.015), one does not expect a significant sensitivity of the triggering function

to the choice of z.

In a follow-up paper, Lenschow and Stephens (1982) explicitly stated that the fractional area

covered by thermals is 0.28 while the environment covers the remaining 0.72 on average. This

implies that a thermal on average 28% of its entire parent circulation. Incorporating with the above

results gives

At =
0.018h2

0.28
= 0.065h2 (4.2.11)

and thus k2 = 0.065, implying that approximately 15 thermals can co-exist within an area of 1 km2

if the boundary layer is 1 km deep.

It is worth noting that the thermal studies by Lenschow and Stephens (1980) defines a thermal to

have a fluctuation in q which must be at least half the standard deviation. This is inconsistent with

the assumption that only the vertical velocity of the thermal is randomised.
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4.2.2 The auto-correlation of boundary layer thermals

The auto-regression of boundary layer thermals is assumed to be related to τ∗ as it indicates the

timescale of overturning of large eddies. Therefore, µ is set to scale with τ∗.

By taking expected values of (4.2.1), one finds

E (Aun) = µE (Aun−1) + E
(
φn
)

(4.2.12)

where φn = ∑Nn
r=1 ∆Aur. The assumption that each boundary layer thermal is independent implies

that

E
(
φn
)
= E (Nn) E (∆Aur) (4.2.13)

where E (∆Aur) ≡ ∆Au includes the thermals which do not produce deep convection. Since

E (Nn) = λ, it follows that

E (Aun) = µE (Aun−1) + λ∆Au (4.2.14)

This leads to

E (Aun) ≡ Au =
λ∆Au

1− µ
(4.2.15)

assuming that E (Aun) ≈ E (Aun−1). In other words, the boundary layer is assumed to be in a

quasi-equilibrium state. While this is not universally true, it will be shown that the auto-correlation

derived from this assumption vanishes if the timescale concerned exceeds τ∗. Thus, this supposition

does not lead to µ ≡ 1.

The variance of Au can be derived as follows:

E
(

Au
2
n

)
=E

(
µ2Au

2
n−1 + 2µAun−1φn + φ2

n

)
(4.2.16)

It is important to note that the first term on the right is simply µ2E
(

Au
2
)

. In addition, since Au

is uncorrelated with the thermals, the second term becomes 2µAuλ∆Au. The third expands to

the sum over all combinations ∆Aur∆Aus. However, since each thermal is uncorrelated with the

others, the expectation is just the sum over Nn expectations of ∆Au
2
r , i.e. λ∆Au

2. Thus

(
1− µ2

)
E
(

Au
2
)
=2µAuλ∆Au + λ∆Au

2 (4.2.17)
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The autocorrelation function of (4.2.1) is given by:

E (Aun Aun+m) =µE (Aun Aun+m−1) + E
(

Aunφn+m
)

=µE (Aui Aui+m−1) (4.2.18)

with E
(

Aunφn+m
)
= 0 as there is no correlation between Aun and the random event φn+m. Here,

one should recognise that (4.2.18) is of the form

xm = µxm−1 (4.2.19)

which has the general form

xm = µ|m|x0 (4.2.20)

Therefore, (4.2.18) may be written as

E (Aun Aun+m) = µ|m|E
(

Aun
2
)

(4.2.21)

Thus, the ‘integral timescale’ for this process is given by

∞

∑
m=0

µm∆t =
1

1− µ
∆t (4.2.22)

It may be helpful for interpretation to relate this result to an exponential correlation timescale. If the

autocorrelation function is in the form E (Aui Aui+m) /E
(

Au
2
i

)
= exp(−t/τe) then one obtains

exp(−t/τe) = µt/∆t (assuming positive m for the moment, for ease of notation) which implies

that τe = −∆t/ ln µ. An alternative form for the autocorrelation function is therefore

µ|m| = e−
|m|∆t

τe (4.2.23)

For small ∆t
ατ∗

, ln µ ≈ − ∆t
ατ∗

so τe ≈ ατ∗.

Clearly, the chosen parameterisation of µ in terms of τ∗ provides a cut-off. If ∆t ≥ ατ∗ then

the formulation is reverted to the ‘uncorrelated’ version without any ‘memory’. Physically, the

interpretation would be that the model time-step is so large that no memory of earlier times is

retained, but rather that the behaviour at the current time-step only depends on the conditions at

that time-step.
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One should also note that since

1− µ =
∆t
ατ∗

(4.2.24)

it follows that

Au =
λ∆Auατ∗

∆t
=

∆Auα∆A
At

(4.2.25)

One can interpret this as saying that the area of boundary layer thermals is given by the product

of average cloud-base area associated with a single CBL thermal (∆Au) and the number of CBL

thermals that is expected to be present which is α∆A/At. One can also go a step further in this

interpretation by saying that because an average number of thermals λ being generated in area ∆A

over time ∆t is known, then the average lifetime of those thermals must be (α∆A/At)× (∆t/λ) =

ατ∗. On this basis, α is assumed to be 1.

4.2.3 The vertical velocity of boundary layer thermals

4.2.3.1 The distribution of vertical velocity at the top of the boundary layer

To determine the initial vertical velocity of each boundary layer thermal initiated by the Poisson

process, the trigger function follows an assumed pdf approach similar to Gentine et al. (2013b,a).

It assumes that the vertical velocity at the top of the boundary layer w(zbl) follows a Gaussian

distribution, as in Gentine et al. (2013b,a) and D’Andrea et al. (2014). The assumption is supported

by Kuang and Bretherton (2006) found that near-surface pdf is close to a Gaussian distribution.

More sophisticated pdfs for atmospheric conditions at cloud-top have been proposed, such as the

multivariate Gaussian pdf by Golaz et al. (2002) and non-Gaussian pdf by Mellado et al. (2010). A

simple single-variate Gaussian approach is preferred for a proof-of-concept.

The mean of the distribution is taken as the grid-mean velocity at the top of boundary layer wi(zbl)

with a standard deviation s = βw∗ where β is a constant. Lenschow and Stephens (1980) found

that the normalised variance of the vertical velocity distribution of thermals is given by

w′2T
w2
∗
= 3.2

(
z
h

)2/3
[

1− 0.75
(

z
h

)1/2
]2

(4.2.26)

For thermals at the top of the boundary layer (i.e. z = h), it follows that

β(z = h) = 3.2(0.25)2 = 0.2 (4.2.27)
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For every thermal g generated from the Poisson process, its vertical velocity wg is determined

by drawing a random number from the Gaussian distribution. As a boundary layer thermal is, by

definition, the rising branch of a boundary layer eddy, only positive values are accepted as the

vertical velocity of boundary layer thermals.

A boundary layer thermal contributes to the cloud fractional area if it is capable of reaching the

lifting condensation level (LCL) by overcoming any layer of CIN beneath the LCL. This criterion

is met if the thermal possess vertical kinetic energy wg
2/2 > CIN, which implies that wg > wc,

where wc =
√

2CIN is the critical vertical velocity (Mapes, 2000). The area of new deep updraught

in a time-step can hence be calculated via

Nn

∑
r=1

∆Aur = Nd At (4.2.28)

where Nd is the number of newly triggered deep convective updraughts in a time-step. In SPMF,

CIN is calculated via a simple undiluted ascent from the surface.

4.2.4 Heat and moisture of convective updraught at cloud base

Apart from a positive vertical velocity perturbation, real BL thermals are usually associated with

higher T and q and thus lead to horizontal temperature and moisture variability at the top of BL

(Lenschow and Stephens, 1980, 1982). Therefore, the stochastic trigger function should ideally

initiate sub-grid convection with ψu = ψ + δψ for ψ = θ, q and qcl at cloud base where δψ 6= 0.

In conventional bulk-plume schemes (e.g. Fritsch and Chappell, 1980; Gregory and Rowntree,

1990), the buoyancy of the bulk plume at cloud base is determined by an arbitrary choice of δT > 0

with δq = δqcl = 0. With a positive initial wu at cloud base given by the trigger function as well

as a prognostic equation for wu, a small initial upward buoyancy is not necessary in the present

approach to promote vertical growth of the bulk plume. Thus, as a starting point, δT = δq = δqcl

is here assumed to be 0 as a simplification.

4.2.5 Updating convective updraught properties at cloud base

When a new sub-grid convective updraught is initiated, the properties of the local bulk plume at

cloud base are updated by computing the new weighed mean as follows:

σu(n + 1) = σu(n) + ∆σu (4.2.29)
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ψu(n + 1) =
ψuσu(n) + ∆σuψt

σu(n + 1)
(4.2.30)

where ∆σu is the increment of σu from the stochastic trigger function, ψt is the value of a quantity

ψ of the undiluted parcel ascent at cloud base.

4.3 The prognostic plume model

The prognostic plume model in the SPMF scheme is based on Equations (3.2.14) and (3.2.15)

proposed by Tan et al. (2018) with the following modifications:

1. Terms involving uh, i.e the horizontal advective tendencies, are assumed to be zero for

simplicity.

2. Analogous to the CKE budget idea proposed by Pan and Randall (1998), a dissipation term

is introduced to Equation (3.2.14) and is parameterised as

∂
(
σuψu

)
∂t

= −σuψu

τc
(4.3.1)

where τc is the dissipation time-scale of convective updraughts.

3. Instead of (3.2.15), the updraught vertical velocity wu is governed by the non-steady state

form of the plume model proposed by Siebesma et al. (2003); Bretherton and Park (2008) as

follows:

∂wu

∂t
= − ∂

∂z

(
1
2

wu
2
)
+ c1Bu − c2εwu

2 (4.3.2)

where c1 and c2 are constants.

4.4 Calculation of forcing on the resolved-scale flow

From Chapter 3, it has been established that the general form of the eddy mass flux of a quantity ψ′

due to sub-grid convection is given by

ρ(wψ− wψ) = ρσu(1− σu)(wu − we)(ψu − ψe) (4.4.1)
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Instead of making conventional assumptions, i.e. σu << 1, wu >> we and ψe ≈ ψ, Equation

(4.4.1) is directly used to calculate the sub-grid turbulent mass flux due to convection. ψe and we

are calculated via

ψe =
ψ− σuψu

1− σu
(4.4.2)

we =
w− σuwu

1− σu
(4.4.3)

for ψ = θ, w, q and qcl.

The forcing on a grid-mean quantity due to sub-grid convective updraughts is given by

∂ψ

∂t

∣∣∣∣∣
conv

= −1
ρ

∂

∂z
(
ρσu(1− σu)(wu − we)(ψu − ψe)

)
(4.4.4)

which is then applied to the model simulation as an additional local source term over one time-step.

4.5 Treatment of compensating subsidence

Following Kuell et al. (2007) and Malardel and Bechtold (2019), SPMF does not directly parame-

terise compensating subsidence by assuming zero net mass flux. Instead, it relies on the dynamical

core of a non-hydrostatic model to adjust the pressure field in response to the additional source

term on w due to sub-grid convection given by (4.4.4), which in turn modifies the flow field to

maintain mass continuity. This approach not only limits SPMF to non-hydrostatic models but could

also give rise to two serious problems:

1. The dynamical core could produce inconsistent adjustments to the pressure field and hence

net vertical mass fluxes by sub-grid convection, which could lead to instabilities if σu ≈ 1,

i.e. wu becomes resolved.

2. The dynamical core continues to solve for w which includes wu in SPMF-activated grid

points instead of only solving for we. This discrepancy could induce time-step sensitivity

and large errors when σu is large, which could induce instability in simulations towards the

higher-resolution end of the ‘grey-zone’.

4.6 Chapter summary

To summarise, SPMF differs from a conventional convection scheme as it
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• incorporates a scale-aware stochastic trigger function which models thermals as Poisson

events and closes on CIN,

• models the evolution of sub-grid plumes by explicitly solving a similar set of prognostic

equations as Tan et al. (2018),

• calculates the forcings from sub-grid updraughts on the resolved-scale flow (including w)

using the unsimplified mass flux equation (Equation (4.4.4)), and

• allows the dynamical core of a non-hydrostatic model to represent the effect of compensating

subsidence via continuity.

Some uncertain aspects in SPMF include the parameterisations of the distribution of wu at BL top,

size of a BL thermal, entrainment/detrainment and the prognostic equation for wu. The next chapter

will explain the implementation of SPMF in the Met-Office NERC Cloud (MONC) model (Brown

et al., 2018, 2020), the model to be used in the evaluation of the performance of the convection

scheme.
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Implementation of SPMF in MONC

5.1 Introduction

A convection scheme must be made compatible with its host model before implementation. This

chapter explains how SPMF scheme is implemented in MONC. Section 5.2 describes the dynamical

core and numerical schemes used in MONC. Section 5.3 describes the changes made in MONC

to become compatitble with SPMF. Section 5.5 describes the adaptation of SPMF to become

compatitble with MONC.

5.2 The Met Office - NERC Cloud Model

MONC is a community large eddy simulation (LES) model initially co-developed by the Met

Office in the United Kingdom and the Natural Environment Research Council (NERC) as the

highly-scalable successor of the well-regarded Met-Office Large Eddy Model (LEM, Brown et al.,

1994). Its capability of performing idealised non-hydrostatic simulations at ‘grey-zone’ resolutions

as well as its simple code structure makes it ideal for convection scheme development projects with

limited time allowance.
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5.2.1 Dynamical Core

MONC solves the Boussinesq-type equations of motion:

Dui

Dt
= − ∂

∂xi

(
p′

ρs

)
+ δi3B′ +

1
ρs

∂τij

∂xj
− 2εijkΩjuk (5.2.1)

∂

∂xi
(ρsui) = 0 (5.2.2)

Dθ′

Dt
+ w

dθs

dz
=

1
ρs

∂hθ′
i

∂xi
+

1
ρs

∂hθ′
3

∂z
+

(
∂θ′

∂t

)
mphys

+

(
∂θ′

∂t

)
rad

(5.2.3)

Dqn

Dt
=

1
ρs

∂hqn
i

∂xi
−
(

∂qn

∂t

)
mphys

(5.2.4)

where

ψs denotes the horizontally uniform reference state of a quantity ψ,

ψ′ denotes the perturbation from ψs,

u is the three-dimensional vector flow velocity,

θ is the potential temperature,

qn denotes all other scalar variables,

p is the pressure,

ρ is the air density,

B′ is the buoyancy,

τ is the sub-grid stress,

hθ is the sub-grid scalar flux of θ,

hqn is the sub-grid scalar flux of qn,

δi3 is the Kroneker delta function,

Ω is the Earth’s angular velocity (assuming f -plane),

εijk is the alternating pseudo-tensor,
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(
∂ψ
∂t

)
mphys

denotes the source term due to microphysics, and(
∂ψ
∂t

)
rad

denotes the source term due to radiation.

MONC supports both Boussinesq (vertically uniform reference states) and anelastic (vertically

varying reference states) simulations.

5.2.2 Discretisation

MONC incorporates an Arakawa C-grid in the horizontal and a Lorenz grid in the vertical. Each

component of the velocity vector is staggered in respective direction, while scalars quantities

are held on the centre point. Viscosities and diffusivities are held on the w-points. The centred

time-stepping (leap-frog with the option to apply a Robert-Asselin filter) scheme was used in this

project. The model is designed for high-resolution (with grid-length of the order of 100 metres)

simulations of an extensive range of turbulent-scale and cloud-scale problems, including boundary

layers, shallow and deep convective studies (e.g. Gu et al., 2020).

5.2.3 Advection scheme

The ULTIMATE Total Variation Diminishing (TVD) scheme by Leonard et al. (1993), one of

the supported advection schemes in MONC, was chosen. This scheme is linearly conserving and

positive definite (i.e. monotonicity preserving) as it introduces limits on fluxes so that initially

positive fields remain positive even at sharp gradients such as cloud boundaries. Gray et al. (2001)

provide a full description of the implementation of the ULTIMATE scheme in the LEM (which is

also applicable to MONC since the two models share the same dynamical core).

5.2.4 Turbulence scheme

The only turbulence scheme (effectively a boundary-layer scheme) available in MONC is the

three-dimensional Smagorinsky mixing scheme (Smagorinsky, 1963). The Smagorinsky scheme

represents the dissipation of turbulent kinetic energy (TKE) unresolved by LEMs as diffusion

resulting from eddy viscosity νt, which is modelled as

νt = (Cs∆x)2|S| (5.2.5)
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where Cs is a constant and S is the rate of strain tensor. Please refer to Smagorinsky (1963), Gray

et al. (2001) and Brown et al. (2020) for additional details.

5.2.5 Cloud scheme

The cloud scheme chosen is a simple all-or-nothing condensation scheme, a simpler alternative

to the more sophisticated Cloud Aerosol Interacting Microphysics (CASIM) scheme. It is a first-

moment microphysics scheme which only approximates the rate of phase change between water

vapour to cloud liquid water via the following equations:

∂qcl

∂t
≈ max{−qcl, (qv − qsat) fsat}

∆t
∂qv

∂t
= −∂qcl

∂t

(5.2.6)

where qcl is the grid-mean liquid (cloud) water mixing ratio, qv is the grid-mean water vapour

mixing ratio and qsat is the grid-mean saturation water vapour mixing ratio. fsat is a correction

factor defined as:

fsat =

(
1 +

L
cp

∂qsat

∂T

)−1

(5.2.7)

where ∂qsat
∂T is the rate of change of saturation vapour mixing ratio with temperature calculated using

Tetens formula (Tetens, 1930).

The change in grid-mean potential temperature θ associated with the latent heat exchange is thus

given by
∂θ

∂t
≈ L

cpΠ
∂qcl

∂t
(5.2.8)

where Π is the Exner function defined as

Π =

(
p
p0

)R/cp

(5.2.9)

where p is the pressure and p0 = 1000 hPa is the reference pressure.

The all-or-nothing approach is valid for 100-metre scale resolutions (which MONC is originally

designed for), but not for simulations at kilometre-scale resolutions where convective updraughts

and clouds are only partially resolved. However, partial cloud schemes (e.g. Kuwano-Yoshida

et al., 2010; Kim and Hong, 2018) are not available in MONC at the time of writing. Thus, one

should be aware that the simulated cloud cover might be less than expected as partial clouds were
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not parameterised at unsaturated grid points in the absence of sub-grid convection. This applies

to ‘grey-zone’ simulations in which SPMF was enabled. However, this slight loss of realism does

not invalidate the evaluation of SPMF, which is based on comparing the results with the scheme

enabled to the reference control truth.

5.3 Modifying MONC for SPMF

5.3.1 Modification to the adaptive time-stepping algorithm

To accommodate the implementation of the prognostic equations for convective plumes as well

as the use of the Smagorinsky scheme at ‘grey-zone’ grid-lengths, it was necessary to modify the

adaptive time-stepping in MONC. The model calculates the largest viscous stability parameter cvis

via

cvis = max
flowdomain

4∆tνmax

(
1

∆x2 +
1

∆y2 +
1

∆z2

) (5.3.1)

where ∆t is the time-step and νmax is the larger between the horizontal viscosity νh and vertical

viscosity ν. Similarly, the largest advective Courant number CVEL is calculated as

cvel = ∆t

( |u|
∆x

)
max

+

(
|v|
∆y

)
max

+

(
|w|
∆z

)
max

 (5.3.2)

The CFL number is then calculated as

CFL =
cvis

cvismax

+
cvel

cvelmax

(5.3.3)

where cvismax and cvelmax are the user-configurable maximum values for cvis and cvel. The model

time-step is then chosen such that CFL = 1.

To maintain numerical stability when calculating the advective tendencies in the prognostic equa-

tions for updraught quantities, the calculation of CVEL is modified such that

cvel = δt

( |u|
∆x

)
max

+

(
|v|
∆y

)
max

+

(
max(|w|, |wu|

∆z

)
max

 (5.3.4)

According to Equation (5.2.5), νt becomes excessively large (as preliminary experiments indicated)

as ∆x > 1 km, leading to unrealistically efficient removal of horizontal gradients as well as the use
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of very short time-steps. To alleviate this problem, a maximum allowed viscosity was implemented

in the Smagorinsky scheme such that

ν = min(νt, νmax) (5.3.5)

where

νmax =
cvismax

4∆tmin

(
1

∆z

)2 (5.3.6)

where ∆tmin is the user-configurable minimum time-step, which was set to 0.5 s for this project.

5.4 Additional prognostics and diagnostics

To predict the evolution of the sub-grid updraughts using the above equations, the following

prognostics are added to the model:

• Fractional mass (density) of the sub-grid updraughts σuρu

• Fractional density-weighted potential temperature of the sub-grid updraughts σuρuθu

• Fractional water vapour of the sub-grid updraughts σuρuqu

• Fractional cloud liquid water of the sub-grid updraughts σuρuqclu

• The vertical velocity of the sub-grid updraughts wu

θu, qu, and qclu are diagnosed directly from the prognostics. The updraught virtual temperature Tvu

is calculated from

Tvu = θu(1 + 0.61qu)

(
p

pref

)Rd/cp

(5.4.1)

where pref is reference surface pressure and Rd is the specific gas constant for dry air. ρu is

calculated using the ideal gas law:

ρu =
p

RdTvu

(5.4.2)

and then σu is

σu =
σuρu

ρu
(5.4.3)

The calculation of ρu and hence σu uses the assumption that the pressure is the same inside and

outside the plumes.
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5.5 Modifying SPMF for MONC

5.5.1 Discretisation of the prognostic equations

Prognostic equations in SPMF were modified to adapt to the centred-in-time temporal integration

and the Arakawa C-grid in MONC. In time, the prognostic equations were numerically solved using

Ψun+1 = Ψun−1 + 2∆t
(

∆Ψu

∆t

)
n

(5.5.1)

where Ψu is the convective prognostic in question, ∆t is the model time-step,
(

∆Ψu
∆t

)
n

is the

cumulative tendency from all source terms and n is the current time-step.

The convective prognostics were discretised in space according to the C-grid and ULTIMATE for

advection. The scalar convective prognostics were solved at the pressure levels while the updraught

vertical velocity wu was solved at the w-levels (labelled as 1/2 levels).

5.5.2 Density of updraught

The anelastic approximation implies that there is no horizontal density variation and thus density is

a function of height defined by a reference profile ρr(z) which is constant in time. This implies that

the prognostic equation set for sub-grid updraught scalar quantities may be simplified to:

∂σu

∂t
= − 1

ρr
wu

∂(σuρr)

∂z
+ σuwu(ε− δ) +

∂σu

∂t

∣∣∣∣∣
trig

+
∂σu

∂t

∣∣∣∣∣
mphys

− σu

τc
(5.5.2)

∂
(
σuψu

)
∂t

= − 1
ρr

wu
∂(σuρrψu)

∂z
+ σuwu(εψe − δψu)+

∂(σuψu)

∂t

∣∣∣∣∣
trig

+
∂(σuψu)

∂t

∣∣∣∣∣
mphys

− σuψu

τc
(5.5.3)

for ψ = θ, q and qcl.

5.5.3 Potential temperature

MONC can solve the anelastic Navier-Stokes equations based on perturbations to a reference

profile. Therefore, instead of the absolute potential temperature, MONC calculates the buoyancy
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and advection of heat based on the perturbation potential temperature θ′, which is defined as

θ′(t, x) = θ(t, x)− θr(t, z) (5.5.4)

where θ is the absolute potential temperature, θr is the reference profile potential temperature and x

is the three-dimensional space vector. For consistency, the updraught potential temperature in the

convection scheme is represented by the perturbation updraught potential temperature θ′u, which is

defined as

θ′u(t, x) = θu(t, x)− θr(t, z) (5.5.5)

The potential temperature anomalies of the sub-grid updraught are represented by the prognostic

variable σuθ′u, the governing equation for which is obtained by substituting ψu with θ′u + θr in

Equation (5.5.3).

5.5.4 Minimum threshold for σu

The convection scheme must identify whether sub-grid convection is present in a grid point. Ideally,

this translates to the condition σu > 0. However, despite efforts made to ensure the highest floating

point precision, it is inevitable that extremely small numbers are produced to represent the value

of 0 in numerical modelling. This is likely to lead to problems in numerical simulations of the

atmosphere when conditional statements are used to determine whether convective activity is

present in a particular grid point. In addition, numerical diffusion induced by the advection scheme

may also lead to unrealistically small values. Therefore, it is necessary to introduce a minimum

σumin to ensure that the presence of sub-grid convection at a grid point is realistically identified. In

this study, σumin was set to 10−5 for all ‘grey-zone’ simulations with SPMF enabled.

5.5.5 Parameterisation of entrainment and detrainment rates in the plume model

For this project, ε and δ are parameterised based on Simpson and Wiggert (1969) and Simpson

(1971) as

ε = δ =
0.2
ru

(5.5.6)

where ru =
√

∆x∆yσu/π is the radius of the sub-grid bulk plume.
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5.6 Chapter summary

The above modifications allow SPMF to be implemented in MONC. However, pressure tendencies

due to sub-grid convection have been neglected as it requires modifications to MONC so extensive

that would effectively become a separate model and is thus beyond the scope of this project.

This introduces an inconsistency in treatment of net mass transport by convection as the pressure

equation in the dynamical core was not modified accordingly. This limitation could have negative

effects on the behaviour of SPMF-enabled simulations, which is evident in the evaluation of the

scheme documented in the next two chapters.
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Performance of SPMF scheme in simulating the diurnal

cycle of convection

6.1 Introduction

This chapter presents results of the SPMF scheme in simulating the diurnal cycle of convection using

the modified version of MONC. Section 6.2 describes the Large-scale Biosphere and Atmosphere

(LBA) case, the chosen test case for the evaluation, including its specification and reference results.

Section 6.3 compares the MONC simulations of the LBA case at ‘grey-zone’ resolutions between

without and with the SPMF scheme. Section 6.4 describes the characteristics of sub-grid convective

updraughts in the SPMF-enabled simulations.

6.2 The LBA case

6.2.1 A brief introduction

The LBA case (Grabowski et al., 2006) was developed following a field campaign conducted

over Amazonia. With ground-based and satellite (Tropical Rainfall Measuring Mission, TRMM)

instruments, observations were taken over a diurnal onset of convection, including the transition

from shallow to deep convection, over the Amazon rainforest on 23rd February 1999. The primary

purpose of the field campaign was to compare model results from different cloud-resolving models
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and single column models (SCMs) and establish a set of benchmark results for this case of diurnal

cycle of convection over land. There is little interference from other large-scale processes so that

the daytime development of convection is purely driven by the diurnal cycle of surface heat fluxes.

The daytime convective development over the observed area features the development of a well-

mixed convective boundary layer from the early morning, followed by the initiation of shallow

convection as the boundary layer grows in height. Transition from shallow to deep convection

occurs near local noon, followed by the upscale growth of convection into mesoscale systems in

the afternoon. The study of the LBA case by Grabowski et al. (2006) focuses on the onset and

development of convection before upscale growth, i.e. between sunrise (07:30 LST) and early

afternoon (13:30 LST).

6.2.2 Specification

In the LBA case, there are two sources of external forcings: prescribed surface fluxes and radiative

cooling. The surface sensible heat flux H(t) and latent heat flux (λE) in W m−2 are prescribed as:

H(t) = 270 f (t)1.5

λE(t) = 554 f (t)1.3
(6.2.1)

where

f (t) = max

{
0, cos

(
π

2
5.25− t

5.25

)}
(6.2.2)

and t is the model time in hours.

The initial condition consists of a horizontally homogeneous field with a vertical profile which

matches the sounding obtained at 0730 LST on 23 February 1999 (documented in Appendix 8.3.9.

During simulation, the mean horizontal wind (i.e. u and v) relaxes to the initial profile with a

time-scale of 1 hour. The lateral boundary conditions are bi-periodic. To excite instabilities across

the domain, small-scale random perturbations are imposed at the initialisation and throughout

the simulation. This included introducing random perturbations to both surface sensible and

latent fluxes with a 10% amplitude every time step). At initialisation, random perturbations were

introduced to the potential temperature and water vapour mixing ratio fields, with amplitudes of

0.1 K and 0.1 g kg−1, applied in the lowest 1 km of the model domain. It should be noted that the

random perturbation method described above slightly deviates from that specified in Grabowski

et al. (2006), in which the temperature and moisture fields are perturbed every 15 minutes of model
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time.

6.2.3 Case characteristics

A reference set of results was produced by a MONC simulation of the LBA case at 100-metre

resolution over a 32 km × 32 km domain with 101 quadratically spaced vertical levels up to 30 km.

This was compared to the 3D simulations performed by Grabowski et al. (2006) (referred to as the

benchmark simulations hereafter) to evaluate the validity of the reference simulation.

Figure 6.1: Evolutions of domain average potential temperature (in K) within the lowest 1.5 km in the LBA
benchmark simulations and reference run. The first profile from the left is the initial profile of potential
temperature, while the remaining profiles are plotted as the deviation from the initial profile. The simple
cloud scheme was used to represent cloud formation and dissipation.

Figure 6.1 shows the domain mean evolution of the boundary layer temperature of the LBA case.

Increasing sensible heat flux causes the well-mixed layer to gradually reach a depth of 1200 m

by the end of the simulation. Detrainment and evaporation of shallow clouds causes air above

the boundary layer to slightly cool down between the second and fourth hour of the simulations.

Since rain is not represented, the boundary layer in the reference simulation becomes warmer than

that in the benchmark simulations beyond the fourth hour when convective downdraughts cool the

boundary layer in the latter.

Figure 6.2 shows the tephigrams of the LBA reference simulation at whole hours after initialisa-

tion.The absence of initial CIN leads to the complete erosion of the capping inversion by the second

hour of simulations as the convective boundary layer deepens.
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Figure 6.2: Soundings at whole hours after initiation of the LBA reference simulation.
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Figure 6.3: Evolution of cloud fraction in the LBA reference simulation. The horizontal cloud fraction at a
given model level is defined as the fraction of grid points across the horizontal domain at which the cloud
condensate (the total of cloud water and cloud ice) mixing ratio Q ≥ min(10−5, 0.01qsat) kg / kg−1.

Figure 6.3 shows the development of domain cloud coverage at different heights throughout the

simulation. Shallow cumuli initiate at approximately t = 2 hr and gradually transition into deeper

clouds (cloud top reaching 6.5 km) with increasingly higher base. Unlike the benchmark simulations,

cloud liquid accumulates at cloud top since rain is not parameterised. The consequent absence

of convective downdraughts, as indicated by Figure 6.6, leads to reduced low-level convergence

associated with cold pools after t = 4 hr. In conjunction with the lack of latent heat release

from freezing, this could explain the lower cloud top heights and centre of mass in the reference

simulation as shown in Figures 6.4 and 6.5.

Figure 6.4: Vertical profiles of horizontal cloud fraction (as defined in Figure 6.3) at whole hours after
initialisation in the LBA reference and benchmark simulations.
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Figure 6.5: Evolution of total cloud cover (top) and height of centre of mass of clouds (bottom) in the
LBA reference and benchmark simulations. Total cloud cover is defined as the fraction of grid columns in
which the vertically integrated Q ≥ 0.01 kg m−2. The height of the centre of mass of clouds is given by∫

zQ dV/
∫

Q dV, where V is the volume represented by a grid point.

Figure 6.6: Vertical profiles of domain-mean updraught (solid lines) and downdraught (dashed lines) mass
fluxes (in 0.01 kg m−2 s−2) at whole hours in the reference and benchmark simulations. Local cloud
updraught and downdraught mass fluxes are defined as δρ max(0, w) and δρ min(0, w) respectively, where
ρ is the density of air and w is the vertical velocity. δ = 1 if Q ≥ min(10−5, 0.01qsat) kg kg−1 or 0
otherwise where qsat is the saturation mixing ratio. Times are local time of the LBA case.
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6.3 Performance of the SPMF scheme in ‘grey-zone’ LBA simulations

6.3.1 Assessement strategy

Simulation ∆x (km) Lx × Ly Domain size

S1P0K, S1P0KCP 1.0 96 km × 96 km 96 × 96

S2P0K, S2P0KCP 2.0 96 km × 96 km 48 × 48

S3P0K, S3P0KCP 3.0 96 km × 96 km 32 × 32

S4P0K, S4P0KCP 4.0 96 km × 96 km 24 × 24

S5P0K, S5P0KCP 5.0 100 km × 100 km 20 × 20

S6P0K, S6P0KCP 6.0 96 km × 96 km 16 × 16

Table 6.1: The ‘grey-zone’ simulations of the LBA case for evaluation of the SPMF scheme. All other settings
are identical to those in the reference simulation.

MONC was run with and without the SPMF scheme at various ‘grey-zone’ resolutions (see Table

6.1 for details).

6.3.2 Clouds

Figure 6.7 shows the evolution of domain cloud fraction in ‘grey-zone’ simulations without

SPMF. Regardless of the resolution, a stratocumulus layer (suggested by cloud fraction 1.0

and lack of upward mass fluxes as indicated in Figure 6.8) develops at approximately 2.5 hours

after initialisation. This is consistent with the findings by Petch (2006), who concluded that the

formation of the stratocumulus layer is controlled by the boundary layer scheme. At ∆x ∼ 1 km,

the Smagarinsky scheme behaves as a Reynolds-averaged boundary layer scheme with very large

horizontal diffusivity. This leads to the formation of a horizontally homogeneous well-mixed layer

capped by a layer of stratocumulus. The higher the resolution, the later and more rapid the onset of

deep convection (characterised by increase in cloud vertical extent and convective updraught mass

fluxes) is in the simulation, which is consistent with conventional findings (e.g. Lean et al., 2008).

The above suggests that MONC produces scale dependent ‘grey-zone’ LBA simulations without

SPMF.
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Figure 6.7: Evolution of cloud fraction (as defined in Figure 6.3) in simulations of the LBA case at different
‘grey-zone’ resolutions without the convection scheme. No data is shown for the simulation at ∆x = 3 km
beyond 11:30 LST as the model has crashed.
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Figure 6.8: Evolutions of vertical cloud fraction (top) and updraught mass-flux (bottom) profiles of all six
‘grey-zone’ simulations of the LBA case without the convection scheme at different model times. No data is
shown for the simulation at ∆x = 3 km beyond 11:30 LST as the model has crashed.

Figure 6.9 shows the evolutions of domain-mean vertically integrated liquid water path (LWP) in the

reference and the six ‘grey-zone’ simulations without SPMF enabled. The lack of convective clouds

in all ‘grey-zone’ simulations contributes to the lower vertically integrated LWP when compared

with the reference. Between the fifth and sixth hour, explicit convection initiates in the 1-km and

2-km simulations and leads to a sharp increase in LWP. It is clear that the simulation of convective

clouds is highly scale-dependent among the ‘grey-zone’ simulations without a convection scheme.
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Figure 6.9: Evolution of domain mean vertically integrated LWP of all six ‘grey-zone’ simulations without
a convection scheme and the reference simulation of the LBA case at different model times. The vertically
integrated LWP is defined as LWP =

∫ z
0 ρql dz where ql is the liquid water mixing ratio.

With SPMF enabled however, the discrepancy in convective cloud development among the sim-

ulations are reduced. First clouds appear at approximately 3 hours after initiation regardless of

model resolution as shown in Figure 6.10. Cloud coverage at the top of the boundary layer and

the rate of vertical growth are also in better agreement, although the reduction of cloud top height

with increasing resolution implies some scale-dependence remains. Figure 6.11 reveals a more

consistent evolution of updraught mass flux profiles across the simulations. These suggest that

the SPMF scheme could reduce scale-dependence across simulations of convection at different

‘grey-zone’ resolutions.
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Figure 6.10: Evolution of cloud fraction (as defined in Figure 6.3) in SPMF-enabled simulations of the LBA
case at different ‘grey-zone’ resolutions.
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Figure 6.11: Evolutions of vertical cloud fraction (top) and updraught mass-flux (bottom) profiles of all six
SPMF-enabled ‘grey-zone’ simulations of the LBA case at different model times.

The simulations share two other common undesired characteristics: an excessively saturated layer

between 3 km and 6 km after 4.5 hours into the simulations, as well as intermittent initiation

of sub-grid convection. Figure 6.12 shows that the saturated layer is produced by the explicit

cloud scheme, which is consistent with the assertion that the large-scale condensation scheme is

scale-dependent. The intermittent initiation may be correlated with a fluctuating temporal profile of

CIN as shown in Figure 6.13. This may arise from the limited number of grid points across the
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domain (especially for the 16 x 16 simulation at ∆x = 6 km) such that the entire domain alternates

between convective (low-CIN) and subsidence (high-CIN) phases.

Figure 6.12: Evolution of explicit cloud fraction in SPMF-enabled simulations of the LBA case at different
‘grey-zone’ resolutions. The explicit cloud fraction at a grid point is 1− σu if Qe ≥ min(10−5, 0.01qesat)
kg / kg−1, or 0 otherwise. Qe and qesat are the environmental cloud condensate mixing ratio and saturation
water vapour mixing ratio respectively and are diagnosed using Equation (4.4.2).

‘
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Figure 6.13: The evolution of CIN in the simulation of the LBA case at ∆x = 6 km with SPMF enabled.

Figure 6.14 shows that the evolution of vertically integrated LWP among the ‘grey-zone’ simulations

with SPMF enabled is in better agreement when compared with their no-scheme counterpart. The

mean profile is consistent with the initiation of sub-grid convection at ∆t = 3 hours as well as the

accumulation of liquid water between 3 and 6 km in the vertical. However, the liquid water path

slightly decreases with increasing resolution, which is consistent with the vertical cloud fraction

profile analysis which shows that the maximum height of convective plumes decreases as the

resolution increases. This reinstates that the vertical extent of sub-grid convection produced by

SPMF is scale-dependent.

Figure 6.14: Evolution of domain mean vertically integrated LWP of all six SPMF-enabled ‘grey-zone’
simulations and the reference simulation of the LBA case at different model times.

76



Chapter 6: Performance of SPMF scheme in simulating the diurnal cycle of convection

6.3.3 Thermodynamic profile

Figure 6.15: Evolutions of potential temperature vertical profile of all six ‘grey-zone’ simulations of the
LBA case without (top) and with (bottom) SPMF enabled at whole hours after initiation. The left-most graph
shows the initial profile as in Grabowski et al. (2006), while the remaining show the deviation from the
initial.

Figure 6.15 and 6.16 compare the evolutions of the vertical profile of domain-mean potential

temperature and water vapour between ‘grey-zone’ simulations without and with SPMF enabled.

The lack of convection in all ‘grey-zone’ simulations without a convection scheme leads to little

scale dependence in the evolutions of both quantities up to the fifth hour into the simulation. At
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the sixth hour, higher resolution members develop a slightly warmer and moister layer above the

boundary layer, which is consistent with condensation heating and moisture transport associated

with explicit convection. In contrast, the evolutions among SPMF-enabled simulations are in

tight agreement with each other through the entire simulation. However, the consensus deviates

from the reference simulation with a cooler and moister boundary layer and warmer and drier free

troposphere towards the last two hours. This suggests that while the vertical transports of heat and

moisture are scale-independent, SPMF leads to a small systematic bias.

Figure 6.16: Evolutions of water vapour vertical profile of all six ‘grey-zone’ simulations of the LBA case
without (top) and with (bottom) SPMF enabled at whole hours after initiation. The left-most graph shows
the initial profile as in Grabowski et al. (2006), while the remaining show the deviation from the initial.
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6.3.4 Energy conservation

Figure 6.17 shows the evolution of domain-mean vertically integrated moist static energy (MSE)

in each of the ‘grey-zone’ simulations with the SPMF scheme enabled, as well as the expected

evolution which is calculated by taking into account the prescribed cooling and surface fluxes. There

is a 10% loss of moist static energy between the fourth hour and fifth hour into the simulation. An

additional analysis (not shown) suggests that the loss is related with the sensible heat. Since a mass

flux scheme only induces tendencies to redistribute quantities, it is by design energy conserving.

This suggests that the loss of heat energy could be due to some mishandling of residual sub-grid

convection causing spurious negative tendencies.

Figure 6.17: The evolution of domain-mean vertically integrated MSE in each ‘grey-zone’ simulation of the
LBA case with the SPMF enabled. The MSE S is defined as S = cpT + gz + Lqv, where T is the dry-bulb
temperature, z is the height and qv is the water vapour mixing ratio of the parcel.

6.4 Characteristics of sub-grid updraughts

6.4.1 Vertical profile

Figure 6.18 shows the evolution of mean vertical temperature profile of sub-grid convective

updraughts parameterised by SPMF. It illustrates that scale awareness holds for the updraught for

both quantities at cloud base, but the profiles gradually diverge at increasing height. The discrepancy

is the greatest at the onset of sub-grid convection and gradually decreases with time. In addition,

the maximum height, temperature and moisture of sub-grid convective updraughts decrease with

increasing resolution. In fact, this identical trend also exists in the liquid water mixing ratio and

vertical velocity as shown in Figure 6.19. The discrepancy in updraught vertical velocity explains

the scale-dependence of the cloud top height and the onset of grid-scale condensation, as weaker
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convective updraught velocity corresponds to a slower vertical transport of heat and moisture up

the troposphere. This is found to be related to the scale dependence of the entrainment source

term as shown in Figure 6.20. As I will explain in detail in the next chapter, the scale dependence

arises from the use of the bulk plume approach and the chosen entrainment parameterisation which

depends on the radius of the bulk plume.

Figure 6.18: Evolution of the domain-mean sub-grid updraught potential temperature perturbation (top, in
K) and water vapour (bottom, in g kg−1) in ‘grey-zone’ simulations of the LBA case with SPMF enabled.
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Figure 6.19: Evolution of the domain-mean sub-grid updraught liquid water mixing ratio (top, in g kg−1)
and vertical velocity (bottom, in m s−1) in ‘grey-zone’ simulations of the LBA case with SPMF enabled.
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Figure 6.20: Evolution of the domain-mean entrainment source term on the sub-grid convective sensible
heat in all six ‘grey-zone’ simulations of the LBA case with convection scheme enabled. Colour of each line
represents the grid-length of each simulation as follows: blue = 1 km, green = 2 km, red = 3 km, aqua = 4
km, purple = 5 km, yellow = 6 km. Results of simulation at ∆x = 1 km not shown at 13:30 LST as the model
has crashed by that time.

Figure 6.21: Evolution of the domain-mean entrainment source term on the sub-grid updraught fractional
latent heat in all six ‘grey-zone’ simulations of the LBA case with convection scheme enabled. Colour of
each line represents the grid-length of each simulation as follows: blue = 1 km, green = 2 km, red = 3 km,
aqua = 4 km, purple = 5 km, yellow = 6 km. Results of simulation at ∆x = 1 km not shown at 13:30 LST as
the model has crashed by that time.
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Figure 6.22: Evolution of the domain-mean entrainment source term on the sub-grid convective updraught
fractional liquid water in all six ‘grey-zone’ simulations of the LBA case with convection scheme enabled.
Colour of each line represents the grid-length of each simulation as follows: blue = 1 km, green = 2 km, red
= 3 km, aqua = 4 km, purple = 5 km, yellow = 6 km. Results of simulation at ∆x = 1 km not shown at 13:30
LST as the model has crashed by that time.

Figure 6.23: Evolution of the domain-mean entrainment source term on the sub-grid convective updraught
velocity in all six ‘grey-zone’ simulations of the LBA case with convection scheme enabled. Colour of each
line represents the grid-length of each simulation as follows: blue = 1 km, green = 2 km, red = 3 km, aqua =
4 km, purple = 5 km, yellow = 6 km. Results of simulation at ∆x = 1 km not shown at 13:30 LST as the
model has crashed by that time.
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6.4.2 Horizontal variability

Figure 6.24: Horizontal distribution of σu at cloud base at different times throughout the simulation of the
LBA case at ∆x =6 km and ∆x =3 km with SPMF enabled. The ‘mean’ and ‘std’ below each plot refer to
the horizontal mean and standard deviation at the corresponding time respectively.

Figure 6.24 shows the evolution of horizontal distribution of σu at cloud base throughout the

simulation of the LBA case with the convection scheme enabled at ∆x = 6 km and ∆x = 3 km

respectively. In both simulations, the standard deviation of σu increases over time up to 11:30 LST

as the trigger function becomes increasingly stochastic as a response to increasing surface heat

flux and thus w∗, before reducing dramatically as sub-grid convection is initiated across the entire

domain. More importantly, the standard deviation in the 3-km simulation is approximately twice

of that in the 6-km simulation. These behaviours are also evidence in the evolution of horizontal

variability of wu at cloud base as shown in Figure 6.25. This suggests that the trigger function

produces a scale-aware horizontal variability with similar domain-mean, implying that SPMF does

not suppress explicit convection in simulations at a sufficiently high resolution.
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Figure 6.25: As Figure 6.24, but for wu.
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6.5 Compensating subsidence

Figure 6.26: Horizontal distributions of wu (left) and w (right) in m s−1 at z = 539.44 m at t = 9211.87 s
of a simulation of the LBA case at ∆x = 1 km over a domain of 16 x 16 with SPMF enabled.

Figure 6.26 shows the horizontal variability of both wu and w at the initiation of the earliest

sub-grid updraughts in a special 1-km simulation where the strengths of sub-grid updraughts was

substantially magnified. Stronger downward motion is present at grid points adjacent to one with

a sub-grid updraught, suggesting that the dynamical core does trigger non-local compensating

subsidence. The resolved w at a grid point with a sub-grid updraught with σc = 0.2 and wu = 5 m

s−1 is only 0.01 m s−1, meaning that the vertical velocity of the sub-grid cloud-free environment is

approximately -1.24 m s−1. This implies the existence of local compensating subsidence, although

the magnitude is excessive as subsiding shells with strength of -1.2 m s−1 are found only up to

400 m away from convective updraughts in the LBA case (Savre, 2021). The excess is possibly

the result of the inconsistent treatment of net mass transport by convection between SPMF and the

dynamical core.

6.6 Chapter summary

The performance of the SPMF scheme was evaluated. The analysis suggests that the implementation

of the scheme improves the performance of simulations of a diurnal cycle test case at ‘grey-zone’

resolutions against having no parameterisation. It significantly reduces the differences in the
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initiation time of convection and maintains a similar evolution of the vertical profiles of heat and

moisture between simulations at different ‘grey-zone’ resolutions. It also produces scale-aware

horizontal variability across a largely homogeneous domain. The scheme reduces the disagreement

between the ‘grey-zone’ simulations and the reference simulation. Nonetheless, it has been revealed

that a relatively minor degree of scale-dependence remains which is related increasing entrainment

rate with resolution. The next chapter will focus on revealing the origin of the scale-dependence

and whether it is possible to reduce the systematic error by altering some of the free parameters.
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Chapter 7

Sensitivity of SPMF to uncertainties

7.1 Introduction

In Chapter 6, it was shown that while SPMF successfully reduces the scale-dependence of simula-

tions of the diurnal cycle of convection at ‘grey-zone’ resolutions, some scale dependence remains,

especially of the rate of vertical growth of sub-grid convection as a result of scale-dependent

entrainment. In addition, some discrepancies exist between the ‘grey-zone’ simulations with the

convection scheme enabled and the reference scheme, such as the initiation time of convective

updraughts and the cloud fraction approaching the cloud-top. With several tuneable aspects in

the scheme, it is important to assess whether how these affect its performance in simulating the

diurnal cycle of convection, in particular the initiation and growth of convection which conventional

schemes do not handle well. This chapter focuses on the sensitivity of SPMF to two parameters:

entrainment rates on plume growth in Section 7.2 and the width of the wu distribution at BL top on

plume initiation time in Section 7.3. Finally, Section 7.4 examines if the performance of SPMF is

time-step independent, which is a requirement for a convection scheme to be suitable for general

use.

7.2 Sensitivity to the entrainment parameterisation

The SPMF scheme scales the entrainment rate on the radius of the bulk plume. While this approach

may be suitable for modelling the evolution of one single plume, it is not a good approximation to
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how the local population of plumes interact with the environment. In reality, the entrainment rate is

proportional to the vertical surface area between all convective updraughts and the environment.

With the same total cross-sectional (x-y plane) area, the total vertical surface area of plume increases

with the degree of fragmentation (i.e. the number of updraughts) among the population. Thus, a

population of small plumes is more efficient at interacting with the environment, i.e. they are more

likely to remain shallow and to condition the environment via entrainment and detrainment. In

contrast, a single large plume is more likely to retain its integrity through the ascent and reach

greater heights.

Assuming that all plumes are of equal size in the horizontal, the area occupied by a single plume

Aui is given by

Aui =
Au

Nu
(7.2.1)

where Au is the total area occupied by convective updraughts and Nu is the number of convective

updraughts in the population. It follows that the radius of a single updraught Ri, assuming that they

are circular on the horizontal, is given by

Ri =

√
Au

Nuπ
(7.2.2)

Thus, the vertical surface area of a cylindrical updraught is

Ali = 2πRihu = 2πhu

√
Au

Nuπ
(7.2.3)

where hu is the mean vertical extent of the convective updraughts. The total vertical surface area of

the entire updraught population Al is given by

Al = Nu2πRi = 2Nuπ

√
Au

Nuπ
= 2

√
NuπAu (7.2.4)

Therefore, the relative error due to the single updraught assumption varies with
√

Nu given the

same Au, and is directly proportional to the grid length ∆x as Nu ∼ ∆x2. Given the same σu, this

choice of parameterisation produces stronger entrainment rate at higher resolution and thus induces

scale dependence across the ‘grey-zone’ resolution. This is verified by a re-simulation of the LBA

case at ∆x = 6 km with the convection scheme enabled but with six times the entrainment rate

so that it matches that in the ∆x = 1 km. Figure 7.1 shows that the rate of growth of convective
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updraughts is reduced such that the evolution of cloud fraction is in better agreement with that in

the LBA simulation at ∆x = 1 km.

Figure 7.1: Comparison of the evolution of cloud fraction between the LBA simulation at ∆x = 6 km with
six times the original entrainment rate and that at ∆x = 1 km with the original entrainment rate (c.f. Figure
6.10.

7.3 Sensitivity of the initiation time and sub-grid variability to the param-

eterisation of BL top variability

In the convection scheme, the stochastic trigger assumes that the distribution of vertical velocity at

the top of the boundary layer is Gaussian, with the grid-mean value as the mean and βw∗ as the

standard deviation where β is a tunable parameter. In the evaluation in Chapter 6, β is assumed to

be 0.2 following Lenschow and Stephens (1980).

7.3.1 Initiation time

Since β determines the width of the distribution of w at BL top, it plays a pivotal role in controlling

the onset time of sub-grid convection. The wider the distribution, the more likely a sufficiently

strong thermal occurs and thus the earlier the first cloud initiates. This is verified by performing

an extra simulation of the LBA case at ∆x = 6 km with the convective parameterisation scheme

enabled but with β = 1.0. As shown in figure 7.2, cloud initiates approximately 40 minutes earlier

in the simulation with the higher value of β compared to the default value of 0.2. This suggests

that the performance of the scheme is sensitive to the choice of β and implies that it is possible to

reduce the systematic error in the initiation time by tuning β.
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Figure 7.2: Comparison of the evolution of cloud fraction between two simulations of the LBA case
performed at ∆x = 6 km with convection scheme enabled, one (left) with β = 1.0 and the other (right) with
β = 0.2.

7.3.2 Horizontal variability

In addition to the timing of convective initiation, the choice of β also affects the variability over a

horizontally homogeneous domain as it directly determines the standard deviation of the vertical

velocity distribution. As shown in Figure 7.3, the standard deviation of wu at cloud base is higher

in the simulation with β = 1.0 than that in the simulation with β = 0.2 at ∆x = 6 km. It is

worth noting that the standard deviation in the simulation with β = 1.0 is not five times that in

the simulation with β = 0.2 due to different timings of convective initiation, complicated by the

oscillation of CIN and other processes. By comparing Figure 7.4 to 6.24, the variability of σu is

lower in the simulation with a higher β at identical model times. This could be due to an earlier

onset of sub-grid plumes such that sub-grid updraughts are within most grid boxes earlier (thus

suppressing variability).
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Figure 7.3: The evolution of horizontal variability of wu at cloud base in the simulations of the LBA case
performed at ∆x = 6 km with convection scheme enabled and with β = 1.0.

Figure 7.4: The evolution of horizontal variability of σu at cloud base in the simulations of the LBA case
performed at ∆x = 6 km with convection scheme enabled and with β = 1.0.
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7.4 Sensitivity to model time-step

Figure 7.5: Comparison of the evolution of cloud fraction between two simulations of the LBA case performed
at ∆x = 6 km SPMF enabled, one (left) with ∆tmin = 0.5 s and the other (right) with ∆tmin = 0.25 s.

The sensitivity of SPMF to time-step was evaluated by varying ∆tmin, the MONC parameter

introduced for the modified Smagarinsky mixing scheme to control the maximum allowed viscosity

coefficient νmax at ‘grey-zone’ resolutions. Figure 7.5 reveals a slower vertical development of

sub-grid plumes by SPMF in the simulation with a lower ∆tmin. This is an unexpected and highly

concerning behaviour as time-step dependence is a serious limitation of a convective scheme. As

neither the trigger function nor the plume model is time-step dependent in principle, it could be

related to some unidentified interactions between the modified Smagarinsky scheme and the trigger

function and/or other components in MONC, or simply a software defect. The root cause of this

time-step dependence is not determined in this project.
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Conclusion and Future Work

8.1 Introduction

A new mass flux convection scheme with prognostic and stochastic treatment of sub-grid convection

(SPMF) is proposed to improve the scale-awareness of simulations of diurnal cycle of convection

over land across the ‘grey-zone’. The convection scheme employs a stochastic boundary layer

closure, relating the initiation and fractional coverage of sub-grid convection to the size and initiation

of boundary layer thermals which are sufficiently strong to penetrate through any convective

inhibition existing above the boundary layer. In addition, the scheme explicitly solves the budget

equations to prognose the evolution of sub-grid convection. This includes advecting the convective

plumes vertically with the vertical velocity of the convective updraught using an advection scheme

so that convective plumes do not reach full height immediately as in traditional parameterisation

relying on a quasi-equilibrium assumption. The performance of convection scheme was evaluated

by comparing simulation results of the LBA case modelled at different resolutions across the

‘grey-zone’. This chapter summarises the findings, answers the research questions set out in Chapter

6 and proposes directions for future research.

8.2 Answers to the research questions

1. Is it possible to construct a convective parameterisation scheme that works in the ‘grey-zone’?
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The presented results show that by introducing stochasticity to a boundary-layer based closure

and prognosing the evolution of sub-grid plumes, it is possible to construct a scheme which

significantly improves the simulation of convection at ‘grey-zone’ resolutions.

2. Is an accurate parameterisation of boundary layer turbulence important for a successful

simulation of diurnal cycle of convection in the ‘grey-zone’?

This study suggests that while SPMF improves the diurnal cycle of convection at ‘grey-zone’

resolutions, it is sensitive to the choice of the width of the assumed distribution of wu from

which random numbers are drawn to stochastically determine the onset of sub-grid convection.

It alters the initiation time of convection as well as controls the horizontal variability across

a homogeneous domain. Therefore, this suggests that an accurate parameterisation of the

boundary layer plays an pivotal role in simulating the diurnal cycle of convection.

8.3 Limitations of SPMF and future work

8.3.1 The lack of horizontal advection of convective plumes

In SPMF, the horizontal advective tendencies on convective prognostics were ignored as a sim-

plification. However, this would lead to increasing decoupling of sub-grid convection from the

large-scale as grid-lengths decrease towards the length scale of a convective plume; the modified

environment due to convection would be advected away from the associated convective plume,

while the convective plume modifies a new environment which is advected into the grid in the

next time-step. This artificial “shear” prevents the warming and moistening effect from remaining

vertically stacked. While evaluating this effect is beyond the scope of this study, it is sensible to

assume that horizontal advection of plumes may lead to a delayed transformation from sub-grid

convection to explicit convection. Thus, it may be important for future research to derive a good

approach modelling the horizontal movement of plumes as discrete structures in SPMF. Possible

starting points include the cellular automata approach proposed by Bengtsson et al. (2013), the

conditional filtering multi-fluid framework by Thuburn et al. (2018) and extended EDMF by Tan

et al. (2018).
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8.3.2 The lack of a true microphysics scheme and downdraught parameterisation

The two-moment condensation scheme incorporated in SPMF is too simple. The lack of ice might

lead to underestimation of cloud top heights and overestimation of cloud coverage at cloud top. The

absence of rain and convective downdraughts prevents SPMF from producing cold pools, which

could stabilise the local atmosphere and trigger additional non-local convection. To minimise

inconsistency between the convection forcing and the large-scale forcing, future researchers should

attempt to use the same microphysics as the model default microphysics scheme for grid-scale

convection. For instance, CASIM should be interfaced with the convection scheme if MONC is

used as the model for evaluation.

8.3.3 Inconsistencies between the dynamical core and sub-grid convection

Allowing the unmodified dynamical core to solve for grid-mean pressure and vertical velocity

alongside with forcings from SPMF lead to inconsistencies which could have explained the problems

seen in SPMF-enabled simulations. Future researches on SPMF should ensure that the net mass

transport due to convection is treated consistently with the dynamical core by ensuring the induction

of tendencies on the resolved-scale pressure field. They should also modify the dynamical core of

the host model such that it only solves for we to avoid double counting in w.

8.3.4 The crash of the LBA simulation at ∆x = 1 km

As mentioned in the Chapter 6, the SPMF-enabled simulation of the LBA case at ∆x = 1 km failed

after approximately 5.5 hours in model time. The cause of this failure was not found and should be

investigated in future studies, in particular how instabilities associated with inconsistent treatment

of vertical mass flux from the negligence of pressure tendencies for σu ≈ 1, affect simulations at

the higher-resolution end of the ‘grey-zone’.

8.3.5 Simplified trigger function

The stochastic trigger function of SPMF does not currently introduce sub-grid plumes with perturbed

scalar quantities at cloud base. Future researchers could explore the possibility of calculating cloud-

base Tu and qu based on the buoyancy necessary to achieve the cloud-base vertical velocity

determined by the stochastic process.
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8.3.6 Limited test case

The performance of SPMF was only evaluated in one test case of the diurnal cycle. The LBA case

is a typical diurnal cycle featuring non-equilibrium convection but the amount of CIN present in

the initial sounding is weak. Stronger convective inhibition of order 100 J kg−1 are not uncommon,

especially across central United States as an elevated mixed layer exists over the boundary layer. It

would be interesting to evaluate the performance of this scheme on test cases involving stronger

CIN and more significant delay in the onset of convection (i.e. afternoon thunderstorms).

8.3.7 Non-comprehensive sensitivity test

Sensitivity of SPMF to some parameters is yet to be evaluated, for example the size of a BL thermal.

A more in-depth sensitivity test and analysis should be performed to understand the behaviour of

SPMF, in particular the apparent time-step sensitivity associated with interactions with boundary

layer schemes since a time-step dependent scheme is of little practical value.

8.3.8 Limited test model

The convection scheme has only been implemented and tested in MONC, which is an anelastic and

non-hydrostatic model. The performance of this scheme in other numerical models, including the

real cases and NWP models, should be attempted to assess the influence on real weather forecasts.

8.3.9 Other possible enhancements

A multi-plume approach, for instance Gentine et al. (2013a,b) and Plant and Craig (2008), introduces

size variation among plumes in the same grid box and thus cloud top heights due to differential

entrainment and detrainment rates. This would further enhance the horizontal variability of

convective response and is worth investigating. Weller and McIntyre (2019) proposes to represent

sub-grid plumes and the environment as a multi-fluid problem; transfer terms of mass and buoyancy

across plumes and environment are introduced to ensure tight coupling between the two fluids and

a scale-aware representation of compensating subsidence. Merging this approach with SPMF is a

good motivation for future studies.
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Appendix A: The initial sounding profile of the LBA case
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Figure .1: The initial sounding profile of the LBA case. RH refers to the relative humidity, U and V are
the x and y-component of wind. Height represents the height above sea level. Figure directly adopted from
Grabowski et al. (2006).
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Appendix B: MONC LBA reference simulation

configuration file.

Source code may be downloaded from https://code.metoffice.gov.uk/trac/monc/

browser/main/branches/dev/chuenchungchui/r5611_lba_gzcp_flux.
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