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Introduction %7 Reading

* Discuss a general class of stochastic parameterizations

» Key aspect is that the flux is dominated by finite number of
coherent structures

« Exemplified by the stochastic BL method of Clark et al
(2021)

* Designed for convection-permitting scales of o(1km)

* Focus on the method here, with impacts presented in
poster by Clark
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Example studies related to this approach <% Reading

 Applications to deep convection: Pant and Craig (2008), Keane et al
(2014, 2016), Selz and Craig (2015), Wang et al (2016, 2021),

« Applications to shallow convection: Sakradzija et al (2015),
Sakradzija and Klocke (2018)

» Less-demanding approximation of these methods: Machulskaya and
Seifert (2019)

« Applications to CBL eddies used as basis for stochastic
perturbations for deep convective triggering: Rochetin et al (2014),
d’Andrea (2014), Chui (2021)

 Earlier convective-scale predictability studies showing that such BL
perturbations can be important source of uncertainty: Done et al
(2012), Leoncini et al (2013), Flack et al (2018)

 Application to convective boundary layers: Clark et al (2021), Beare
et al (2019), Kober and Craig (2016) and Hirt et al (2019)
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Filtering in Convection-Permitting ModeIsR‘:"'ﬁl ing

« Parameterizations estimate fluxes, w'y’

» The estimation depends on the nature of the filtering

« If the overbar is an ensemble average of sub-filter flow:
« The parameterization is deterministic
« Model fields near the filter scale are smooth

« If the overbar is a space-time filter:
« Model represents one possible state

« Parameterization is naturally stochastic and samples a possible
realization of sub-filter flow condition on filtered state

« Model fields look turbulent, including partially-resolved structures
near the filter scale

« If averaging scale is large enough to sample many eddies, then
there is no practical difference
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Successive coarse-graining of w data from an LES of the
convective boundary layer

Honnert et al, 2020
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In CPMs, we want to use a space-time filter not an ensemble filtering

l.e. we want to see (permit!) individual convective storms in the model
output, not some large area of light ensemble-mean rain

BUT: BL schemes (including shallow convection) are designed to
predict the ensemble mean of realizations of a turbulent BL in quasi-
equilibrium

Distinction is most important when convection is initiated by the largest
CBL eddies with size L ~ h ~ cloud size
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Assume coherent structures dominate % Reading

* Partition turbulent flux into contributions from a discrete set of coherent

structures
N

w'y' = Z(W' )(’)l_ + non — coherent contributions
i=1

* Index i labels individual BL thermals, or shallow or deep convection

» We distinguish:
« <N> the expected number of elements, which we need to estimate to
guantize the process

* N the actual number of elements, which we sample

» The elements could have a spectrum of properties based on size or
mass flux or...
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Example for deep convection < Reading

 Mass flux pdf over varying 70
averaging areas in RCE A

« Attempt to capture the variability T ! I
by model random sample of N
clouds

» With spectrum of clouds having
an exponential pdf of mass flux

i i 1 64km 1

a0 | —

Frequency {scaled)

» Method captures dependence on IS
20 | .? ;!ﬂx -

averaging scale and convective
forcing
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Plant and Craig, 2008 °
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Scale awareness Reading

« Variability should scale appropriately with the filter scale, and so
scheme has in-built scale awareness

10° u u u L ——— 10° T T T — T3

e Flant—Craig stochastic, 160km |3 mm— F|ant-Craig stochastic, 160km |

[ = = m Plgnt-Craig stochastic, BOkm |] [ = m m Plant-Craig stochastic, B0km |]

o | imim Plant-Craig stochastic, 40km T X Plant-Craig stochastic, 40km

10 E 107 e = o E
10 . . . . . . . e 107 . . . ] . . . e
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rainfall accumulation {(mm in & hours) rainfall accumulation (mm in & hours)
pdf on native grid pdf on 160km grid

« Aqua-planet 6 h rainfall pdf for a given spatial scale is resolution
independent with scale-aware stochastic convection

Keane et al, 2014
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 Predictability studies show that errors grow primarily through processes
that impact moist convection

» Especially perturbations within the BL during the initiation and early
development of convection

» These can lead to improvements to the spin-up of explicit convection
and e.g. help with diurnal cycle

10
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Perturbing Convection-Permitting Models ¥ Reading

 Predictability study based on CSIP
|IOP18

 Scattered convection over England,
4km MetUM simulation

* Model produces scattered storms
ok

* Many of them could easily be
scattered in many different ways by
applying small perturbations to
boundary-layer 6

F

Leoncini et al, 2010 11
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Perturbation at 2000 UTC, 8 km 1
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* ~ 0.1K perturbations at one model level in BL, applied every 30min,
correlated over a few grid points

« Amplitude of buoyancy perturbations is the most

Important sensitivity 12



Clark et al (2021) scheme <7 Reading

« Stochastic BL perturbations to account for variation in sampling the
largest BL eddies

 Perturbations are thus physically based and explicitly depend on
resolution, increasing as resolution decreases

» Take the sampled eddies to be identical and independent, so

ax
at|,,

ax
at|,,

(V)

» Thus N is sampled from a Poisson distribution, which has the single
parameter <N>

13
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What is <N>? 'Rea ding

 Full scheme is not specific to CBL but perturbations are largest and
most impactful there

» Use standard BL scalings for velocity and temperature fluctuations

gHh 1/3 § H
w* = — 0" = -
pC,0 pCrw
» Which lead to an eddy turnover timescale
h
T = "
w

* In a well-mixed BL, H decays linearly with height, so we also estimate

<ae H 6
dt L pCyh T

14
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- Each thermal event is associated with an area A.~h* and a duration 7,~7
and delivers a potential temperature increment of A6~0*

» Based on these assumptions
<ae > AB A, 0" h?
ot|..

= =W >AtAA
where <N> is the expected number of eddies within the interval At over an
area AA

» This expression gives us <N>, to within a scaling factor of o(1), which
we absorb into our choice for AA

At AA
T h?

« For the well mixed BL it is simply (N) =

15
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Application: Spatial Correlation < Reading

« Spatial scales represented well by the model are several
grid lengths

» Perturbations applied on a tiled grid with AA = (m Ax)“ and
m=50r6

 This reduces the magnitude of the perturbations

» But they are applied over a model-resolved area, so will
couple more strongly to the model dynamics

16
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Application: Time Correlation < Reading

 Time correlations arise from thermal lifetime

« We wish to apply each @* increment over the course of a
turnover time t

* 7 ~10min but CPM timestep, 6t ~ 1min

* Brute force approach would remember initiation for each
thermal sampled, use factor 6t/ for heating per thermal at
each timestep, and apply heating for /6t timesteps

e Instead, time correlation is imposed via an AR1 process
with autocorrelation time scale t

17
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Application: Other details

dx
ot

dx
ot

J

» Use expression for <N> and draw a random integer N from
Poisson distribution

» Use it to update N/<N> following the AR1 process

» Assume thermals are fully correlated in the vertical, so this
factor applies to all heights

» Apply same factor to tendencies of potential temperature,
moisture and wind fields

BL:m

18



lllustration of use, UKV model Ax=1.5km
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Reading

* Shifts locations of

the rain, even in
organized cases
driven by the large
scales

» Changes rain

rates at the
common locations
by less than (but
of similar
magnitude) to
such changes due
toic’s

19
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Triggering of grey-zone convection ¥ Reading

 # BL thermals from Poisson pdf for with scale-dependence
as per Clark et al. Each thermal has initial w from
N (0,0.2w™) and triggering occurs for %2 w?> CIN

 Evolution of LWP using grey-zone convection scheme at
Ax=1-6 km in LBA test case
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Comparison with related schemes

Plant-Craig

Sakradzija et al

W Unlver5|ty of
Reading

Clark et al

Coherent
structures

Multiple types?

Sampling
distributions

Estimation of <N>

Spatial correlation

Time correlation

Deep clouds

Yes, by mass flux

Poisson +
exponential

Mass flux per
cloud assumed
fixed

Averaged input to
closure

Lifetime = 45min

Shallow clouds

Yes, by mass flux

Poisson + Weibull

Mass flux per
cloud depends on
Bowen ratio

Averaged input to
closure

Lifetime is f (mass
flux)

Largest BL eddies

No

Poisson

BL scaling
argument

Tiled on scale of
5-6 Ax

AR1 with turnover
timescale




Summary % Reading
» Spatial averaging # ensemble averaging and this matters for
CPMs

» The spatial average is what we want

« But our BL schemes are designed with ensemble-average
perspective

* An important source of variability arises if the parameterized
phenomenon has important dynamical modes not much below
the filter scale

* We can account for this and make our schemes consistent with a
spatial filtering perspective if we can estimate <N>

* The argument here is that such a scheme for CPMs is better
physics and is a very cheap and simple add-on to existing BL
methods

« So why would we not want to include it?

22
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