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Introduction
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• Discuss a general class of stochastic parameterizations

• Key aspect is that the flux is dominated by finite number of 

coherent structures

• Exemplified by the stochastic BL method of Clark et al 

(2021)

• Designed for convection-permitting scales of o(1km)

• Focus on the method here, with impacts presented in 

poster by Clark



Example studies related to this approach
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• Applications to deep convection: Pant and Craig (2008), Keane et al 

(2014, 2016), Selz and Craig (2015), Wang et al (2016, 2021), 

• Applications to shallow convection: Sakradzija et al (2015), 

Sakradzija and Klocke (2018)

• Less-demanding approximation of these methods: Machulskaya and 

Seifert (2019)

• Applications to CBL eddies used as basis for stochastic 

perturbations for deep convective triggering: Rochetin et al (2014), 

d’Andrea (2014), Chui (2021)

• Earlier convective-scale predictability studies showing that such BL 

perturbations can be important source of uncertainty: Done et al 

(2012), Leoncini et al (2013), Flack et al (2018)

• Application to convective boundary layers: Clark et al (2021), Beare

et al (2019), Kober and Craig (2016) and Hirt et al (2019)



Filtering in Convection-Permitting Models
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• Parameterizations estimate fluxes, 

• The estimation depends on the nature of the filtering

• If the overbar is an ensemble average of sub-filter flow:

• The parameterization is deterministic

• Model fields near the filter scale are smooth

• If the overbar is a space-time filter:

• Model represents one possible state

• Parameterization is naturally stochastic and samples a possible 

realization of sub-filter flow condition on filtered state

• Model fields look turbulent, including partially-resolved structures 

near the filter scale

• If averaging scale is large enough to sample many eddies, then 

there is no practical difference

𝑤′𝜒′



Filtering in Convection-Permitting Models
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Successive coarse-graining of w data from an LES of the 

convective boundary layer

Honnert et al, 2020



Filtering in Convection-Permitting Models
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• In CPMs, we want to use a space-time filter not an ensemble filtering

• i.e. we want to see (permit!) individual convective storms in the model 

output, not some large area of light ensemble-mean rain

• BUT: BL schemes (including shallow convection) are designed to 

predict the ensemble mean of realizations of a turbulent BL in quasi-

equilibrium

• Distinction is most important when convection is initiated by the largest 

CBL eddies with size L ~ h ~ cloud size



Assume coherent structures dominate
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• Partition turbulent flux into contributions from a discrete set of coherent 

structures

• Index i labels individual BL thermals, or shallow or deep convection 

• We distinguish:

• <N> the expected number of elements, which we need to estimate to 

quantize the process

• N the actual number of elements, which we sample

• The elements could have a spectrum of properties based on size or 

mass flux or…

𝑤′𝜒′ =෍

𝑖=1

𝑁

𝑤′𝜒′
𝑖
+ 𝑛𝑜𝑛 − 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠



Example for deep convection
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• Mass flux pdf over varying 

averaging areas in RCE

• Attempt to capture the variability 

by model random sample of N 

clouds

• With spectrum of clouds having 

an exponential pdf of mass flux  

• Method captures dependence on 

averaging scale and convective 

forcing

Plant and Craig, 2008



Scale awareness
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• Variability should scale appropriately with the filter scale, and so 

scheme has in-built scale awareness 

pdf on native grid pdf on 160km grid

• Aqua-planet 6 h rainfall pdf for a given spatial scale is resolution 

independent with scale-aware stochastic convection 

Keane et al, 2014



Perturbing Convection-Permitting Models
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• Predictability studies show that errors grow primarily through processes 

that impact moist convection 

• Especially perturbations within the BL during the initiation and early 

development of convection 

• These can lead to improvements to the spin-up of explicit convection 

and e.g. help with diurnal cycle



Perturbing Convection-Permitting Models

11

• Predictability study based on CSIP 

IOP18 

• Scattered convection over England, 

4km MetUM simulation

• Model produces scattered storms 

ok 

• Many of them could easily be 

scattered in many different ways by 

applying small perturbations to 

boundary-layer θ

Leoncini et al, 2010



Perturbing Convection-Permitting Models
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• ~ 0.1K perturbations at one model level in BL, applied every 30min, 

correlated over a few grid points

• Amplitude of buoyancy perturbations is the most

important sensitivity



Clark et al (2021) scheme
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• Stochastic BL perturbations to account for variation in sampling the 

largest BL eddies 

• Perturbations are thus physically based and explicitly depend on 

resolution, increasing as resolution decreases

• Take the sampled eddies to be identical and independent, so

• Thus N is sampled from a Poisson distribution, which has the single 

parameter <N>

ቤ
𝜕𝜒

𝜕𝑡
𝐵𝐿

=
𝑁

𝑁
ቤ

𝜕𝜒
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What is <N>?
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• Full scheme is not specific to CBL but perturbations are largest and 

most impactful there

• Use standard BL scalings for velocity and temperature fluctuations 

• Which lead to an eddy turnover timescale

• In a well-mixed BL, H decays linearly with height, so we also estimate

𝑤∗ =
𝑔𝐻ℎ

𝜌𝐶𝑝 ҧ𝜃

1/3

𝜃∗ =
𝐻

𝜌𝐶𝑝𝑤
∗

𝜏 =
ℎ

𝑤∗

ቤ
𝜕𝜃

𝜕𝑡
𝐵𝐿

≈
𝐻

𝜌𝐶𝑝ℎ
=
𝜃∗
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What is <N>?
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• Each thermal event is associated with an area            and a duration           

and delivers a potential temperature increment of 

• Based on these assumptions

where <N> is the expected number of eddies within the interval Δt over an 

area ΔA

• This expression gives us <N>, to within a scaling factor of o(1), which 

we absorb into our choice for ΔA 

• For the well mixed BL it is simply

𝐴𝑒~ℎ
2 𝜏𝑒~𝜏

Δ𝜃~𝜃∗

ቤ
𝜕𝜃

𝜕𝑡
𝐵𝐿

= 𝑁
Δ𝜃

Δ𝑡

𝐴𝑒
Δ𝐴

~ 𝑁
𝜃∗ℎ2

∆𝑡∆𝐴
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Application: Spatial Correlation
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• Spatial scales represented well by the model are several 

grid lengths

• Perturbations applied on a tiled grid with                       and 

m = 5 or 6 

• This reduces the magnitude of the perturbations

• But they are applied over a model-resolved area, so will 

couple more strongly to the model dynamics

Δ𝐴 = 𝑚 Δ𝑥 2



Application: Time Correlation
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• Time correlations arise from thermal lifetime

• We wish to apply each     increment over the course of a 

turnover time 𝜏

• 𝜏 ~10min but CPM timestep, 𝛿𝑡 ~ 1min

• Brute force approach would remember initiation for each 

thermal sampled, use factor 𝛿𝑡/𝜏 for heating per thermal at 

each timestep, and apply heating for 𝜏/𝛿𝑡 timesteps 

• Instead, time correlation is imposed via an AR1 process 

with autocorrelation time scale 𝜏

𝜃∗



Application: Other details
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• Use expression for <N> and draw a random integer N from 

Poisson distribution

• Use it to update N/<N> following the AR1 process

• Assume thermals are fully correlated in the vertical, so this 

factor applies to all heights

• Apply same factor to tendencies of potential temperature, 

moisture and wind fields

ቤ
𝜕𝜒

𝜕𝑡
𝐵𝐿
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𝑁

𝑁
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𝜕𝜒
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Illustration of use, UKV model Δx=1.5km
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• Shifts locations of 

the rain, even in 

organized cases 

driven by the large 

scales

• Changes rain 

rates at the 

common locations 

by less than (but 

of similar 

magnitude) to 

such changes due 

to ic’s

MCS case

MCS case

squall line

squall line



Triggering of grey-zone convection
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• # BL thermals from Poisson pdf for with scale-dependence 

as per Clark et al. Each thermal has initial w from 

𝒩(0, 0.2𝑤∗) and triggering occurs for  ½ w2 > CIN

• Evolution of LWP using grey-zone convection scheme at 

Δx=1-6 km in LBA test case

Chui, 2021



Comparison with related schemes
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Plant-Craig Sakradzija et al Clark et al

Coherent 
structures

Deep clouds Shallow clouds Largest BL eddies

Multiple types? Yes, by mass flux Yes, by mass flux No

Sampling 
distributions

Poisson + 
exponential

Poisson + Weibull Poisson

Estimation of <N> Mass flux per 
cloud assumed 
fixed

Mass flux per 
cloud depends on 
Bowen ratio

BL scaling 
argument

Spatial correlation Averaged input to 
closure

Averaged input to 
closure

Tiled on scale of 
5-6 Δx

Time correlation Lifetime = 45min Lifetime is f (mass 
flux)

AR1 with turnover 
timescale



Summary
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• Spatial averaging ≠ ensemble averaging and this matters for 

CPMs

• The spatial average is what we want

• But our BL schemes are designed with ensemble-average 

perspective

• An important source of variability arises if the parameterized 

phenomenon has important dynamical modes not much below 

the filter scale

• We can account for this and make our schemes consistent with a 

spatial filtering perspective if we can estimate <N>

• The argument here is that such a scheme for CPMs is better 

physics and is a very cheap and simple add-on to existing BL 

methods 

• So why would we not want to include it?
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