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Motivation

Control simulation, T+60

950mb

Simulation with no boundary layer turbulence, T+60.

930mb

Simulations with and without boundary layer processes active
for T+60 of storm on 12Z 31/10/00.
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Surface Roughness

Accounting for orographic and ocean wave effects has
produced increased roughness in NWP

The increased roughness has increased NWP skill.

But how and why?

(How much roughness should be there?)

Has become a real issue in deciding between competing
(but very different) parameterizations of orographic effects.
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Some Context

Potential vorticity framework

Baroclinic wave studies with IGCM:

LC1 and LC2

Added simple (but realistic) boundary layer scheme

Three cyclones in UM (different forcing mechanisms) with
careful diagnosis of PV generation by model physics

Here, focus will be on LC1, with friction but no boundary
layer heat fluxes
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Bulk Effect of Friction
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Mechanisms for Frictional PV
Generation
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PV Generation

DP
Dt

= G ≡

1
ρ

∇×F ·∇θ,(1)

Average over boundary layer:

D[P]

Dt
= [G]−

whPh

h
+ small terms.(2)
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Contributions to [G]

Ekman term:

[GE ] =
−1

ρ2h2
∆θk̂ ·∇× τs = −

f ∆θ
ρh2

wE(3)

Baroclinic term:

[GB] =
1

ρ2h2
k̂× τs · (∇Hθ)h ∝ −vs · vT(4)

and some small terms.
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Ekman Pumping

Convergence over low → ascent → vortex-tube squashing →

spindown of barotropic vortex

 

ξ  >  ξ1 2

1

2ξ

ξ

boundary layer

troposphere
free

tropopause

surface

Reduces PV over the low
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Baroclinic Term
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Basic-state temperature gradient
Perturbation surface zonal wind
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Baroclinic Term

For a neutral wave:
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Perturbation zonal temperature gradient
Perturbation meridional zonal wind
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Baroclinic Term

Combine these and account for wave growth and frictional
turning of the wind:
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Low-level PV Evolution of the
Wave
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Near-Surface PV
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Where Does This Come From?
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Ekman (left) and baroclinic (right) generation terms
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Comparison with the Theory
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Near surface winds and angle between vs and vT
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Transport of Generated PV
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Transport of Generated PV

Negative low-level PV in vicinty of low

Generated by Ekman mechanism close to low

Remains localized

Positive PV to north and east

Generated by baroclinic mechanism

Advected out of boundary layer by warm conveyor belt
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How Does This Damp the Wave?
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Cross Section
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Stability
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Estimated Stability Effects

Effect on linear growth rate of Eady wave:

Using resulting N

25% reduction directly from increased N

15% reduction because Rossby radius increases so that
wavenumber 6 is no longer optimal
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Case Study (FASTEX IOP15)

PV attributed to barotropic frictional effects, T+24, 900mb
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Case Study

PV attributed to baroclinic frictional effects, T+24, 950 and
850mb
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Conclusions

Ekman pumping spins down a barotropic vortex

PV is generated baroclinically on the NE of a low (robust
mechanism)

Positive PV carried out of boundary layer

Associated static stability anomaly

Case studies suggest ∼ 1/3 of PV generation from friction
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