Boundary layer ventilation by weather systems

Victoria Sinclair, Sue Gray, Ian Boutle, Bob Plant & Stephen Belcher Department of Meteorology University of Reading

Motivation

- Most emissions at surface
- Easily mixed through depth of boundary layer
- BL inversion a strong barrier to further vertical mixing
- Surface concentrations determined by:
 - Source strength
 - Boundary layer depth
 - Rate of ventilation of boundary layer
- Case studies
 - Ventilation rate varies
 - 20% 70% mass ventilated

Idealised simulations

- Simulate idealised weather systems
- Use Met Office Unified Model in idealised channel configuration or IGCM
- Dry simulations
- Include Boundary-layer scheme
- Constant strength source at surface, across the whole domain

$$\frac{DC}{Dt} = \nabla.\vec{F}$$

$$\vec{F} = F_s$$
 at $z = 0$

Lines: Surface pressure Contours: potential temperature at 1km Each frame is 1 day apart

Transport into free troposphere

Three phases:

- Vertical BL mixing
- Horizontal transport within BL
- Ventilation by warm conveyor belt

Isosurface of tracer concentration. Colours show the height of the surface

What controls ventilation rate

- The amount of turbulent mixing within the boundary layer?
 - Pollutants need to be mixed up to near the top of the boundary layer for ventilation to occur
- Horizontal transport within the boundary layer?
 - Convergence and divergence within B.L.
 - Only certain regions of the boundary layer are ventilated
- The large scale vertical motion associated with the cyclone?
 - Final step in ventilation
 - Most important?
- Numerical experiments:
 - Role of boundary layer convergence: vary drag coefficient
 - Role of large scale flow: vary weather system strength

Conclusions

- BL top acts as barrier to vertical transport
 - Comparable to strat-trop exchange
- Mid-latitude weather systems ventilate boundary layer
 - Large-scale vertical WCB motion is the dry control
 - Re-analysis products sufficient to capture WCB
- Moist lifecycles:
 - New pathway through convection
 - Convection gives comparable ventilation as WCB
 - More delicate to represent in models

Conclusions

- Pathways for boundary layer ventilation:
 Diurnal cycle of BL
 - Transport through inhomogeneous BL
 - Convection:
 - case specific
 - Fast: 3 hours up to 5km
 - Conveyor belts:
 - Reliable: all cyclones
 - Slow: 12 hours to 5km

Further questions

- How does the chemistry care:
 - Time scale for ascent?
 - Height of destination?
 - Passage through clouds?
 - When do trajectories fail?

B.L. charateristics Day 0 50 35 Wm⁻² -3 60 20 80 -6 0 40 100

- Fluxes drive by thermal advection
- Deepest boundary layers are colocated with maximum heat fluxes
- Large change in boundary layer depth across cold front

Boundary layer mass budget

• Integrate continuity over the B.L depth:

Boundary layer mass budget

- But B.L depth can change due to the surface heat flux, which leads to entrainment into the boundary layer
- OR due to the large-scale vertical motion (subsidence) pushing down the theta contours
- Combine to form an 'entrainment' velocity

$$w_e = \frac{\partial h}{\partial t} - (\vec{u}.\vec{n})_h \qquad \qquad \frac{\partial \tilde{\rho}}{\partial t} = \rho_h w_e + \tilde{C}_h$$

Transport of tracer in the B.L.

and B.L depth (black line)

Tracer is mixed vertically by turbulent mixing .

- More mixing in high pressure region
- Little vertical mixing in low pressure region

Tracer is also transported horizontally within the B.L.

- Convergence towards low centre
- Divergence out of high pressure

Mass ventilated

- Surface type has little affect on mass ventilated
- When 'no' friction acts, reduced mass ventilated
- No tracer in the correct regions
 - conveyor belt footprint areas or the mid to upper regions of the B.L