

Shallow Island Convection: Impact of the Large- Reading scale Environment

Particular (2) the component in blue-red shading, cloud frequency greater than 0.25 during the diumal cycle in grey shading, contour of the 40.1 K potential temperature anomaly at 352 m (mid-81) in black, and island contour in dark red for (a) the reduced B experiment; (b) the increased B experiment; (c) the reduced B. RH experiment; (d) the reduced free-atmosphere RH experiment; and (e) the control experiment;

Michael C. Johnston | Christopher E. Holloway | Robert S. Plant

Introduction

Small islands offer an opportunity to focus in on a regularly occurring organised convective system (Cloud Trails) to investigate the convective lifecycle: i.e. initiation, maturation, and decay of convection and associated circulations. This work inspects the convective lifecycle for cloud trails, and tests its sensitivity to changes in the large-scale environment.

What do observations look like?

Cloud trails (CT) are organised bands of convection which are aligned with the low-level flow and anchored to heated islands (e.g. Figure 1). Radiosondes on automatically detected CT days are used to identify environmental differences between days with and without CT (Johnston et al., 2018).

These environmental profiles (e.g. Figure 2) are then used to inform idealised experiments to further explore the mechanisms behind initiation, organisation, and maintenance of convection in CT.

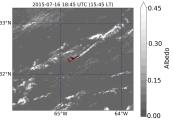


Figure 1. Visible satellite imagery where clouds appear as brighter. The cloud trail can be seen as the cloud line extending from the island Coastline is marked in dark red, and lat/lon in purple. A wind barb in black.

Experiments with the Met Office Unified Model using 100 m izontal grid spacing are performed.

Synthetic Albedo

The Control Experiment

Idealised initial conditions derived from a case CT day's morning radiosonde profile are used. Large scale subsidence forcing, radiative cooling tendency, and geostrophic wind forcing are applied to the low-levels of the model domain in the style of Large-Eddy Simulations.

Surface turbulent fluxes are prescribed: constant in time/space over sea, and with a 12-hour long diurnal cycle over a 50 km² island. Island Bowen ratio (B = sensible + latent) is set equal to 1 for equally partitioned sensible and latent heat fluxes.

Additional experiments are performed to explore the role of different values of B and relative humidity (RH) in the BL and the free atmosphere. The high resolution model reproduces the following expected

- cloud trail qualities. ✓ Downwind/anchored cloud band (Figure 3/4a)
- ✓ Cloud trail circulation (in-up-out) (Figure 4b)
- √ Warm plume in island wake (Figure 4c)

x (km)

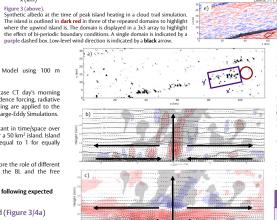


Figure 4 (above).

(a) Clook with region of interest highlighted, Cloud appears black control of the property of the property of the rectangle is aligned with the renear mixed-layer flow, is, xy convolution in the control of the rectangle is aligned with the renear mixed-layer flow, is, xy convolution in the control of the rectangular region of interests in (a) along the x' direction following the flow. Potted are potential temperature for including black lines), wind vector in the plane (black arrows), vertical velocity (red/blue shading), and colour mask (grey).

(c) Averages as in (b) of potential temperature anomaly (red/blue shading), wind vector in the plane (black small arrows), exaggerated flow marked by large black arrows, and cloud mask (grey).

. Johnston, M. C., C. E. Holloway, R. S. Plant, 2018: Cloud Trails Past Bermuda: A 5-yea Climatology from 2012-2016. Mon. Wea. Rev. , 146, 4039-4055.

Environmental and (e) the control experiment.

Sensitivity:
Changes to Bowen ratio:
Cloud trail characteristics are largely controlled by the strength of the sensible heating.

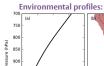
Decreasing B to 1/3 in Figure 5a reduces the size and intensity of the warm plume, and low-level convergence is weaker compared to the control (Figures 5e). Similarly, increasing B to 3 in Figure 5b increases the size and intensity of the warm plume, and low-level convergence is stronger. However, rain evaporation (not shown) is a suspected limiting factor.

Changes to Relative Humidity:

BL circulation is present for all heated islands, but requires sufficient low level RH for cloud and cloud trail .

Severely reducing the BL RH in Figure 5c produces very little cloud, yet the BL convergent structure is strongly evident. Reducing the free-atmosphere RH in Figure 5c preduces the warm plume extent/intensity, and the cloud trail extent. Low-level circulation is otherwise comparable to the control.

Stronger surface sensible heating over the island relates to a stronger low-level circulation. Secondary factors (e.g. precipitation) weaken


$\uparrow H_{sfc} = \uparrow Circulation$

- Strongly reducing low-level humidity prevents cloud from forming across the domain, including in the cloud trail region
 - BUT the low-level circulation is still present

No Cloud ≠ No Circulation

Cloud latent heating also contributes to the circulation, ongoing analysis seeks to quantify this.

Circulation $\propto H_{sfc} + L_{\nu} \Delta q_{con} + ...$

— Climo EEE Cloud Trail (n=107) EEE Non-Trail (n=113) EEE Obscured (n=106)

