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Seminar plan

�Introduction to convection, its representation 

in numerical models

�A simple analytic model of convective 

processes

�Results for a realistic convective ensemble

�Conclusions



What is convection?



Convection on the web!

C. Doering
MOD report on space heating



Atmospheric convection



Ice cloud

Detrainment

Entrainment

Updraft Subsidence

A convective cloud
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Representation of convection 

in numerical models



Convection meets NWP
� Convective systems are a major contributor to global 

circulations of heat, mass and momentum

� Representation depends on scale of model

High resolution models explicitly resolve clouds

Large scale models require parameterisation

� Parameterisations represent the mean effect of the sub-grid 

scale cloud process on the large scale flow

� For validity this requires assumptions to be made about the 

mean convection



The assumptions
� Convection acts over shorter distances and on faster 

timescales than the large scale flow 

� Scale separation in time and space between cloud processes 

and large scale flow
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� Convective 

ensemble

� Analogous to the equation of 

state

p=ρRT



Parameterisation basics
Arakawa and Schubert (1974)
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Equilibrium–an earthly  analogue

Convective ensemble = sheep in field

Forcing = irrigation system

Energy in system = length of grass

Sheep eat the grass to keep it short!

Precipitation = ??!

After Dave Randall (CSU) with thanks 

to Pier Siebesma (KNMI)



Motivation

�Model compared to observations (Yang & Slingo 2001)

�Longer systematic life cycle…memory? 



� Convective systems are a major contributor to global 
circulations of heat, mass and momentum.

� In large scale models convection requires parameterisation.

� Most convective parameterisations make the assumption of 
equilibrium.

� Observations suggest that parameterisation are failing to 
capture features such as the diurnal cycle.

Summary so far…
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Are these assumptions always valid?

In particular, what happens if the scale separation

in time breaks down?



A simple analytic model of 

convection



Convective memory

1

dT
COOL Q

dt
= + 1 1

mem

dQ R Q

dt t

−
=

n s

close

T T
R

t

−
=

Surface

Atmosphere

C
O
O
L

Q1

τ
Ts

� 3 timescales tmem, tclose and 

� What are the characteristics of this system?
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Model results
4

mem
t hrs= 0.5closet hrs=

100hrsτ =

Response repetitive and ‘matches’ forcing.



Model results
4

mem
t hrs= 0.5closet hrs=

Response not repetitive and not obviously linked

with forcing.

12hrsτ =



Model results
4

mem
t hrs= 0.5closet hrs=

Response repetitive but convection tends to constant 

value with fluctuations about mean.

3hrsτ =



� A simple analytic model, with a memory timescale, shows that 
the characteristics of the response depend on the forcing 
timescale.

� When the forcing timescale is close to the memory timescale 
the response is not solely related to the current forcing – there 
is feedback.

� In a convective system, the current amount of convection is 
dependant on the time-history of the convection.

Summary so far…

Can we observe these characteristics for realistic convection?

For what timescales is there feedback in the system?



Convection in a realistic 

convective ensemble



� LEM run as a cloud resolving model explicitly resolves cloud-

scale dynamics but parameterises sub-grid processes.

� Largest eddies are responsible for majority of transport so are 

explicitly resolved.

Large eddy models (1)



Large eddy models (2)

Full field - as in direct numerical simulation



Large eddy models (3)

Large eddy resolved field – ideal for convection



� LEM run as a cloud resolving model explicitly resolves cloud-

scale dynamics but parameterises sub-grid processes.

� Largest eddies are responsible for majority of transport so are 

explicitly resolved.

Large eddy models (4)

� Used to investigate the properties of cloud ensembles for 

parameterisation development and GCM testing.

� Often forced with observations from field campaigns. 

� Used to complement observations.



Large eddy models setup 2
� Initialised with profiles of θ and qv (wind speeds possible too).

� Specify Coriolis parameter, vertical profiles of wind shear.

� 2D or 3D

Neither of these.



2 D test run

� With no imposed winds the 

model develops strong near 

surface winds.

� The motion of the convective 

cells is controlled by the large 

scale winds.

� Increasing wind shear due to 

insufficient damping in eddy 

transport compared to 3D 

(Mapes and Wu 2001).



Large eddy models setup
� Initialised with profiles of θ and qv (wind speeds possible too).

� Specify Coriolis parameter, vertical profiles of wind shear.

� 2D or 3D

� Resolution

Neither of these.

3D



Horizontal resolution

Few, isolated grip point 

storms modify the 

convective response.



Large eddy models setup 2
� Initialised with profiles of θ and qv (wind speeds possible too).

� Specify Coriolis parameter, vertical profiles of wind shear.

� 2D or 3D

� Resolution

� Large scale heating/cooling.

� Large scale convergence.

� Specify forcing mechanism.

Neither of these.

3D

1 km

Large scale cooling

Nope



Model setup
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Control run

Time-varying 

portion of run

Initial convective response is strongly 

influenced by the control run. It was found a 

portion of ~ 6hrs need to be removed. This 

suggests ‘memory’ within the system.

Control run:

Applying constant 

surface fluxes 

until equilibrium 

achieved

A long time Repeating 3hr cycles



Forcing method

Vary length of forcing cycle



RCE in LEM
�What people have done before…constant SST and 

longwave cooling.

-16 k/day

-8 k/day

Investigate characteristics at 

equilibrium.

Use to motivate changes to 

parameterisations.

Look at fluctuations – how close is the 

system to being in equilibrium?

How long does it take the system to 

reach equilibrium?

Cohen and Craig (2004)



Defining equilibrium

A working definition
�Consider an infinitely long forcing.

�The system develops a mean amount of convection 
and achieves equilibrium.



Defining equilibrium (2)

A working definition
�Now, the system has a finite forcing.

�The total amount of convection is proportional to the 
amount of forcing.

�Avoids issues of timing and cloud-scale fluctuations.



Forcing method

Vary length of forcing cycle

Compare total amount of convection



Convective characteristics

Ice contours 1, 2, 4 x10-4 kg/kg



Time evolution

3 hr

24 hr



Effect of forcing timescale

Mean amount of convection is almost 
independent of forcing timescale.

Increased variability at short forcing 
timescales (< 10 hrs).

3 36



Time evolution

3 hr

24 hr



Cause of variability

Differences in the mean profiles of θ and qv?

Mean of initial profiles when total integrated convection exceeds mean ± σ shaded

Mean of initial profiles when total integrated convection is less than mean ± σ shaded



Cause of variability

Variability is not explained by initial profiles of θ and qv in the 
convective ensemble.

Differences in the mean profiles of θ and qv? 

Differences in the spatial variability?

Are there different spatial scales of θ and qv present initially at 
different forcing timescales?



24 hr

3 hr

Convective maximum Convective minimum



Spatial scales of relative humidity

Power persists at 
scales 10-30 km.

Convective maximum

Convective minimum



Conclusions (1)

� LEM simulations confirm that forcing timescale effects the 
characteristics of the convection

� On forcing timescales < 10 hrs memory effects are observed.

� Memory is carried by spatial structures in moisture field.



Conclusions (2)

� At certain forcing timescales convective systems exhibit signs 
of memory.

� Inclusion of memory in a parameterisation may improve the 
representation of convection.

� It is anticipated that at diurnal timescales there may be memory
effects.

� Timescales < 10 hrs imply a horizontal spatial scale in the order 
of 50 km which may be significant for NWP.


