Investigating the equilibrium assumption between convection and the forcing Laura Davies University of Reading

Supervisors: Bob Plant, Steve Derbyshire (Met Office)

Definition of equilibrium

Dictionary definition:

The condition of equal balance between opposing forces. (Oxford English Dictionary)

Convective system

- In a convective system this is a balance between:
- Surface forcing,
- Large-scale cooling and
- Convection.

• Not considering large-scale subsidence and convergence.

Defining equilibrium (1)

A strict definition

- Balance between these forces.
- ≻ However,
 - What about CIN?
 - What about the lifetime of a cloud?
- Can we use a definition of equilibrium and quasiequilibrium from literature.
- \succ So, how do we define equilibrium?

Defining equilibrium (2)

- A working definition
- Consider an infinitely long forcing.
- The system develops a mean amount of convection and achieves equilibrium.

Defining equilibrium (3)

A working definition

- > Now, the system has a finite forcing.
- The total amount of convection is proportional to the amount of forcing.
- > Avoids issues of timing and cloud-scale fluctuations.

Model setup

Model setup

Forcing method

Time evolution

Effect of forcing timescale

Time evolution

Cause of variability

Differences in the mean profiles of θ and q_v ?

The mean and variability of the initial profiles of θ and q_v are comparable at different forcing timescales.

Differences in the spatial variability?

Are there different spatial scales of θ and q_v present initially at different forcing timescales?

Spatial scales of relative humidity

Conclusions

- A definition of equilibrium is proposed which is based on the total amount of convection in the system.
- Using this definition a convective is not in equilibrium when forced on timescales < 10 hrs.</p>
- It was found that the mean initial state could not explain this dis-equilibrium.
- Spatial structures (10-30 km) in the relative humidity field were found to persist when the system was in disequilibrium.
- These structures may be important in explaining the memory within a convective system.

Stirling and Petch (2004)

Figure 9. The deep-convective onset time as it varies with the scale of initial moisture perturbation.

Cloud distribution

Mean number of clouds

Clouds defined as buoyant, moist and upward moving

Comparing the intial θ profile in mutli-day runs with single day simulation.

Mean profiles

