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Modelling convection in the BL

e Shallow cumulus boundary layers are

modelled using Large Eddy 1 -
Simulations (LES). 7, |t N
|2}
: : loud 1 Z
* At high resolutions, these models can ‘S 2
resolve small scale turbulent eddies. g
_ _ z, cloud base - E‘
* At coarse resolutions the eddies are , | ML top 1) N\, pg
not fully resolved on the grid, and | - z| &
. . mixed layer &
therefore the simulation lacks energy: / M g <
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The grey zone problem. A /( A St E/ 2

* Toinvestigate the grey zone, the

mixing lengths that determine energy Wang, Y. et al.(2022)
dissipation are dynamically computed.




Defining the Grey Zone

* Wyngaard: Grey zone when length scale
of the peak is similar to the filter scale:
L, = A

* This does not account for dissipation
from model dynamics.

* Beare: Grey zone when the dissipation
length scale is similar to length scale of

the peak: [; = L.
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Grey Zone
Delay onset of the Grey Zone |
| \ IDEAL &7
* We know that models in the grey zone oo
are too dissipative. o
! k
* Aim: make the model less dissipative /'I L | 27
by adjusting parameters to more " " E?S;?;iengrf
accurately model the flow. ! Extended LES
* By retaining more energy, LES /7\\ o

methods can be extended to grid |
spacings that are currently considered
to be in grey zone regimes.
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Research Questions

* What are the dependencies of the model parameters?
« Stability dependent, scale dependent, time dependent.
* Do all scalar fluxes behave in the same way?

* Mixing of moisture vs mixing of heat?

* |s it reasonable to assume scalar mixing is proportional to that of
momentum?

* |s there a relationship between the values of model
parameters and their position relative to cumulus clouds?

* |s it possible to inform the model of any relations, if identified?



LES: Smagorinsky Scheme

* The Smagorinsky scheme assumes energy
production is balanced by dissipation, i.e. the
small scales are in equilibrium.

a. The eddy viscosity dissipates energy, preventing a
build up of energy at the small scales (from the
energy cascade).

b. Eddy viscosity is determined by the mixing length.

c.The mixing length is set according to the
Smagorinsky parameter C; , and the grid spacing A.

« C, controls the turbulent momentum flux.
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Standard Smagorinsky Approach

e Current LES models often use the “Standard
Smagorinsky Scheme”, where C; is constant.

* Values between C; = 0.1 to C; = 0.23 (used in MONC).

« C, also controls the scalar fluxes (eg: heat, water)
along with the Prandtl number Pr.

* Pris the ratio between the rate of diffusion of
momentum and the rate of diffusion of a scalar.

« In the Standard model, for all scalars Y, the
Prandtl number is set to the typical value for air.
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Dynamic Model Equations

« The Smagorinsky parameters are calculated based on the flow at each grid point.
» Defined by Germano (1991) and modified by Lilly (1992).

» High resolution data (denoted by overbars), is filtered to coarser resolutions (denoted by carets).
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Dynamic Smagorinsky Parameters

Field of dynamic Smagorinsky parameter values for Momentum (BOMEX):
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Horizontal averaging: stability dependencies

Cloud Layer
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Dynamic vs Standard Mixing Lengths

Profiles of the mixing length for 3 different filter scales A. Dynamic values are shown as
points, standard values as a solid line.
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Scale Dependency of Mixing Lengths
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Dynamic mixing length vs
filter scale A.

Solid line: average mixing
length value mid mixed layer
(0 < z/zyy <1).

Dashed line: average mixing
length value mid cloud layer
(1 <2z/zpy; <4).



In-cloud vs Environment

In-cloud Smagorinsky parameter values substantially
higher than non-cloudy environment in the cloud layer
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Horizontal averaging: In-cloud vs Environment

Higher Smagorinsky parameter
for momentum: C; values in-cloud
than in the ML and in the non-
cloudy environment of the CL.

Consistent decreases in value at
the surface, mixed layer capping
inversion/cloud base (z/zy; = 1),
and at the cloud top (z/zy,;, = 4.5).

Maximum values are in the middle
of the mixed layer (ML) and
middle of the cloud layer (CL).
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Horizontal averaging: In-cloud vs Environment

« Smagorinsky parameter « Smagorinsky parameter
for heat (Cp). for total moisture (C).
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Mixing lengths in the Cloud Layer
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Dynamic mixing length vs
filter scale A.

Solid line: average mixing
length value for cloudy
points mid cloud layer.

Dashed line: average mixing
length value for non-cloudy
points mid cloud layer.



Conclusions

Standard LES models dissipate too much energy at coarse resolutions. Dynamic
analysis suggests some reasons for this:

1.  The standard values of mixing lengths may be too large.

2. Fixed value mixing lengths cannot account for the effects of stability, particularly at
boundaries and temperature inversions, where turbulent eddies have much smaller scales.
Using stability functions in the standard model is recommended.

3.  The assumption that the mixing of heat/moisture is proportional to that of momentum, and
that it is not scalar dependent, does not hold.

These findings suggest that the turbulent structures which mix momentum,
heat, and moisture all differ in scale. Turbulence is also affected by proximity to
boundaries, inversions, and clouds. Accounting for this in LES models may allow for
more energy to be resolved at coarser resolutions.
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Dynamic Smagorinsky

* High resolution data set.

* Turbulence is resolved down to the
subgrid scale (SGS).
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* These filtered data set (original high

res data has been filtered to coarser
resolutions).

* Turbulence is now represented down to
subfilter test scale (STS).
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Dynamic Smagorinsky

. . . Ps woer spectra /CU' echrs
* In the ISR (turbulence is isotropic): R e A
turbulence properties scale with
wavenumber.

* Can compute Cz and Cy, as a function of
grid spacing A.

Difference in stress
between SGS & STS
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