

1

Update on CAPE closure

C. Daleu, B. Plant, A. Stirling, M. Whitall, and S. Lavender

Standard closure

- Mass-flux launched from any height just depends on the local vertical instability -N²:

 $M_{init} = \frac{1}{4} f \sqrt{-N^2} \rho \Delta z$

- Cloud-base mass-flux is an emergent property of the entraining-detraining plume-model, not a closure variable!

CAPE closure

The cloud base mass flux is calculated based on the reduction to zero of CAPE by convection over a given timescale τ_{CAPE} From the rate of changes in CAPE between t and $t + \Delta t$

$$\frac{CAPE(t)}{\tau_{CAPE}} = \alpha \frac{CAPE(t) - CAPE(t + \Delta t)}{\Delta t}$$

The mass flux at the base of the plume is multiplied by the scaling actor (α) to give convective mass flux that dissipates CAPE at the prescribed rate

 $M_1^{new} = \alpha \ M_1$

Wiversity of Reading

- Specification of a single value of τ_{CAPE} throughout the simulation (1 and 3 hours) W1: simulations of tropical cyclones
- W2: convective responses to moisture tendency perturbations (Daleu et al., submitted)
- W3: Diurnal cycle of shallow convection over land (*Brown et al., 2002*)
- W4: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004)

W1: simulations of tropical cyclones: Atm-only N1280 (~10km resolution)

pmin= 914.34

W1: simulations of tropical cyclones: Atm-only N320

5

145°E

University of Reading

145°E

W1: simulations of tropical cyclones

Atm-only Typhoon Surigae

Slight increase in intensity with CAPE closure

with little difference between the 2 timescales tested

W2: Simulations of convection coupled to parameterized large-scale circulation (Daleu et al., submitted) large-scale circulation parameterized using the

damped-gravity wave approach

$$\frac{\partial}{\partial p} \left(\varepsilon \frac{\partial \overline{\omega}}{\partial p} \right) = \frac{\kappa^2 R_d}{\overline{p}^{Ref}} \left(\overline{T}_v - \overline{T}_v^{Ref} \right)$$

$$\frac{\partial \theta}{\partial p} = \dots - \overline{\omega} \frac{\partial \overline{\theta}}{\partial p} \text{ and } \frac{\partial q}{\partial p} = \dots + \overline{\omega} \frac{\partial \overline{q}}{\partial p} + \max\left(\overline{\omega} \frac{\partial \overline{\omega}}{\partial p}, 0\right) \left(\overline{q}^{Ref} - \overline{q}\right)$$

• Days 0-50: the reference state is a **stable** equilibrium state under the DGW method

W2: Simulations of convection coupled to parameterized large-scale circulation (Daleu et al., submitted) large-scale circulation parameterized using the

damped-gravity wave approach

$$\frac{\partial}{\partial p} \left(\varepsilon \frac{\partial \overline{\omega}}{\partial p} \right) = \frac{\kappa^2 R_d}{\overline{p}^{Ref}} \left(\overline{T}_v - \overline{T}_v^{Ref} \right)$$

$$\frac{\partial \theta}{\partial p} = \dots - \overline{\omega} \frac{\partial \overline{\theta}}{\partial p} \text{ and } \frac{\partial q}{\partial p} = \dots + \overline{\omega} \frac{\partial \overline{q}}{\partial p} + \max\left(\overline{\omega} \frac{\partial \overline{\omega}}{\partial p}, 0\right) \left(\overline{q}^{Ref} - \overline{q}\right)$$

- CoMorph with its standard closure:
 - The adjustment is **much quicker**
 - Achieves zero precip as in MONC
- CoMorph with CAPE closure:
 - the adjustment is slower
 - τ_{CAPE}=3h achieves zero precipitation as in MONC and standard CoMorph closure
 - *τ_{CAPE}*=1h achieves 60% reduction in precip

CAPE closure

Specification of a single value of τ_{CAPE} throughout the simulation (1 and 3 hours)

- Simulations of TCs \rightarrow little difference between the 2 timescales tested Convective responses to dry tendency perturbations \rightarrow precipitating or non-precipitating equilibria depending on the value of τ_{CAPE} .
- Let's performed simulations with other variations on the CAPE closure.
- au_{CAPE} varies vary throughout the simulations depending on the level of convective activity

Case3: w based CAPE closure: (the user supplies w_{crit} , depending on model resolution) If $w_{max} > w_{crit}$, then τ_{CAPE} is reduced as follows:

 $\tau_{CAPE}' = \tau_{CAPE} \frac{w_{crit}}{[w_{crit} + f_{wcape}(w_{max} - w_{crit})]}$

with au_{CAPE}^{\prime} > convection model time step

Case 7: large-scale vertical velocity based CAPE timescale

$$\tau_{CAPE}(h) = \begin{cases} \frac{a}{w_{LS}^b} & \text{for } w_{LS} > 0 & \text{with convection model time step } < \tau_{CAPE} < 4h \end{cases}$$

$$4 \quad \text{for } w_{LS} \leq 0$$

where a = 0.069 and b = 0.7

(Analysis of the high resolution convection permitting simulations over West Africa and the Indian Ocean done for the CASCADE). ParaCon plenary, 19-20-December 2022 9

W3 Diurnal cycle of shallow convection over land (*Brown et al., 2002*)

Similar to those obtained in simulation using eight independent models (brown et al., 2002)

W1: Diurnal cycle of shallow convection over land (*Brown et al., 2002*)

CoMorph vs **MONC** results and those from *Brown et al 2002*:

- Convection is triggered a **couple of hours earlier**
- Cloud base height doesn't go as deep as in MONC

- Cloud emerges rapidly and reaches its maximum height earlier
- Larger cloud fraction throughout the simulation

W1: Diurnal cycle of shallow convection over land (*Brown et al., 2002*)

۲

Sensitivity to the closure method within CoMorph:

fixed CAPE time scale τ_{CAPE} =3, 1 or 0.5 hours

- Cloud emerges less rapidly with CAPE closure ۲
 - $\tau_{CAPE} = 3h \rightarrow$ Evolution of cloud to height comparable to that obtained in MONC

- From hours 19
 - cloud emerges further
 - Cloud top height is slightly increased with CAPE closure with variable timescale.

W2: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004) Memory function: $M(A, t_0, \Delta t) = P[R(A, t_0) \cap R(A, t_0 - \Delta t)] - P^2[R(A, t_0, \Delta t)]$

- 2nd phase: suppression of convection
- 3rd phase: secondary enhancement of convection

Results from GA8 vs MONC

• The triggering of convection (t_0) about 1.5 h earlier

Results from CoMorph vs MONC

- The triggering of convection (t₀) is slightly earlier
- P(t₀ < 1h)~1: convection triggers in almost all grid points
- $M(A, t_0 < 3h, \Delta t) \approx 0$: random distribution of convection
- The 1st and 2nd phases occur from $t_0 \ge 3.5h$

- There is **a 3rd phase** as in MONC
- $M(A, t_0 > 7h, \Delta t)$ is stronger than in MONC

W2: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004) Memory function: $M(A, t_0, \Delta t) = P[R(A, t_0) \cap R(A, t_0 - \Delta t)] - P^2[R(A, t_0, \Delta t)]$

- τ_{CAPE} =3h: the 2nd and 3rd phases do not occur
- τ_{CAPE} =1h: the 2nd occurs for t_0 >6.5 h but is weaker
- In general, $M(A, t_0, \Delta t)$ for CAPE closure and fixed τ_{CAPE} similar to that obtained in GA8 ParaCon plenary, 19-20-December 2022

W2: Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004) Memory function: $M(A, t_0, \Delta t) = P[R(A, t_0) \cap R(A, t_0 - \Delta t)] - P^2[R(A, t_0, \Delta t)]$

- $M(A, t_0, \Delta t)$ is also sensitive
- However, $M(A, t_0, \Delta t)$ for CAPE closure and fixed or variable τ_{CAPE} is similar to that obtained in GA8

Summaries

We \mathbf{e} xplored the sensitivity to the closure method within CoMorph

1. simulations of TCs

* Slight increase in intensity of TCs with CAPE closure with little difference between the 2 timescales tested

- 2. Convective responses to moisture tendency perturbations (Daleu et al., submitted).
- * The adjustment to the dry equilibrium is much quicker in the simulation using CoMorph and standard closure.
 * The adjustment to the dry equilibrium is slower with CAPE closure.
 - *with precipitating or non-precipitating equilibrium depending on the value of the fixed CAPE timescale.
- 3. Diurnal cycle of shallow convection over land (Brown et al., 2002)
- * MONC results are quantitatively similar to those obtained in Brown et al., 2002
- * CoMorph with standard closure or CAPE closure triggers convection a couple of hours earlier
- * Convection emerges rapidly with standard closure and less rapidly with CAPE closure *slightly increase of cloud top height with CAPE closure with variable timescale
- 4- Idealization of the EUROCS diurnal cycle deep convection case (Guichard et al., 2004)
- * CoMorph with standard closure: the three phases of the memory function (found in MONC) occur, but at different time after triggering of convection
- $\ensuremath{^{\text{rd}}}$ and $3^{\ensuremath{^{\text{rd}}}}$ phases do not occur with the CAPE closure
 - * The memory function is similar to that obtained in GA8

What is Next?

Continue with the analysis

performed diurnal cycle of deep convection using CoMorph A with CAPE closure and default or lowest entrainment rate.

W1: simulations of tropical cyclones

(coupled)

Slight increase in intensity with CAPE closure with little difference between the 2 timescales tested

Thanks!

Any Questions?

ParaCon plenary, Met Office Exeter, UK, 20-21June 2022

17