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ABSTRACT

Wagner and Graf (2010) derive a population evolution equation for an ensemble of convec-

tive plumes, an analogue with the Lotka–Volterra equation, from the energy equations for

convective plumes provided by Arakawa and Schubert (1974). Although their proposal is

interesting, as the present note shows, there are some problems with their derivation.

1. Introduction

The Lotka-Volterra equations are a cornerstone of biological population dynamics and

extensively-studied by biologists and mathematicians alike (e.g. Takeuchi 1996). For a system

of interacting species i,

d

dt
xi = rixi

(
1−

∑
j

aijxj

)
(1)

where the ri and aij are constant coefficients and there are xi members of each species (each

x is assumed large and therefore it can be approximated by a real number).

It would be tempting to describe the evolution of an ensemble of convective plumes in

analogous manner. Nober (2003); Nober and Graf (2005) proposed just such a system as

a possible representation for convective clouds, by invoking the notion of a competition

between the clouds in order to consume CAPE. More recently, Wagner and Graf (2010)

constructed a derivation for a Lotka-Volterra system of interacting clouds, arriving at Eq. 10

below, which is an analogue to Eq. 1.

The purpose of the present note is to comment upon their derivation. Our notations

closely follow those adopted by Wagner and Graf (2010, hereinafter WG10).
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2. Derivation by WG10

In their derivation, WG10 begin with a pair of equations proposed by Arakawa and

Schubert (1974, hereinafter AS74) describing the energy cycle of an ensemble of convective

plumes. The pair consists of a budget equation for the cloud work function, Ai, for the ith

type of convective plume (Eq. 142 of AS74):

d

dt
Ai = Fi +

∑
j

KijMbj, (2)

and an equation for evolution of the convective kinetic energy, Ki, for the ith type of con-

vective plume (Eq. 132 of AS74):

d

dt
Ki = AiMbi −

Ki

τdis

. (3)

The system consists of 2N such equations if N types of convective plumes are considered.

As we are concerned with a comparison to Eq. 1, it is worth remarking that Eq. 2 was

developed by AS74 for the case of many clouds. If one considers a single cloud then of course

its cloud–base mass flux will vary over the lifecycle of that cloud. However, within a large

enough area of interest then there are many individual clouds belonging to each type. That

means that an average over area effectively also imposes an average over the cloud lifecycle

because the averaging extends over clouds at all the different stages of the lifecycle. Thus,

all cloud variables in this article should be interpreted as lifecycle averages.

The cloud work function, Ai defined by Eq. 133 of AS74 or Eq. 3 of WG10, measures the

rate at which convective kinetic energy, Ki, is generated by the potential energy per unit of

mass flux, Mbi, at the cloud base. The cloud work function, Ai, is itself in turn, forced by

the large-scale at a rate Fi, and consumed at the rate −Kij by the jth type of convective
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plume per unit of its cloud–base mass flux, Mbj. We expect that the matrix Kij is overall

negative, giving a net damping tendency (cf., convective damping, Emanuel et al. (1994)),

consistent with the physical reasoning just given above.

To produce a closed set of equations, WG10 further invoke a hypothesis for a relationship

between convective kinetic energy and cloud-base mass-flux

Ki = αiM
2
bi, (4)

as proposed by Pan and Randall (1998). This relationship assumes, in essence, that variations

in the convective kinetic energy for the ith type are dominated by variations in vertical

velocity rather than by any variations in the fractional area, σi, covered by clouds of that

type. By substituting Eq. 4 into Eq. 3, we obtain

d

dt
Mbi =

1

2αi

Ai −
1

2τdis

Mi. (5)

Thus, Eqs. 2 and 5 together constitute a closed set of equations describing the evolution

of an ensemble of convective plumes. Whereas Pan and Randall (1998) considered only

the case with N = 1, the generalization to the N–plume case is straightforward. On the

other hand, WG10 consider a further reduction of this system by introducing additional

approximations.

A key approximation invoked by WG10 is a type of quasi–equilibrium. AS74 argued that

by considering the large–scale forcing, Fi, of the cloud work function to be large compared

to its actual rate of change dAi/dt, then the cloud work function is maintained close to equi-

librium with the large-scale forcing (see their Fig. 13). In that case, we may approximately
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set

Fi +
∑

j

KijMbj = 0 (6)

(cf., their Eq. 150). This approximation is known as convective quasi–equilibrium.

A second type of convective quasi–equilibrium can be introduced (cf., Lord and Arakawa

1980) by applying a similar argument to the budget equation for the convective kinetic

energy, Eq. 3. i.e., assuming that the convective kinetic energy is rapidly damped as soon

as it is generated by the cloud work function so that these two terms are in close balance:

AiMbi −
Ki

τdis

= 0. (7)

Application of Eq. 4 to Eq. 7 leads to:

Ai

Mi

' αi

τdis

= constant (8)

(cf., Eq. 8 of WG10). Taking a time derivative of the above implies that

d

dt

(
Ai

Mi

)
' 0

or

1

Ai

dAi

dt
' 1

Mi

dMi

dt
(9)

(cf., Eq. 9 of WG10).

By substituting Eq. 9 into Eq. 2, we obtain

dMi

dt
=

Fi

Ai

Mi +
∑

j

Kij

Ai

MiMj (10)

The above equation takes the same form as the Lotka–Volterra equation, Eq. 1, when the

coefficients Fi/Ai and Kij/Ai are treated as constants (or more precisely as slowly–varying

large–scale variables).
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WG10 make this claim stronger by regarding cloud number as proportional to cloud–base

mass flux so that:

Mbi ∝ σi ∝ xi (11)

Here, xi is the number of convective plumes of the ith type, which must be proportional to

the cloud fraction, σi, if the area occupied by an individual plume is constant for a given

type i, as assumed by WG10. Using Eq. 11 in Eq. 10, the latter reduces to Eq. 1 with specific

expressions for the coefficients, ri and aij.

3. Issues with the WG10 derivation

a. Timescale separation

The first issue with WG10’s derivation of population dynamics is in introducing con-

vective quasi–equilibrium of the second kind, Eq. 7, whilst nonetheless maintaining a full

prognostic description for Eq. 2: i.e., , without also introducing convective quasi–equilibrium.

For this procedure to be justified, the damping timescale, say τA, of the cloud work function

implied by Eq. 2 must be much longer than the timescale τdis describing damping of the

convective kinetic energy in Eq. 3,

τA � τdis. (12)

An expression for τA is deduced in the Appendix, based on a consideration of the eigen-

frequencies of the system of Eqs. 2 and 5. In the absence of a robust physical theory to

determine numerical values for τA and τdis, we confine ourselves to the remark that the con-

dition of Eq. 12 is certainly not obvious a priori. Note that Pan and Randall (1998) propose
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τdis ∼ 103 sec.

b. Self-consistency of the WG10 approximation

The second issue is the assumption made by WG10 in Eq. 10 that Fi/Ai and Kij/Ai can

be treated as effectively constant. More precisely, they assume that Ai is slowly–varying

with ∣∣∣∣ 1

Ai

dAi

dt

∣∣∣∣� ∣∣∣∣ 1

Mi

dMi

dt

∣∣∣∣ (13)

However, this is in clear contradiction with the constraint in Eq. 9 obtained from the assumed

convective quasi–equilibrium of the second kind: i.e., both the cloud work function and the

convective kinetic energy evolve at the same rate in time. In other words, WG10 do not

treat Ai in a self-consistent manner.

We note in particular that when Eq. 8 is substituted into Eq. 10 then what originally

looked like a nonlinear equation is revealed to be a linear equation:

dMi

dt
=

τdis

αi

(Fi +
∑

j

KijMj) (14)

We believe this to be the self-consistent description of the system under the approximation

of convective quasi-equilibrium of the second kind rather than Eq. 10.

c. Interpretation of the WG10 system

The final issue we wish to point out with the derivation found in WG10 concerns the

interpretation of Eq. 10 as a system of plume population dynamics by invoking the rela-

tionship in Eq. 11. We interpret that relationship as an assumption that the evolution of
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cloud–base mass flux is controlled by that of the cloud fraction, and hence that of the plume

number. However, this conflicts with the hypothesis of Eq. 4, which we interpeted as an

assumption that the cloud fraction is independent of time.

Although this conflict is important for the interpretation given to Eq. 10, it is entirely

separate from our points above concerning the validity of that equation. In fact, we note

that some support for Eq. 11 can be found from cloud-resolving model experiments and

scaling arguments. A summary is given in Sec. 2 of Plant and Craig (2008). Moreover, we

also note that the hypothesis in Eq. 4 may not be in fact a critical part of the derivation

in WG10. A more general hypothesis can be entertained within the same framework by

replacing Eq. 4 with Ki = ciM
p
bi, where now ci and p are to be treated as constants. A

hypothesis of that form for any p > 1, when combined with convective quasi-equilibrium of

the second kind, still produces Eq. 10, albeit now with a factor of p−1 on the left-hand side.

Further discussions on an appropriate value for p will be given elsewhere (Yano and Plant

2011).

4. Discussions

In spite of the issues that we have pointed out about the derivation of the plume pop-

ulation dynamics in WG10 from AS74’s energy equations, these problems are probably

inconsequential for their particular application.

In their study, they are only concerned with the evolution of a convective system in

response to a time-evolving large-scale forcing. The sole purpose of the population dynamics,

for this context, is to keep the convective system close to equilibrium. The derived population
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dynamics are indeed designed to perform this function, although the details of the transient

behavior may not be quantitatively correct.

The equilibrium state could of course have been obtained directly from Eq. 6, by inverting

the interaction matrix K. Integrating towards this state may be more convenient in practice.

Moreover, the result of the integration procedure truncated at some suitably long time would

not seem to be any worse than the ad-hoc procedures suggested by Lord and Arakawa (1980);

Hack et al. (1984) for cases where a strict equilibrium does not hold and the matrix cannot

be inverted.

With regards to the reply from the original authors (Wagner et al. 2011), readers must

form their own judgement. We do point out, however, that they are completely silent about

the main problem with their derivation which we identified in Sec. 3.b.
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APPENDIX

Appendix

In this Appendix, we derive eigenfrequencies for the full system of Eqs. 2 and 5 under a

linear perturbation approach, and compare the result with that of the system of Eq. 14 for

convective quasi-equilibrium of the second kind. For ease of demonstration, we consider the

case of a single plume type, N = 1. In the following, therefore, we remove all subscripts i

labelling the cloud type from the notations of the main text.

Assuming an exponential decay rate, η, to a perturbation of the full system, we obtain

two perturbation equations:

−ηA′ = KM ′ (A1)

−ηM ′ =
1

2α
A′ − 1

2τdis

M ′ (A2)

where the dependent variables, A′ and M ′, are perturbation quantities. Eliminating these

variables, the eigenfrequencies are given by

η2 − η

2τdis

− K

2α
= 0 (A3)

which is solved to give

η =
1

4τdis

[
1±

(
1− 8τdis

τA

)1/2
]

(A4)

where

τA =
α

|K|τdis

(A5)
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assuming K < 0.

The perturbation equation corresponding to Eq. 14 is

−ηM ′ =
τdisK

α
M ′, (A6)

which immediately leads to a damping rate, η = 1/τA.

Note that when τA � τdis, the damping rates given by Eq. A4 are approximated by

η = 1/2τdis and 1/τA (in the latter case by retaining two terms in a Taylor expansion of the

square root). The first damping rate corresponds to the fast damping process that ensures

the convective quasi–equilibrium of the second kind, as given by Eq. 7. The second damping

rate characterizes the slow evolution described by Eq. 14.

Thus, the damping rate from Eq. A6 agrees well with the slower rate from the full system

of Eq. A4 only if the condition τA � τdis is satisfied. Otherwise, the reduced system under

Eq. 14 would lead to substantial errors in characteristic frequencies.
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