Convection Closure and Energy Cycle

Bob Plant

Department of Meteorology, University of Reading

Statistical Cumulus Dynamics Workshop, National Meteorological Administration, Bucharest, 15 June 2015

Outline

- Equilibrium convection closure
- Prognostic equation for cloud work function
- Prognostic equation for convective kinetic energy
- Closing the energy cycle
- Examples of the energy cycle

Equilibrium convection closure

Closure in the mass flux approach

- Convection characterised by plumes, the equations for these being formulated in terms of mass flux, $M = \rho \sigma_c w_c$
- We can decompose the mass flux as

 $M(z) = \eta(z)M_B$

- $M_B = M(z_B)$ is the cloud base mass flux
- $\eta(z)$ comes from the "cloud model" eg, entraining plume
- M_B needs a "closure" to give us the overall amplitude of convection

Practical Issue

• A practical convection scheme needs to keep the parent model stable

Settings may err on the defensive side to remove potential instability

• not all diagnostic relationships for M_B are appropriate

$$M_B = k \frac{C_p \overline{w'T'}_0 + L \overline{w'q'}_0}{\text{CAPE}}$$

Shutts and Gray 1999

- scaling works well for a set of equilibrium simulations, but not as closure to determine M_{R}
- Models may produce on/off behaviour, www.met.rdg.ac.uk/~sws00rsp/anim/timestep.html

A general formulation

- Consider some function f of the large-scale variables φ and the convective-scale variables φ_c and η
- Integrate this over some range of heights,

$$I = \int f(\mathbf{\varphi}, \mathbf{\varphi}_c, \mathbf{\eta}) dz$$

- We can make a closure condition through stationarity of this quantity, $\partial I/\partial t = 0$
- The only requirement is that ϕ within the integral range is affected by the amplitude of convection

General structure

- Take a time derivative of the definition, and substitute for $\partial \phi / \partial t$, $\partial \phi_c / \partial t$ and $\partial \eta / \partial t$ using equations developed from the mass flux framework
- After some algebra, the result has the schematic form

$$\frac{\partial I}{\partial t} = F - D$$

- F is large-scale generation or "forcing": terms independent of M_B
- D is consumption by convective processes: terms dependent on M_B , proportional for entraining plumes with simple microphysics
- NB: scale not immediately relevant to the derivation

Example: Moisture Closure

- This can be obtained by choosing $f = \rho q$
- We find:

$$F = \text{moisture convergence} = -\int_{0}^{z_{T}} \nabla \cdot \rho \mathbf{u} q dz + E$$
$$D = M_{B} \int_{z_{b}}^{z_{T}} \eta \left[\delta_{c}(q_{c} - q) + \frac{\partial q}{\partial z} \right] dz$$

Moisture-based closure

- Large-scale supply of moisture balanced against consumption by convective processes
- Some methods consider only large-scale convergence, but others add surface fluxes
- Remains a popular approach since original proposal by Kuo 1974
- Especially for applications to models of tropical deep convection
- Shallow convection under large-scale descent is obvious counterexample
- Tendency for grid—point storms

Other examples

- CAPE closure with f = b, the buoyancy for non-entraining parcel ascent
- Parcel-environment closure by considering only the contributions to b from changes to free tropospheric variables
- PCAPE closure combines this with the choice $f = \rho b$, as recently developed by Bechtold et al (2014) for the new ECMWF closure

Cloud work function

Generation rate of convective kinetic energy per unit area

$$\int_{z_B}^{z_T} \rho \sigma_c w_c b dz \equiv M_b A$$

where the "cloud work function" is

$$A=\int_{z_B}^{z_T}\eta bdz$$

- This matches our general framework with $f = \eta b$
- Note that b(z) and z_T will depend on entrainment assumptions as well as $\eta(z)$
- CAPE = $A(\lambda = 0)$, ascent without entrainment

Convective Quasi-Equilibrium for *A*

A stationary solution to the CWF tendency equation

$$\frac{\partial A_i}{\partial t} = F_i - D_i \approx 0$$

where

$$D_i = \sum_j \mathcal{K}_{ij} M_{B,j}$$

Using CQE for closure

$$\sum_{j} \mathcal{K}_{ij} M_{B,j} = F_i$$

- F_i is known from the GCM / NWP
- \mathcal{K}_{ij} is known from the plume model
- Invert matrix \mathcal{K} to get $M_{B,j}$

Issues with CQE calculation

- 1. The resulting $M_{b,i}$ is not guaranteed positive various fixes possible, eg Lord 1982; Moorthi and Suarez 1992
- 2. The equilibrium state is not necessarily stable
- 3. $\eta_i(z)$ and $b_i(z)$ depend on T(z) and q(z). If the A_i form a near-complete basis set for T and q, then stationarity of all A_i would imply highly- (over-?) constrained evolution of T and q

Relaxation approach for bulk schemes

 In many operational models assumed that convection consumes CAPE at a rate that is determined by a characteristic closure timescale τ_c.

 $D = KM_B$

$$\left. \frac{dCAPE}{dt} \right|_{\rm conv} = -\frac{CAPE}{\tau_c}$$

- If forcing almost constant, this relaxes towards an equilibrium
- Many variations of the CAPE-like quantity and various experiments with functional forms for τ_c

CQE Validity

Zimmer et al (2010)
 timescale for CAPE
 consumption rate

 $\tau \sim CAPE/P$

assuming precipitation rate $P \sim (dCAPE/dt)_{conv}$

- P is average within 50 km radius and 3 hr window
- Uses combination of sonde and radar data in Germany

CQE Validity

- Results from UKV model output...
- Similar slope for $\tau < 3$ hr but falls off more rapidly at higher τ
- Conditions over the UK ^{The} 10⁻⁴ and/or in explicit convection permitting models are more equilibriumlike

What's wrong with convection in the UM!?

- Explicit simulations with resolutions in the 1-10 km range tend to produce unrealisticallyintense cells; either grid-scale (not really resolved) or artificially large.

- Need to represent unresolved fluxes from partially / marginally-resolved convection.
- But introducing current convection parameterisations makes things worse!

Prognostic equation for cloud work function

Energy cycle

• From taking a derivative of the definition, recall that

$$\frac{\partial A_i}{\partial t} = F_i - \sum_j \mathcal{K}_{ij} M_{b,j}$$

- We noted that A is an important quantity for the generation of convective kinetic energy
- We now look how that works...

Prognostic equation for convective kinetic energy

Convective kinetic energy

- This is $K_v = (1/2) \int_{z_b}^{z_T} \rho \sigma_c w_c^2 dz$
- Or we could consider $K_3 = (1/2) \int_{z_b}^{z_T} \rho \sigma_c (u_c^2 + v_c^2 + w_c^2)$
- In either case we will find that the convective kinetic energy equation is

$$\frac{dK}{dt} = AM_b - L$$

 where L is a loss of convective kinetic energy ("dissipation") with a formula that depends on the definition taken for K

Equation for $\partial K/\partial t$

- Derivation starts from the decomposition of space into convective and environmental parts
- Within each, apply the segmentally-constant approximation
- Ths, the convective velocity w_c is that obtained from a horizontal average over the areas identified as convective

Equation for $\partial K / \partial t$

This leads to

$$\frac{\partial \boldsymbol{\sigma}_{c} w_{c}}{\partial t} + \frac{1}{\rho} \frac{\partial}{\partial z} \rho \boldsymbol{\sigma}_{c} w_{c}^{2} + \frac{1}{S} \oint_{\partial S} w_{b} (\mathbf{u}_{b}^{*} - \dot{\mathbf{r}}_{b}) \cdot d\mathbf{r} = \boldsymbol{\sigma} \left[-\frac{1}{\rho} \frac{\partial p'}{\partial z} + b \right]$$

Multiplying by w_c and using mass continuity this produces

$$\frac{\partial \sigma_c k_v}{\partial t} + \frac{1}{\rho} \frac{\partial}{\partial z} \rho \sigma_c w_c k_v + (E+D)k_v = -\frac{M}{\rho} \frac{\partial p'}{\partial z} + Mb$$

where $k_v = (1/2)\rho w_c^2$

Equation for $\partial K / \partial t$

The final step is to integrate over height

$$\frac{\partial K_{v}}{\partial t} = AM_{b} - L$$

with

$$L = \left[\frac{M}{\rho}k_{v}\right]_{z_{b}}^{z_{T}} + \int_{z_{b}}^{z_{T}}(E+D)\frac{K_{v}}{\rho}dz + \int_{z_{b}}^{z_{t}}\frac{M}{\rho}\frac{\partial p'}{\partial z}dz$$

So that the loss CKE can be produced by: fluxes through base and top of cloud, exchange across cloud edges and a pressure term

Contributions to L

Top/bottom term (left), entrainment/detrainment term (centre) and pressure term (right)

Equation for $\partial K_3 / \partial t$

A similar analysis shows that

$$\frac{\partial K_3}{\partial t} = AM_b - L_3$$

• with additional contributions arising in the loss term L_3 , most notably in the pressure-related terms

Convective kinetic energy equation

In conclusion we find that

$$\frac{\partial K_3}{\partial t} = AM_b - L_3$$

 and it seems to be reasonable to write the loss term in the form

$$L=\frac{K}{\tau_D}$$

Closing the energy cycle

Non-equilibrium, possible motivations

- For relatively rapid forcings, we may wish to consider a prognostic equation for cloud-base mass flux
- Even for steady forcing, this may be more convenient than a matrix inversion if there are various types
- Even for steady forcing, it is not obvious
 - that a stable equilibrium must be reached
 - which equilibrium might be reached

Non-equilibrium by Pan and Randall

They start from

$$\frac{dA_i}{dt} = F_i - \sum_j K_{ij} M_j$$

$$\frac{dK_i}{dt} = A_i M_i - \frac{K_i}{\tau_D}$$

and they introduced the assumption $K_i = \alpha M_i^2$

- Plausible as $K \sim \sigma_c w_c^2$ and $M = \rho \sigma_c w_c$; assumes variations in w_c dominate variations in K and M
- A damped linear oscillator that approaches equilibrium after a few τ_D

CRM with changes to imposed forcing

Increased forcing linearly increases the mass flux, $\rho\sigma w$

- achieved by increasing cloud number $\langle N \rangle$
- not the in-cloud velocities
- nor the sizes of clouds

(Cohen 2001)

Non-equilibrium of Plant and Yano

• They start from

$$\frac{dA_i}{dt} = F_i - \sum_j K_{ij} M_j$$

$$\frac{dK_i}{dt} = A_i M_i - \frac{K}{\tau_D}$$

but now use the assumption

 $K_i = \beta M_i$

• Plausible as $K \sim \sigma_c w_c^2$ and $M = \rho \sigma_c w_c$; assumes variations in σ dominate variations in K and M

Non-equilibrium of Plant and Yano

- Consistent with various scalings and CRM data for changes in mass flux with forcing strength
 Emanuel and Bister 1996; Robe and Emanuel 1996; Grant and Brown 1999; Shutts and Gray 1999; Cohen 2001; Parodi and Emanuel 2009; Davies 2009
- e.g., The CQE solution has
 - CAPE independent of *F* if $K = \beta M$
 - CAPE $\propto F$ if $K = \alpha M^2$
- CRMs are much closer to the first of these

Examples of the energy cycle

Illustrative results for $K \sim M^p$

for p = 1 with x the rescaled mass flux and y the rescaled CWF

Illustrative results for $K \sim M^p$

p = 1.01 (left) and p = 0.99 (right)

- The CRM data supports $p \approx 1$ but > 1
- Equilibrium is reached but more slowly as $p \rightarrow 1$ from above

Interactions of two types

- Deep convection consumes instability and damps all convection types
- In some situations, shallow convection can pre-condition atmosphere for deep convection, giving +ve feedbacks
- Can describe this with energy cycle system

Possible solutions with two types

With no external forcing...

- Deep convection dominates and all convection ultimately dies out
- Shallow convection dominates and system explodes
- Shallow and deep are well-blanced, giving self-sustaining solution?

Analytic conditions for solutions

With p = 2 we get periodic solution if:

- Determinant of *K* matrix vanishes
- Generation of CWFs by shallow weaker than destruction by deep
- $\tau_d > \tau_s$, deep is damped more strongly than shallow

With p = 1 a nonlinear self-sustaining solution can also occur

 Conditions are more complicated, but can still be derived analytically

Illustrative solution of two types

p = 1 with no external forcing Blue for deep and green for shallow

In summary

- CQE in its original form is based on energy cycle equations for ensemble of plumes
- Most operational schemes do not apply CQE strictly but relax towards an equilibrium
- With an extra assumption to link K, M_B and A, energy cycle becomes a prognostic system
- Simple assumptions used so far are not perfect but can produce some interesting behaviours
- Could use analytic conditions derived from non-equilibrium system even in an equilibrium context
 - eg, to decide if equilibrium has no convection, shallow only, deep only or both

Smaller convective ensembles (If time and interest)

Smaller convective ensembles

- A crucial point to remember is that all of the above applies to convective ensembles, and not to the evolution of individual clouds
- Can the description be generalized to situations to situations where there are likely to be multiple clouds present but not necessarily very many?
- Can be achieved with a system-size expansion of a simple probabilistic model

Ingredients

- P(N,A,t) is pdf for N clouds and cloud work function A at time t
- Consider domain with size Ω elements, each of which may be either empty or occupied by a single cloud
- P evolves through master equation

$$\frac{\partial P(N,A,t)}{\partial t} = \int dA' \sum T(N,A|N',A')P(N',A',t)$$

$$-T(N',A'|N,A)P(N,A,t)$$

• where T(f|i) is probability per unit time of a transition from i to f

Transition Rules

- At each time, look at one site with probability $1-\mu$ or two with probability μ
- Suppose we look at one. With probability $1 (N/\Omega)$ it is empty
- Suppose it is empty:
 - With probability a we allow cloud formation here, $N \rightarrow N + 1$
 - Otherwise it remains empty and atmosphere continues to be destabilized, $A \rightarrow A + s$
- e.g. for spontaneous birth we have

$$T(N+1,A|N,A') = a(1-\mu)\left(1-\frac{N}{\Omega}\right)\delta(A-A')$$

Possible Processes

 $E \xrightarrow{a} O$ $A \rightarrow A$ $E \xrightarrow{1-a} E$ $A \rightarrow A + s$ $O \xrightarrow{d} E$ $A \rightarrow A$ $O \xrightarrow{1-d} O$ $A \rightarrow A - r$ $EO \xrightarrow{b} OO$ $A \rightarrow A$ $EO \xrightarrow{1-b} EO$ $OO \xrightarrow{c} EO \qquad A \to A$ $OO \xrightarrow{1-c} OO$ $A \rightarrow A + 2s$ $EE \xrightarrow{e} EO \qquad A \rightarrow A$ $EE \xrightarrow{1-e} EE \quad A \to A-2r$

spontaneous birth (primary initiation) environmental destabilization death environmental stabilization induced birth (secondary initiation) $A \rightarrow A + s - r$ environmental modification competitive exclusion strong stabilization birth

strong destabilization

System size expansion

- Expand the master equation for P in powers of $1/\sqrt{\Omega}$
- This leads to deterministic ODE's at leading order
- We can choose which processes to include and their probabilities in order to recover the energy cycle equations

Example: Pan and Randall

• We are required to have the following processes:

$E \rightarrow O$	$A \rightarrow A$	spontaneous birth (primary initiation)
$E \rightarrow E$	$A \rightarrow A + s$	environmental destabilization
$O \rightarrow E$	$A \rightarrow A$	death
O ightarrow O	$A \rightarrow A - r$	environmental stabilization

• We are required to omit the following processes:

 $OO \rightarrow EO$ $A \rightarrow A$ competitive exclusion $OO \rightarrow OO$ $A \rightarrow A + 2s$ strong stabilization

Example: Pan and Randall

- All other processes are optional:
 - not structurally harmful but complicate the formulae linking the parameters
 - some processes cannot be fully distinguished at the macroscopic level, but only if we consider fluctuations of the system

Example: Yano and Plant

• Main difference is that it excludes:

 $E \rightarrow O$ $A \rightarrow A$ spontaneous birth (primary initiation)

• and instead requires the process:

 $EO \rightarrow OO$ $A \rightarrow A$ induced birth (secondary initiation)

100 realizations for $\Omega = 1000$

Timeseries of M for Pan & Randall (left) and Yano & Plant (right) systems

Dashed blue: solution of ODE. Blue: solution of the ODE derived without assuming $\sigma \ll 1$ Green: a single realization. Red: ensemble mean.

References I

- Arakawa and Schubert (1974). Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci. 31, 671-701.
- Pan and Randall (1998). A cumulus parameterization with prognostic closure. Q. J. R. Meterorol. Soc. 124, 949-981.
- Plant (2012). A new modelling framework for statistical cumulus dynamics. Phil. Trans. Roy. Soc. A, 370, 1041-1060.
- Plant and Yano (2013). The Energy-Cycle Analysis of the Interactions Between Shallow and Deep Atmospheric Convection. *Dyn. Atmos. Ocean.*, **64**, 27-52.
- Yano and Plant (2012). Convective quasi-equilibrium. Rev. *Geophys.*, **50**, RG4004.

References II

- Yano and Plant (2012). Finite departure from convective quasi-equilibrium: Periodic cycle and discharge-recharge mechanism. Q. J. R. Meteorol. Soc., 138 626-637.
- Yano and Plant (2012). Interactions between shallow and deep convection under a finite departure from convective quasi-equilibrium. *J. Atmos. Sci.*, **69**, 3463-3470.
- Yano (2015). Convective kinetic energy equation under the mass flux subgrid-scale parameterization. *Dyn. Atmos. Ocean.* 69, 37-53.
- Yano and Plant (2015). Closure. In: Parameterization of Atmospheric Convection. Volume 1: Theoretical Background and Formulation, chapter 11, pages 325-402.

