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The Basic Picture

The Arakawa and Schubert (1974) picture

Scale separation in both space and time between cloud-scale and the
large-scale environment ⇒ Convection characterised by ensemble of
convective plumes within some area of tolerably uniform forcing
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Mass flux approximation

Individual plumes described in terms of mass flux, Mi = ρσiwi

Effects of the plumes on their environment are very simple under the
usual mass flux approximations of w≪wi and σi≪1.

For some variable χ

ρχ′w ′ =
∑

i

Mi (χi − χ)

where the prime is a local deviation from the horizontal mean
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Mass flux parameterizations

Many parameterizations have been written based on this picture and
the mass flux approximation

The differences are very interesting

But here we focus on their similarities
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Mass flux parameterizations

Many parameterizations have been written based on this picture and
the mass flux approximation

The differences are very interesting

But here we focus on their similarities ⇒
◮ If I don’t need a decision about the details of the parameterization then

I don’t make it
◮ If I do need a decision then I do the simplest possible thing, even if it is

not realistic
(i.e., no mesoscale circulations, no downdrafts and no ice)

◮ Often this means copying Arakawa and Schubert, AS74
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Spectral Approach

Group the plumes together into types defined by a labelling parameter λ

In AS74 this is the fractional entrainment rate, but could be anything

e.g. the cloud top height ẑ is sometimes also used

Generalization to multiple spectral parameters is trivial
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Bulk Approach: The Basic Idea

The plumes do not interact directly, only with their environment

⇒ If the plume equations are almost linear in mass flux then a
summation over plumes will recover equations with the same form

So the ensemble of plumes can be represented as a single equivalent
“bulk” plume
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Bulk Approach: The Basic Idea

The plumes do not interact directly, only with their environment

⇒ If the plume equations are almost linear in mass flux then a
summation over plumes will recover equations with the same form

So the ensemble of plumes can be represented as a single equivalent
“bulk” plume

Aim of this talk is to discuss the words if and almost in the above
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More specifically

We will need to use the mass-flux-weighting operation (Yanai et al. 1973)

χB =

∑
i Miχi∑
i Mi

χB is the bulk value of χ produced from an average of the χi for each
individual plume
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Plumes: what are they?

I A caricature of an
individual cumulus
cloud
or?

II A description of a
sub-cloud element,
each cloud being
composed of many
such elements
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Plume equations

For an entraining/detraining plume

∂ρσi

∂t
= Ei − Di −

∂Mi

∂z

∂ρσi si

∂t
= Ei s − Di si −

∂Mi si

∂z
+ Lρci + ρQRi

∂ρσiqi

∂t
= Eiq − Diqi −

∂Miqi

∂z
− ρci

∂ρσi li

∂t
= −Di li −

∂Mi li

∂z
+ ρci − Ri

s=cpT+gz is the dry static energy

QR is the radiative heating rate

R is the rate of conversion of liquid water to precipitation

c is the rate of condensation.
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Using the plume equations

Average over the plume lifetime to get rid of ∂/∂t

Various plume models differ in specification of
entrainment/detrainment and microphysics

Integrate from cloud base up to terminating level where the in-cloud
buoyancy vanishes
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Neutral buoyancy level of a plume

Occurs when the in-plume virtual temperature equals that of the
environment

Applying this condition, the values of the detraining variables are

li = l̂

si = ŝ = s −
Lǫ

1 + γǫδ

(
δ(q∗ − q) − l̂

)

qi = q̂∗ = q∗ −
γǫ

1 + γǫδ

(
δ(q∗ − q) − l̂

)

where

ǫ =
cpT

L
; δ=0.608 ; γ =

L

cp

∂q∗

∂T

∣∣∣∣
p
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Effect on the environment

Taking a mass-flux weighted average,

ρχ′w ′ = M (χB − χ)

where
M =

∑

i

Mi

Recall that the aim is for the equations to take the same form as the
individual plume equations but now using bulk variables like M and χB
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Construction of equivalent bulk plume I

Now look at the averaged plume equations

E − D −
∂M

∂z
= 0

Es −
∑

i

Di si −
∂MsB

∂z
+ Lρc + ρQR = 0

Eq −
∑

i

Diqi −
∂MqB

∂z
− ρc = 0

−
∑

i

Di li −
∂MlB

∂z
+ ρc − R = 0

The same bulk variables feature here
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Construction of equivalent bulk plume II

E − D −
∂M

∂z
= 0

Es −
∑

i

Di si −
∂MsB

∂z
+ Lρc + ρQR = 0

Eq −
∑

i

Diqi −
∂MqB

∂z
− ρc = 0

−
∑

i

Di li −
∂MlB

∂z
+ ρc − R = 0

where
E =

∑

i

Ei ; D =
∑

i

Di

are the total entrainment and detrainment rates from all plumes present at
that level
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The trade-off for a bulk scheme

E and D encapsulate both the entrainment/detrainment process for
an individual cloud and the spectral distribution of cloud types

Is it better to set E or to set Ei and the distribution?

Observational data about single clouds gives us information on Ei

CRM/LES data can be analysed either way, but is more often done in
terms of E and D
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Construction of equivalent bulk plume III

E − D −
∂M

∂z
= 0

Es −
∑

i

Di si −
∂MsB

∂z
+ Lρc + ρQR = 0

Eq −
∑

i

Diqi −
∂MqB

∂z
− ρc = 0

−
∑

i

Di li −
∂MlB

∂z
+ ρc − R = 0

where
QR(sB , qB , lB , . . .) =

∑

i

QRi (si , qi , li , . . .)

is something for the cloud-radiation experts to be conscious about
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Construction of equivalent bulk plume IV

E − D −
∂M

∂z
= 0

Es −
∑

i

Di si −
∂MsB

∂z
+ Lρc + ρQR = 0

Eq −
∑

i

Diqi −
∂MqB

∂z
− ρc = 0

−
∑

i

Di li −
∂MlB

∂z
+ ρc − R = 0

where
c(sB , qB , lB , . . .) =

∑

i

ci (si , qi , li , . . .)

R(sB , qB , lB , . . .) =
∑

i

Ri (si , qi , li , . . .)

is something for the microphysics experts to be conscious about
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Microphysics in AS74

In Arakawa and Schubert 1974, the rain rate is

Ri = C0Mi li

where C0 is a constant. Hence,

R = C0MlB

If C0 were to depend on the plume type then we couldn’t write R as a
function of the bulk quantities but would need to know how lB is
partitioned across the spectrum
⇒ A bulk scheme is committed to crude microphysics

But microphysics in any mass-flux parameterization has issues anyway
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Construction of equivalent bulk plume V

E − D −
∂M

∂z
= 0

Es −
∑

i

Di si −
∂MsB

∂z
+ Lρc + ρQR = 0

Eq −
∑

i

Diqi −
∂MqB

∂z
− ρc = 0

−
∑

i

Di li −
∂MlB

∂z
+ ρc − R = 0

How can we handle these terms?

(a) Below the plume tops?

(b) At the plume tops?
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(a) Below the plume tops

One option is to consider all the constitutent plumes to be entraining-only

(except for the detrainment at cloud top)

If Di = 0 then
∑

Diχi = 0 and the problem goes away!

This is exactly what Arakawa and Schubert did
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(a) Below the plume tops

Alternatively, if we want to retain entraining/detraining plumes then we
have ∑

i

Diχi ≡ DχχB

Dχ = M

∑
i Diχi∑
i Miχi

The detrainment rate is 6=
∑

Di

i.e., it is different from the D that we see in the vertical mass flux
profile equation

and it is different for each in-plume variable
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(a) Below the plume tops

Alternatively, if we want to retain entraining/detraining plumes then we
have ∑

i

Diχi ≡ DχχB

Dχ = M

∑
i Diχi∑
i Miχi

The detrainment rate is 6=
∑

Di

i.e., it is different from the D that we see in the vertical mass flux
profile equation

and it is different for each in-plume variable

⇒ A bulk parameterization can only be equivalent to a spectral
parameterization of entraining plumes
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(b) At the plume tops

As well as the possibility of detrainment during ascent, there are the
contributions to

∑
i Diχi from plumes the that have reach neutral

buoyancy at the current level

For such plumes, we can simply use our earlier formulae for si etc.
coming from the neutral buoyancy condition.

Es − Dŝ −
∂MsB

∂z
= 0

Eq − Dq̂∗ −
∂MqB

∂z
= 0

−Dl̂ −
∂MlB

∂z
= 0

so now these equations use the same D as in the mass flux profile
equation

But what about ŝ, q̂, l̂?
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(b) At the plume tops

Recall:
li = l̂

si = ŝ = s −
Lǫ

1 + γǫδ

(
δ(q∗ − q) − l̂

)

qi = q̂∗ = q∗ −
γǫ

1 + γǫδ

(
δ(q∗ − q) − l̂

)

Everything on the RHS is known in the bulk system, apart from l̂

l̂(z) can only be calculated by integrating the plume equations for a
plume that detrains at ẑi=z
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Key bulk assumption

At the heart of bulk models is an ansatz that the liquid water detrained
from each individual plume is given by the bulk value

li = lB

Yanai et al (1973): “a gross assumption but needed to close the set of
equations”
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Example

Calculate entraining plumes
for Jordan’s sounding

each with an arbitrary
mass flux at cloud base

a range of entrainment
rates
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Example

Blue: in-plume liquid water, li

Red: detrained liquid water, l̂

Green: bulk liquid water, lB

Liquid water is detrained
throughout profile

and is over-estimated
(the detraining plumes have
lower li )
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Neutral buoyancy level

Recall again:
li = l̂

si = ŝ = s −
Lǫ

1 + γǫδ

(
δ(q∗ − q) − l̂

)

qi = q̂∗ = q∗ −
γǫ

1 + γǫδ

(
δ(q∗ − q) − l̂

)

Given that l̂ is not known, Yanai et al. (1973) neglected the virtual
contributions

Nordeng (1994) suggests some practical sensitivities to this
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Other transports

Contributions to
∑

i Diχi from detrainment at plume top can be
simplified for s, q and l from the neutral-buoyancy condition (with l

ansatz)

But no simplification occurs for other transports (e.g., tracer
concentrations, momentum)

Needs further ansatze, χi = χB

Or decompose bulk plume into spectrum of plumes (Lawrence and
Rasch 2005)
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Normalization transform: Definition

If M(zbase, λ) denotes cloud-base mass flux for plume type λ then we
can define a normalization transform T as a positive rescaling

M(zbase, λ) → M(zbase, λ)T (λ)

A global transform is one where T is the same for all λ

Evolution of the plume-ensemble between any two times can be
represented as a normalization transformation
⇒ different transformation properties under T define characteristic
timescales of evolution of the ensemble
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Transform properties

1 Normalization-invariant variables are unaffected by any T . Evolve
only in response to changes in the large-scale, with timescale τLS

2 Globally-invariant variables are unaffected by a global T . Evolve in
response to changes in spectral plume distribution but not the overall
strength of convection. Timescale τspec

3 Normalization-rescaled variables V depend extensively on one plume
type only V→VT (λ), with timescale τλ

4 Globally-rescaled variables depend extensively on a global T . Evolve
in response to overall strength of convection and are sensitive to the
spectrum, with timescale τadj
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Closure Equivalence

Normalization transforms are very relevant for closure because
starting from some guess about M(zbase, λ) closure means finding a
special normalization transform

For equivalence of bulk and spectral methods, require that the closure
transform for a bulk model respects the same physical constraints
that were specified to formulate the closure transform of the spectral
model
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The AS74 closure

Evolution of the kinetic energy K for each plume type

∂K(λ)

∂t
= A(λ)M(zbase, λ) −D(λ)

where D is the dissipation and A is the cloud work function,

A(λ) ≡

bz(λ)∫

zbase

g

T

M(z , λ)

M(zbase, λ)
(Tvp(λ) − Tv ) dz

Take a time derivative produces

dA

dt
=

dA

dt

∣∣∣∣
LS

+
dA

dt

∣∣∣∣
C

≡ ȦLS + ȦC

where LS and C are large-scale and cloud contributions.
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In terms of normalization transforms...

A(λ) is normalization invariant

dA/dt has contributions
◮ which are normalization invariant (ȦLS)
◮ which are globally rescaled (ȦC)

Physical constraint is that τLS≫τadj, which defines the AS74
quasi-equilibrium closure, dA/dt≈0
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Sum over plumes

Applying bulk averaging

∂K

∂t
= ABM(zbase) − DIS

where

K =

∫
Kdλ ; DIS =

∫
Ddλ

AB ≡

∫
M(zbase, λ)A(λ)dλ

M(zbase)
=

bz(0)∫

zbase

g

cpT

M

M(zbase)
(TvB − Tv ) dz

is the bulk equivalent of A(λ).
Everything is defined in terms of bulk variables
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Closure based on AB?

dAB

dt
=

∫
M(zbase, λ)

M(zbase)

dA(λ)

dt
dλ + · · ·

=

∫
M(zbase, λ)(ȦLS(λ) + ȦC(λ))dλ

M(zbase)
+ · · ·

ȦC produces a globally-rescaled contribution to dAB/dt, with
timescale τadj

ȦLS(λ) is normalization invariant but produces a globally-invariant
contribution to dAB/dt, with timescale τspec

An equilibrium closure applied requires a different timescale
separation, τspec≫τadj

This is a different physical constraint from AS74 quasi-equilibrium
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CAPE closure?

CAPE = A(0) =

bz(0)∫

zbase

g

cpT
(Tvp(0) − Tv ) dz

CAPE is a special case of A(λ) so its quasi-equilibrium is based on
τLS≫τadj

Note that the “cloud” terms in dCAPE/dt include detrainment
contributions like

ȦC(0) =
gL

cp

bz(0)∫

zLCL

dz
1

ρT
D(z) [1 − (1 + δ)ǫ] l̂ + · · ·

This requires l̂(z)

Bob Plant Spectral and Bulk Mass Flux Schemes Savona 2012 41 / 49



CAPE closure

We can close a spectral or a bulk system using CAPE

For a spectral system this is not sufficient (need spectral distribution)

For a bulk system, we have to invoke the Yanai et al (1973) ansatz
again

i.e., this has an impact on closure too. Practical impact is probably
small?

(Same issue for dilute CAPE, Tvp(0) → TvB in the definition)
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Stochastic Effects

We assumed that there are enough plumes to be treated statistically, such
as might be found within “a region of space-time large enough to contain
an ensemble of cumulus clouds but small enough to cover only a fraction
of a large-scale disturbance” (AS74)
But:

Convective instability is released in discrete events

The number of clouds in a GCM grid-box is not large enough to
produce a steady response to a steady forcing
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Convective variability

Convection on the grid-scale is unpredictable, but randomly sampled
from a pdf dictated by the large scale

To describe the variability arising from fluctuations about equilibrium,
we must consider the partitioning of the total mass flux M into
individual clouds, Mi
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General remarks

A bulk model of plumes does not follow immediately from averaging
over bulk plumes, but requires some extra assumptions

Entrainment is a big issue (as always!)
◮ Spectral model has simple Ei , Di that become Eχ(z) and Dχ(z) that

are complicated functions of the environment. This makes a spectral
model natural?

◮ Bulk model deals with E (z) and D(z) for which there is arguably better
information? No need to consider explicitly the spectrum of plumes.

For some people, may be the comparison stops here!?
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But worth being aware that...

In bulk systems...

Cloud-radiation interactions have to be estimated using bulk variables

Microphysics has to be calculated using bulk variables
◮ This implies very simple, linearized microphysics
◮ But microphysics is problematic for mass flux methods anyway, owing

to non-separation of σi and wi
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Also...

A bulk plume is an entraining/detraining plume that is equivalent to
an ensemble of entraining plumes

A bulk system needs a “gross assumption” that l̂=lB
◮ Not often recognized by later authors, but relevant when detrained

condensate is used as a source term for prognostic respresentations of
stratiform cloud (for example)

◮ Detrained condensate from a bulk scheme is an overestimate that is
not intended to be reliable

Natural bulk analogue for AS74 quasi-equilibrium requires a different
timescale separation

A closure based on CAPE is fine (in terms of equivalence) though
note that l̂ = lB crops up again
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Conclusions

A spectral parameterization of multiple plumes types needs many
more computations of course

It should not be given up lightly, but it does have its limitations
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