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Abstract

Interactions between shallow and deep atmospheric convection are in-
vestigated under the framework of an energy–cycle description. This for-
mulation provides a lucid presentation of the interactions between the two
types of convection. The analysis here is considered as a step torwards a
statistical cumulus dynamics.
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1 Introduction

As discussed in the COST ES0905 report by Yano and Plant (2011), the
energy–cycle description of a convective system provides a basis for consid-
ering the statistical dynamics of convective ensembles, as well as other basic
behaviours of the convective system. Under this formulation, in general, a
spectrum of convective types with various characteristic depths can be con-
sidered. The focus of discussions in Yano and Plant (2011, 2012a) has been
on the case with a single convective type, namely deep convection. The
present report is an expansion and development of those earlier analyses,
and as such we will provide only a relatively brief introduction here. Specif-
ically, in this report we expand the discussions and analyses to the case in
which two types of convection co–exist: shallow and deep.

We believe this is a useful step forwards towards a construction of sta-
tistical cumulus dynamics for an arbitrary number of types.

1.1 Types of convection

The problem of atmospheric moist convection is not a simple one, partly
because it takes various different forms. As was emphasized in a review by
Stevens (2005), “moist convection is not one, but many things”. According
to this review, atmospheric moist convection can be classified into three ma-
jor categories. In order of increasing vertical extent these are stratocumulus,
trade–wind cumulus, and deep precipitating cumulus convection. These ma-
jor categories may also be considered as a series of transformations of the
dominant mode of convection with an increasing supply of moisture from
the surface under a horizontally homogeneous environment. Phenomenolog-
ically, such transformations are found as we move from the mid-latitudes to
the warmer tropical oceans.

Here, by “horizontally homogeneous environment” we mean an idealized
situation in which horizontal advection effects can be neglected. This is a
useful idealization because convection is a process primarily concerned with
vertical transports. In the present study, such an idealization is adopted
under the framework of a zero–spatial–dimension model.

Under this idealization, when moisture supply from the surface is totally
absent, a constant heat supply from the surface (the sensible heat flux) tends
to produce a well-mixed convective boundary layer. As surface moisture
supply is increasingly supplied to such system, above a threshold cloud is
formed at the top of the boundary layer. Such cloud is typically stratiform,
and the associated convection is called stratocumulus convection (cf., Moeng
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1998). As the surface moisture supply is further increased, there is a regime
transition from stratiform clouds into “shallow” cumulus convective towers.
This regime is called trade–cumulus convection (cf., Riehl 1951, Betts 1997),
because it is typically found over the trade–wind region in the sub-tropics.
As the surface moisture supply increases still further (as we approach closer
the equator), then a final regime transition occurs in which deep cumulus
convection is realized, which may reach as high as the tropopause (cf., Riehl
and Malkus 1958, Houze and Betts 1981, Redelsperger 1997). This last
transition from shallow to deep convection is considered relatively sharp,
although the existence of middle–level clouds called “cumulus congestus”
has been emphasized more recently (Johnson et al. 1999, Tung et al. 1999).

A major challenge in global atmospheric modelling is to represent these
rich varieties of moist convection, and the transitions between them, by
means of parameterizations. Currently no single unified parameterization
exists, but rather each different type of convection is dealt using a different
parameterization scheme. Typically, convection parameterization schemes
are distinguished into shallow and deep versions in order to deal with trade
and deep cumulus convection separately (e.g., Tiedtke, 1989). Stratocu-
mulus clouds are often dealt with by a boundary–layer parameterization
(e.g., Holtslag and Boville 1993, Lock 1998, Lock et al. 2000), often also
in combination with microphysics and stratiform cloud schemes (cf., Wyant
et al. 2007). The combination of these independently–developed schemes
often causes a problem in simulating stratocumulus convection (cf., Köller
et al. 2011) and shallow/deep transitions (e.g., Guichard et al. 2004).

A recent trend has seen some attempts to use a combination of eddy diffu-
sion and mass flux approaches (e.g., Neggers et al. 2009, Köller et al. 2011),
especially for dealing with stratiform convection consistently with the other
types of convection. Other significant recent efforts include attempts to gen-
eralize shallow–convection mass–flux parameterizations for deep convection
(Hohenegger and Bretherton 2011, Mapes and Meale 2011).

1.2 Truncation to two types

The present report proposes to consider all types of convection by taking an
energy–cycle description for a spectrum of types under a mass–flux formu-
lation. The spectral approach, originally developed by Arakawa and Schu-
bert (1974), treats different convection types by different prescribed vertical
structures. Although Arakawa and Schubert (1974) more specifically as-
sumed an ensemble of entraining plumes in defining their vertical structures,
we do not consider this as an essential feature of their formulation because
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other models for defining the vertical mass flux structure could straightfor-
wardly be incorporated into the general framework, as discussed in Yano
and Plant (2011).

Note that these various types of convection can loosely be categorized
into two major types: “non-precipitating” shallow convection and precipitat-
ing deep convection. In doing so, we effectively consider stratocumulus and
trade–cumulus convection together as being the first major type. Thus, in
the present report, we truncate a spectral representation of convection into
only two modes: shallow and deep convection. The main reason for such a
severe truncation is in order elucidate the interactions between convection
types in the simplest possible setting.

In the above, we added quotation marks to “non-precipitating” because
shallow convection is rarely non-precipitating in a strict sense, although
the precipitation is much weaker than that typical of deep convection. In
fact, from the energy-cycle perspective, the fundamental separation between
the two types is not whether the clouds are shallow or deep, but rather
whether or not the precipiation is strong enough to alter the character of
the thermodynamic budget. The key aspect is that the budgets for the two
major convective types are qualitatively different.

In the shallow–convection regime, the main effects of convection on its
environment are cooling and moistening. These tendencies are usually bal-
anced by large–scale subsidence that warms and dries the environment. It
is important to recognize that in the absence of such subsidence then the
shallow–convectives regime is self–destabilizing. Note that shallow convec-
tion moistens the environment because it is either non-precipitating or only
weakly precipitating, and thus the condensed water must ultimately return
to the environment. The condensed water typically evaporates as soon as it
detrains into the environment, leading to cooling as a result.

On the other hand, in the deep–convective regime, the main effects of
convection on its environment are warming and drying. These tendencies
are usually balanced by a large–scale ascent that cools and moistens the
environment. It is important to recognize that in the absence of such ascent
the deep–convective regime is self–stabilizing. Note that deep convection
dries the environment because condensation within deep convection acts as a
sink for moisture, which mostly returns to the surface by precipitation. The
detrained dry air from deep convection must descend towards the surface as
a return flow, associated with adiabatic warming.

The purpose of the present report is twofold. First, we will show that
these two qualitatively different behaviours of convection can be easily in-
corporated and well described using an energy cycle. Second, we will show
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that the energy cycle formulation can describe the interactions between shal-
low and deep convection. We emphasize that this aspect is somewhat ne-
glected in current operational modelling configurations. We will system-
atically investigate the behaviour of the coupled shallow–deep convective
system, pointing out the importance of these interactions for operational
modelling contexts.

Note that the majority of the following investigation assumes no large–
scale forcing. This drastic simplification enables us to examine the behaviour
of the system analytically in the most lucid manner without additional com-
plications.

2 Rationale

This section recalls some key ideas behind the energy–cycle formulation
for the convective system originally introduced by Arakawa and Schubert
(1974). More complete discussion can be found in Yano and Plant (2011)
but a brief overview is provided here in order to make the presentation self-
contained. The reader should bear in mind particularly that although in
the following we often call a convective type a plume for convenience, the
convective types need not necessarily be defined by any particular plume
model, but rather the types are distinguished by vertical profiles fixed with
time, whatever rule is invoked to determine the profiles.

Consider a system of N plume types and let the subscripts refer to the
plume types. The convective kinetic energy Ki for type i evolves according
to the following equation (Yano and Plant 2011):

dKi

dt
= AiMbi − Di (1)

Thus, kinetic energy is generated from potential energy at a rate AiMbi, and
dissipated at a rate Di. The generation rate is proportional to the cloud-
base mass flux Mbi and to the cloud work function Ai, which itself evolves
as

dAi

dt
= Fi +

∑

j

KijMbj (2)

Here Fi is the large-scale forcing (radiative or advective tropospheric cooling,
surface fluxes, etc) for convection. The action of convection itself on the
cloud work function is described by the matrix Kij.

The two dominant physical processes described by the matrix Kij are
discussed in two paragraphs following Eq.(144) of Arakawa and Schubert

7



(1974). The most dominant process (see their Fig. 11) is adiabatic warming
due to the compensative descent, −Mj, induced by a given convective plume
j. This process reduces the cloud work function of all plume types. Math-
ematically, an important consequence to recognize is that the interaction
matrix cannot be treated as sparse: in other words, all cloud types influence
all other cloud types. The second major process (cf., their Fig. 12) is cooling
of the environment due to re–evaporation of detrained condensed (cloudy)
air. This process increases the cloud work function due to its destabilizing
tendency, but it affects only the plumes of the same type or those reaching
higher heights, because the effect occurs only at the detrainment level and
so is not felt by shallower clouds.

Arakawa and Schubert (1974) argue that the second process (destabiliza-
tion tendency) is always weaker than the first process (stabilization). This
argument is also consistent with arguments for convective damping put forth
by Emanuel et al. (1994). However, our preliminary analysis based on Jor-
dan’s sounding suggests otherwise: elements of the K matrix can be positive
(i.e., destabilizing) when the precipitation efficiency of the convective cloud
is weak. In that case, the cooling by re-evaporation of detrained cloud wa-
ter is so strong that the given convective plume self-enhances with time. It
furthermore promotes the enhancement of convective plumes taller than the
type in question.

The second process is akin to the cloud-top entrainment instability hy-
pothesized for the cloud-topped boundary layer (Deadorff 1980, Randall
1980). A major difference is that the process is driven by lateral detrain-
ment rather than by vertical entrainment.

The identified process is likely to explain the recovering process after
a dry intrusion, as observed, for example, during the TOGA-COARE pe-
riod (Parsons et al. 2000). Shallow convective clouds are self-enhanced by
destabilization of their environment through evaporative cooling of detrained
cloud water. The process as a whole contributes to the recovery from dry
state to a more normal moist state with the detrainment process contribut-
ing to tropospheric moistening.

Once deep convection begins to develop, it tends to stabilize the envi-
ronmental state, and that contributes to suppression of shallower convective
plumes. In this manner, this system described by a K-matrix appears to re-
produce a typical life cycle of the tropical convective system associated with
the MJO. Benedict and Randall (2007) emphasize the importance of “local-
ized destabilization via low-level warming and moistening” for the MJO.
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3 Defining the system

3.1 System of equations

For a two-mode system the equations for the cloud work function, Eq. 2,
read as follows (cf., Yano and Plant 2012b):

dAd

dt
= Fd − γdMd + βsMs

dAs

dt
= Fs + γsMs − βdMd . (3)

Here the subscripts s and d label shallow and deep convection, respectively.
The β and γ parameters are elements of the Kij matrix, discussed in the
last section, and defined such that γs,d denotes the effect of the labelled
type of convection on the cloud work function for convection of that same
type (i.e., the diagonal matrix entries), whereas βs,d denotes the effect of
the labelled type of convection on the cloud work function for convection
of the other type (i.e., the off-diagonal matrix entries). The equations have
been written with signs chosen such that γ and β are expected to be positive
from the physical arguments of the last section. Thus, we expect shallow
convection to destabilize both shallow and deep convection, and we expect
deep convection to stabilize both shallow and deep convection. Note also
that the notation for the mass fluxes has been slightly simplified from Eq. 2.
Henceforth we use M to denote the cloud–base values. Though Pan and
Randall (1998) considered a similar system, they neglected the interactions
between the convective modes by setting βs,d = 0.

The equations for the convective kinetic energy, Eq. 1, read as follows

dKd

dt
= MdAd −

Kd

τd

dKs

dt
= MsAs −

Ks

τs
. (4)

Here we have assumed that the dissipation D for each mode can been char-
acterized in terms of τs,d, a constant dissipation time scale.

In order to close the energy cycle of the convective system defined by
Eqs. 3,4, we also introduce a functional relationship between the convective
kinetic energy and the mass flux. This is given by

Kd = αdM
p
d

Ks = αsM
p
s (5)
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with constants αd, αs, and p.
In the following, we consider the cases of p = 2 and p = 1 in order. Pan

and Randall (1998) considered the case with p = 2, whereas Yano and Plant
(2012a) focussed on the case with p = 1. Although cloud–resolving model
studies as well as statistical theories (Emanuel and Bister 1996, Shutts and
Gray 1999, Parodi and Emanuel 2009) clearly favour the case with p = 1 as
reviewed in Yano and Plant (2011, 2012a), it is fair to say that the evidence
is not overwhelming. Note that although the choice p = 1 may at first
sight be objected to on dimensional grounds, this objection is not in fact
substantiated, as discussed in Appendix A.

3.2 Estimate of physical parameters

An estimate for the cloud–work function consumption rate γd was presented
by Yano and Plant (2012a). Specifically they argued that

γd ≈
∫ zt

zb

g
η2

ρT0

∂θ

∂z
∼ h

g

ρBT0

∂θ

∂z
(6)

where zb and zt are cloud base and cloud top respectively, η is the vertical
profile of mass flux after normalization by the cloud-base value, ρ is the
density, T0 a reference temperature and θ the enviromental potential tem-
perature. The vertical extent of convection is denoted as h = zt − zb. This
expression assumes that the dominant contribution is warming induced by
compensating descent, as discussed in Section 2. Yano and Plant (2012a)
took the numerical values of g ∼ 10 ms−2, h ∼ 104 m, ρ ∼ 1 kgm−3,
T0 ∼ 300 K and ∂θ/∂z ∼ 3 × 10−3 Km−1 to obtain an order of magnitude
estimate of 1 Jm2 kg−2. They further state that an explicit evaluation of
the integral for an example profile suggested an additional factor of 2. We
therefore take γd = 2 Jm2 kg−2 here.

The effect of deep convection on the shallow convection work function
is assumed to be dominated by the same physical process, and this leads to
the estimate

βd ≈
∫ zt,s

zb

g
ηdηs

ρT0

∂θ

∂z
(7)

The estimate is similar to that in Eq. 6, but there are numerical differences
in that h ∼ 103 m is a more suitable value for the vertical extent of shallow
convection, and an explicit evaluation now suggests that a factor of ∼ 1
arises from the normalized integral. Hence, we take βd = 0.1 Jm2 kg−2.

The effects of shallow convection are described by the parameters γs and
βs and are expected to be dominated by the evaporation of detraining cloud
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condensate as argued in Section 2. Relevant expressions for this process are
given in Eq. (B37) of Arakawa and Schubert (1974) but in their formula-
tion they are clearly rather sensitive to the value of the entrainment rate,
and a detailed cloud model for shallow convection would be required in or-
der to compute these parameters reliably. Some direct evaluations of the
Kij matrix were performed by Yano using a very simple cloud model simi-
lar to the entraining plume model of Arakawa and Schubert (1974). These
evaluations suggest that γs ∼ βd and βs ∼ γd might be reasonable but it
must be recognized that any estimates for γs and βs are necessarily rather
uncertain and possibly the parameters have an important case-to-case de-
pendency. Motivated also by the fact that cases of particular interest arise
for γs/βs = βd/γd (as will be explained in the analysis below, in Section 4.4
especially), we take γs = 0.1 Jm2 kg−2 and βs = 2 Jm2 kg−2 as being our
default parameter choices.

There is little other information available in the literature on typical
values for elements of Kij . An exception is a very brief remark on p142 of
Randall and Pan (1993) which states that a typical value for γs is of order
10 times smaller than that for γd. The estimates used here are certainly
consistent with that remark.

A typical value for the convective kinetic energy dissipation rate is also
not well constrained theoretically (cf., Yano and Plant, 2012a). However re-
cent analysis of cloud–resolving modelling data by Cathy Hohenegger (2011,
personal communication) suggests τs ∼ τd ∼ 103 s. Note that this estimate is
not able to distinguish between shallow and deep convection, unfortunately.

The above parameters are required independently of the choice of p. In
the next two subsections we discuss estimates of further parameters that are
more specific to the cases with p = 2 and p = 1, respectively.

3.2.1 Estimate of physical parameters for the p = 2 case

In this case, the proportionality constant α appearing in Eq. 5 (with sub-
scripts d and s to be added as required) is defined by

α =

∫ zt

zb

η2

2ρσc
dz (8)

(Yano and Plant, 2012a). The notation has been already defined with the
exception of σc, the fractional convective cloud area.

For the purposes of estimating an order of magnitude, we can write

α ∼ h

ρσc
(9)

11



Taking h and ρ as estimated previously and σc ∼ 10−1 for both modes, we
obtain αd ∼ 105 m4 kg−1 and αs ∼ 104 m4 kg−1.

3.2.2 Estimate of physical parameters for the p = 1 case

In this case, the proportionality constant α appearing in Eq. 5 is defined by

α = wb

∫ zt

zb

ρb

ρ

σb

σc

η2

2
dz (10)

(Yano and Plant, 2012a). Here a subscript b has been introduced in order
to denote quantites evaluated at cloud base. The α parameter may be
estimated as

α ∼ hwb (11)

again with subscripts s and d to be added appropriately. Taking the same
values for h as above, along with wb ∼ 1 ms−1 for both modes, we obtain
αd ∼ 104 m2 s−1 and αs ∼ 103 m2 s−1.

It is worth noting at this point that for the p = 1 case, stationary values
for the cloud work functions can be determined directly from Eq. 4 using
the parameters that have been presented. Denoting these stationary values
with a subscript 0, they are

Ad0 =
αd

τd
∼ 104

103
∼ 10 Jkg−1

As0 =
αs

τs
∼ 103

103
∼ 1 Jkg−1. (12)

4 Analysis of the system: the p = 2 case

Substitution of Eq. 5 with p = 2 into Eq. 4 gives

Ṁs =
As

2αs
− Ms

2τs

Ṁd =
Ad

2αd
− Md

2τd
(13)

while Eq. 3 is restated here as

Ȧs = γsMs − βdMd + Fs

Ȧd = −γdMd + βsMs + Fd (14)

12



We have introduced a dot in order to denote the time derivative. Eqs. 13
and 14 define the system with p = 2 as a set of four linear differential
equations with constant coefficients. This is in marked contrast to the case
with p = 1 to be considered in Section 5, as the latter system is nonlinear.
Although we believe that p = 1 is more realistic than p = 2 (Section 3.1), it
is nonetheless of interest to examine the two-mode system with p = 2. The
linearity greatly facilitates the analysis while leaving the overall behaviour
of the coupled system qualitatively simliar. Thus, the analysis of the case
with p = 2 provides some useful insights also for the case with p = 1.

In order to develop a feel for the coupled system, we first consider shal-
low and deep convection separately in Sections 4.1 and 4.2 respectively.
We then turn to a special case of the coupled system in Section 4.3 in or-
der to show some simplified examples of analytical solutions and numerical
demonstrations. A more general analysis of the system is then presented
in Sections 4.4 and 4.5. We continue in Section 4.6 with perturbation ex-
pansions about some limiting cases followed by an analysis of the conditions
needed for a periodic solution in Section 4.7 and a summary of the p = 2
system in Section 4.8.

4.1 Shallow convection only

The equations for the shallow mode only are

Ṁs =
As

2αs
− Ms

2τs

Ȧs = Fs + γsMs (15)

and we neglect any large-scale forcing of shallow convection by setting Fs =
0.

Cloudy air is detrained from the top of shallow convection and re–
evaporates as soon as it is detrained. This induces evaporative cooling,
which further destabilizes the atmosphere. The re–evaporative cooling ten-
dency dominates over the effects of diabatic warming by compensative de-
scent for shallow convection, because it is only weakly precipitating. This
is expressed by a positive value for γs, so that shallow convection increases
the cloud work function, As. That increase in turn tends to increase the
shallow convective mass flux, Ms, through the first term on the right hand
side of the mass flux evolution equation.

Substituting a solution Ms = Ms(0)e
σt and As = As(0)e

σt, we obtain

σ2 +
σ

2τs
− γs

2αs
= 0 (16)
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so that

σ = − 1

4τs
± 1

4τs

(

1 +
8τs

τAs

)1/2

(17)

where
τAs = (αs/γs)

1/2 ∼ 105/2 ∼ 300 sec (18)

can be interpreted as a characteristic time–scale associated with the shallow
cloud work function. Based on the parameter choices of Section 3.2, τAs =
105/2 ∼ 316 s.

Owing to the solution from the positive sign of the square root above,
the shallow system is exponentially growing with time, regardless of the
mass–flux damping time–scale, τs. Thus the shallow-only system is self-
destabilizing. An example integration is shown in Fig. 1.
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Figure 1: Solution for the unforced shallow mode alone in the p = 2 system.
The parameters are the default set described in Section 3.2. The initial
conditions are Ms(0) = 10−3 kgm−2s−1, As(0) = 1 Jkg−1. On the left and
right respectively are shown the time series of the cloud work function and
the mass flux.

With the inclusion of forcing it is straightforward to confirm that the
eigenvalues are unaltered and the solution is shifted to

Ms = Ms(0)e
σt − Fs

γs
(1 − eσt) (19)

As = As(0)e
σt − αsFs

γsτs
(1 − eσt) (20)

thereby changing the details of the solution but not its basic character.
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4.2 Deep convection only

The equations for the deep mode only are

Ṁd =
Ad

2αd
− Md

2τd

Ȧd = Fd − γdMd (21)

again neglecting the large–scale forcing, Fd = 0.
Deep convection grows at a rate proportional to the cloud work function.

However, the generated deep–convective mass flux consumes the cloud work
function, with the notion of convective damping (cf., Emanuel et al. 1994).

Neglecting any large-scale forcing of deep convection, Fd = 0, and sub-
stituting a solution Md = Md(0)e

σt and Ad = Ad(0)e
σt then we obtain

σ2 +
σ

2τd
+

γd

2αd
= 0 (22)

so that

σ = − 1

4τd
± 1

4τd

(

1 − 8τd

τAd

)1/2

(23)

where
τAd = (αd/γd)

1/2. (24)

Based on the parameter choices of Section 3.2, τAd = (5 × 104)1/2 ∼ 223 s.
Thus, the unforced deep convective system is always damping, regardless

of the parameter choices. For τAd > 8τd there are two purely damping
modes, whilst for τAd < 8τd, the system exhibits a damping oscillations
with a period of 8πτd(8τd/τAd − 1)−1/2. An example of a strongly damped
oscillation is shown for the default parameters in Fig. 2.

4.3 A special case: Mass flux equilibrates more quickly than

work function

Henceforth we consider the full system in which shallow and deep convection
are coupled. In the following Section 4.4, we consider the general case for any
parameter set. Before doing so, it will be instructive to consider a particular
limit which provides some insight into how the coupled system can behave.
Specifically, the present subsection considers a regime in which the mass flux
evolution equations, Eq. 13, come into an equilibrium much more quickly
than the cloud work function equations, Eq. 14. Such a situation arises

15



0 5 10 15 20 25
−10

0

10

20

30

40

50

Time (hr)
0 5 10 15 20 25

−1

0

1

2

3

4

5

6

7
x 10

−3

Time (hr)
M

a
s
s
 f
lu

x
 (

k
g

m
−

1
s

−
2
)

−10 0 10 20 30 40 50
−1

0

1

2

3

4

5

6

7
x 10

−3

M
a

s
s
 f
lu

x
 (

k
g

m
−

1
s

−
2
)

Cloud work function (J/kg)

Figure 2: Solution for the unforced deep mode alone in the p = 2 system.
The parameters are the default set described in Section 3.2. The initial
conditions are Md(0) = 10−3 kgm−2s−1, Ad(0) = 50 Jkg−1. From left to
right are shown: the time series of the cloud work function, the time series of
mass flux, and the trajectory in the phase space of the cloud work function
(horizontal axis) and mass flux (vertical axis).

when the kinetic energy dissipation time scales are much shorter than the
cloud–work function time scales: i.e., if

τs ∼ τd ≪ τAs ∼ τAd. (25)

Taking the estimates from Sections 4.1 and 4.2, τAd ∼ τAs ∼ 300 s, which is
comparable with the default dissipation time scales τs = τd = 103s. Thus the
limit is unlikely to be a good approximation for most situations of physical
interest, but it is nonetheless convenient for conceptual consideration.

Under this limit, Eq. 13 provides an approximate functional relationship
between the cloud work functions and the mass fluxes,

As ≈ αs

τs
Ms

Ad ≈ αd

τd
Md. (26)

Substitution of these relationships into Eq. 14 yields the relatively slow
evolution of the unforced cloud work functions as:

Ȧs = γ̂sAs − β̂dAd

Ȧd = −γ̂dAd + β̂sAs (27)
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where we have introduced the notation

γ̂s =
γsτs

αs
, β̂s =

βsτs

αs
,

γ̂d =
γdτd

αd
, β̂d =

βdτd

αd
. (28)

Note that γ̂s = τs/τ
2
As and γ̂d = τd/τ

2
Ad are the slow rates at which the cloud

work functions evolve.
Considering a solution of the form ∼ eσt results in the eigenfrequency

equation
σ2 + (γ̂d − γ̂s)σ − γ̂sγ̂d + β̂sβ̂d = 0 (29)

with solution

σ =
1

2

{

γ̂s − γ̂d ±
[

(γ̂s − γ̂d)
2 − 4(β̂sβ̂d − γ̂sγ̂d)

]1/2
}

(30)

Thus, we can have three types of solution:

(i) If γ̂s > γ̂d then the solution grows (possibly a growing oscillation or
possibly pure exponential growth);

(ii) If γ̂s = γ̂d then the solution will be neutral if β̂sβ̂d = γ̂sγ̂d, growing if
β̂sβ̂d < γ̂sγ̂d, or purely oscillatory if β̂sβ̂d > γ̂sγ̂d;

(iii) if γ̂s < γ̂d then the solution is damping with an oscillation if the
argument of the square root is negative, pure damping if the argument
of the square root is positive and if β̂sβ̂d > γ̂sγ̂d, and growing if the
argument of the square root is positive and if β̂sβ̂d < γ̂sγ̂d.

Figs. 3, 4 and 5 give examples respectively of numerical solutions for a
growing set of parameters with case (i), an oscillatory set of parameters with
case (ii) and a damping set of parameters with case (iii). As noted above,
the limiting case considered in this subsection is primarily of conceptual
interest to demonstrate the behaviour. To produce these figures we chose
parameter values considerably removed from the default set of Section 3.2 in
order to respect the limiting approximation. A consequence of the choices
is that the cloud work functions and mass fluxes sometimes take negative
values during the resulting evolution. Note also that each example exhibits
a rapidly decaying transient for the mass flux over the first 2 hr before the
longer time behaviour becomes apparent.

In physical terms, these limiting analytical results show that the system
may be growing or damping depending on whether self–growing shallow
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convection (γ̂s) or self–damping deep convection (γ̂d) dominates respectively.
However, if the destabilization and stabilization tendencies can be balanced
then we can obtain a neutral state.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

Time (hr)
0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Time (hr)

M
a

ss
 f
lu

x 
(k

g
m

−
1
s−

2
)

Figure 3: Solution for the unforced p = 2 system with parameters chosen
to illustrate case (i) of Section 4.3. Blue is for the deep mode and green
for the shallow mode. The parameters are γd = 1, γs = 2, βd = βs = 1 Jm2

kg−2, αd = αs = 5× 108 m4 kg−1 and τd = τs = 103 s. Note that these give
values of τAs = 1.6 × 105 s and τAd = 2.2× 105 s. The initial conditions are
Md(0) = Ms(0) = 10−3 kgm−2s−1 and Ad(0) = As(0) = 10 Jkg−1. Shown
in the same format as in Fig. 1.
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Figure 4: Solution for the unforced p = 2 system with parameters chosen to
illustrate case (ii) of Section 4.3. Blue is for the deep mode and green for
the shallow mode. The parameters are γd = γs = 1, βd = βs = 5 Jm2 kg−2,
αd = αs = 5× 108 m4 kg−1 and τd = τs = 103 s. Note that these give values
of τAs = τAd = 2.2 × 105 s. The initial conditions are Md(0) = Ms(0) =
10−3 kgm−2s−1 and Ad(0) = As(0) = 10 Jkg−1. Shown in the same format
as in Fig. 2.
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Figure 5: Solution for the unforced p = 2 system with parameters chosen to
illustrate case (iii) of Section 4.3. Blue is for the deep mode and green for
the shallow mode. The parameters are γd = 2, γs = 0.25, βd = βs = 1 Jm2

kg−2, αd = αs = 5× 108 m4 kg−1 and τd = τs = 103 s. Note that these give
values of τAs = 1.6 × 105 s and τAd = 4.5× 105 s. The initial conditions are
Md(0) = Ms(0) = 10−3 kgm−2s−1 and Ad(0) = As(0) = 10 Jkg−1. Shown
in the same format as in Fig. 2.

4.4 General case

We now proceed to consider the general case of the coupled p = 2 system,
Eqs. 13 and 14, without approximation.

As a linear system of ordinary differential equations with constant coef-
ficients it has a solution of the form eσt for each of the dependent variables,
and a quartic equation for σ is easily derived. However, the obtained equa-
tion for the eigenfrequency is not physically illuminating and not stated
here.

The discussion of the special case in Section 4.3 reveals that the overall
behaviour of the unforced coupled system is determined by a competition
between the growing tendency of shallow convection and the damping ten-
dency of deep convection. For most parameter choices, one of those ten-
dencies is dominant and convection either dies out or explodes. However,
there may be parameter settings that allow a balance to be realized between
these two tendencies (e.g., Fig. 4). A natural question to ask is under what
conditions can we obtain such a balanced solution. It turns out that many
of the same considerations arise for the nonlinear coupled system with p = 1
(Section 5.3).
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4.4.1 The vanishing determinant

Consider the cloud work function tendency equations, Eq. 14, and look for
a solution which is non-trivial in the absence of forcing. By non-trivial we
mean a solution in which both Ms and Md neither tend to zero nor tend to
infinity, even for very long times. This is clearly a strong constraint on the
problem. It is not physically reasonable to imagine that all of the param-
eters of the coupled system stay fixed in perpetuity, and so in practice we
may be interested in cases where the coupled system does decay or grow, so
long as that occurs very slowly. Nonetheless we will pursue this strict con-
straint, while bearing in mind that it is likely to lead us to overly restrictive
constraints on the parameters.

A non-trivial solution in the above sense can be achieved if the solution
becomes periodic so that As and Ad vary over time but they do so in such a
way that their time-averaged variation vanishes over some finite period T .

Setting the forcing to zero in Eq. 14 and denoting by an overbar the time
average over period T then the solutions of interest occur for

−γdMd + βsMs = 0

γsMs − βdMd = 0 (31)

so that
βdβs = γdγs. (32)

In other words, the determinant of the Kij matrix must vanish for a non-
trivial solution in the absence of forcing. For the remainder of Section 4 we
will assume that this condition is indeed satisfied and examine the conse-
quences.

There are several important remarks that should be made about this
condition. First, note that the argument is easily extended to any number
of convective modes. Second, note that the argument depends on the cloud
work function tendency equations only. As such, the condition is entirely
independent of the assumed functional form of the kinetic energy dissipa-
tion in Eq. 4 and of the assumed functional relationship between convective
kinetic energy and cloud base mass flux. In particular, it is independent of
the choice of p. Third, we note that the set of default parameter choices dis-
cussed in Section 3.2 satisfies the condition. As alluded to earlier, this last
point is not accidental, but it nonetheless does illustrate that the condition
may be satisfied for physically–plausible parameter settings.
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4.4.2 Linking the cloud work functions

We are now in a position to simplify the cloud work function tendency
equations, Eq. 14. Expressing the unforced equation for shallow convection
as

Ȧs =
γs

βs

(

βsMs −
βdβs

γs
Md

)

(33)

and using Eq. 32 for the vanishing determinant, we have

Ȧs =
γs

βs
(βsMs − γdMd) . (34)

Next we substitute for the term in brackets on the right-hand-side by using
the tendency equation for the evolution of the deep cloud work function.
This produces

Ȧs =
γs

βs
Ȧd (35)

Hence (in the absence of forcing) the cloud work function tendencies are
proportional for shallow and deep convection.

We can integrate the above equation directly to relate the two work
functions as

As − As(0) =
γs

βs
(Ad − Ad(0)) . (36)

The relationship is a direct consequence of the vanishing determinant and
so applies with all the generality discussed in the previous subsection.

As a short aside on the forcing, note that if forcing were to be retained
then the two work functions would be related by

As − As(0) =
γs

βs
(Ad − Ad(0)) +

(

Fs −
γs

βs
Fd

)

t (37)

The term proportional to t prevents a closed orbit solution to the coupled
system. However, that term would vanish if

Fs =
γs

βs
Fd (38)

Clearly this includes the case of zero forcing, but it is also interesting to
note that forcing could be incorporated into all of the following analysis,
provided that it were to be related as above for the two types of convection.
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4.5 The p = 2 equations with vanishing determinant: Gen-

eral considerations

Here we consider the unforced p = 2 system with a vanishing determinant
but with no other constraints or approximations. Using Eq. 36 just derived
above we can eliminate As in the prognostic equation for Ms to yield:

Ṁs =
As(0)

2αs
− γsAd(0)

2αsβs
+

γs

2αsβs
Ad −

Ms

τs
(39)

We consider the above equation alongside those for the deep mode which
are restated here for convenience

Ṁd =
Ad

2αd
− Md

2τd
(40)

Ȧd = Fd − γdMd + βsMs (41)

We try a solution of the following form

Ad = a0 + a1e
σt

Md = d0 + d1e
σt

Ms = s0 + s1e
σt , (42)

where the coefficients a1, d1 and s1 can be expressed in terms of a0, d0 and
s0 and the initial conditions,

a1 = Ad(0) − a0

d1 = Md(0) − d0

s1 = Ms(0) − s0 (43)

and where the coefficients a0, d0 and s0 can be obtained by substituting in
the trial solution and then comparing the constant terms to give

τda0 = αdd0 (44)

βss0 = γdd0 (45)

s0

τs
=

γs

αsβs
d0 +

As(0)

αs
− γsAd(0)

αsβs
(46)

The solution for a0 is easily obtained

a0 = [βsAs(0) − γsAd(0)]

[

αsγdτd

αdτs
− γs

]

−1

(47)
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whilst s0 and d0 are simply proportional to this, as given in Eqs. 44 and 45.
Comparing coefficients of the exponential terms that occur in the trial

solution gives three equations in terms of a1, d1, s1 and σ. This reduces to
the eigenequation

σ3 +
σ2

2

(

1

τd
+

1

τs

)

+
σ

4

[

1

τdτs
+ 2

(

γ̂d

τd
− γ̂s

τs

)]

+
1

4τdτs
(γ̂d − γ̂s) = 0 (48)

which we have rewritten in terms of the rescaled (self–)interaction coeffi-
cients introduced in Eq. 28. Note that in terms of these rescaled coefficients
the vanishing determinant condition reads

β̂dβ̂s = γ̂dγ̂s. (49)

An explicit formal solution can be written for the above eigenequation,
but is not very illuminating. Nonetheless, we can offer some useful remarks.
A cubic equation may have three real roots, or else one real root with one
complex–conjugate pair. In order for the solution not to explode, we require
that any real roots are negative or zero, whereas any complex conjugate
roots have a negative real part. In either case, the product of the three
roots must be negative or zero2. Since the product of the roots is given
by minus the constant term in Eq. 48 it follows that to avoid an exploding
solution

γ̂d ≥ γ̂s (50)

Physically this requirement is for the damping rate of the deep cloud work
function, γ̂d, to exceed the generation rate of the shallow cloud work func-
tion, γ̂s.

A non-exploding case with three negative real roots will decay towards
an equilibrium state with Ad = a0, Md = d0, Ms = s0, whilst a case with
complex roots may be more interesting as pure imaginary roots will decay
towards a purely oscillating solution. It is possible to write down an explicit
inequality in order for a cubic equation to have non-real roots, but again
that is not physically illuminating and we cannot say from that whether
those roots are explosive.

Finally, we close this subsection by remarking that the eigenequation 48
does not include β̂s or β̂d. Thus, provided that these interaction coefficients
are such as to produce a vanishing determiant their value does not otherwise
affect the character of the solution.

2Moreover, the sum of roots must be negative. This is guaranteed since the coefficient

of the quadratic term in Eq. 48 is positive definite.
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4.6 The p = 2 equations with vanishing determinant: Per-

turbation approaches

In the previous subsection, we derived the cubic eigenequation 48 for the gen-
eral case of the unforced p = 2 system with vanishing determinant. However,
we noted that a formal solution to this equation is not physically instruc-
tive. Therefore, in the following subsections we specialize to situations where
τs ≈ τd (Sections 4.6.1 and 4.6.2), where τs ≪ τd (Section 4.6.3) and where
τs ≫ τd (Section 4.6.4), in order to illustrate the behaviour of the system
in a more useful way. First we consider the case of τs = τd in Section 4.6.1,
and then in Section 4.6.2 we consider small departures from equality of the
dissipation time scales, by means of a perturbation expansion.

The starting point for these analyses is to express the eigenequation in
terms of the new variables

ξs = σ(2στs + 1)

ξd = σ(2στd + 1) (51)

in terms of which it reads

ξsξd + γ̂dξs − γ̂sξd + (β̂sβ̂d − γ̂sγ̂d) = 0 (52)

This is the full quartic equation, which can easily be seen to reduce a cu-
bic equation if the term in brackets vanishes, as occurs for the vanishing
determinant condition of Eq. 49.

4.6.1 The case of τs = τd

Assuming a vanishing determinant, and specializing also to the case of τs =
τd then we can work in terms of the variable ξ = ξs = ξd = σ(2στ +1) where
τ = τs = τd. This variable satisfies the equation

ξ2 + (γ̂d − γ̂s)ξ = 0 (53)

leading to
ξ = 0 or ξ = γ̂s − γ̂d. (54)

By solving the definition of ξ to obtain σ, we find that

σ = − 1

4τ
±
[

(

1

4τ

)2

+
ξ

2τ

]1/2

(55)
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so that the eigenfrequencies are:

σ = − 1

2τ
(56)

σ = − 1

4τ
±
[

(

1

4τ

)2

+
1

2τ
(γ̂s − γ̂d)

]1/2

(57)

Thus the characteristics of the system are determined by γ̂s − γ̂d. If γ̂d < γ̂s

and shallow convection dominates then then there is a growing solution
without oscillation (the square root term produces a positive eigenfrequency
when the square root is taken with a plus). If γ̂s + 1/(8τ) > γ̂d > γ̂s then
deep convection is weakly dominant and there is a damping solution (the
square root term is real but is not large enough in magnitude to be able
to change the sign of σ). If γ̂d > γ̂s + 1/(8τ) then deep convection is more
strongly dominant and there is a damping solution with an oscillation (the
square root is imaginary).

We can of course solve the cubic eigenequation 48 numerically. Fig. 6
shows the phase diagram produced, which is easily checked to be consistent
with the analysis just presented.

It should be noticed that do not find any possibility for a purely imag-
inary (i.e., perpetually and stably periodic) solution. This is because any
solution with an imaginary eigenvalue also has a negative real part for that
eigenvalue. Or, in other words, because the interface between positive and
negative real eigenvalues occurs where there is no imaginary part to the
eigenvalue. There is no point of contact between regions I and III in the
phase diagram.

To illustrate some particular cases taken from Fig. 6, Figs. 7, 8 and 9 give
examples respectively of numerical solutions in regions: (I) a growing solu-
tion; (II) pure decay to constant values; and, (III) decay–with–oscillation.

4.6.2 With a slight deviation from τs = τd

We now consider the p = 2 system with vanishing determinant for unequal
τ but with the shallow and deep time scales being close together. The main
question is whether a distinction between the time scales is able to alter the
phase diagram in such a way as to be able to produce a periodic solution.

We introduce the notation

∆ξ ≡ (ξs − ξd)/2 (58)
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Figure 6: Numerically–generated phase diagram for the p = 2 system with
vanishing determinant. The default parameters described in Section 3.2 are
used for αs and αd, while a parameter choice for βs and βd is not required.
The values for γs and γd have been varied to produce the diagram. The
parameters τs and τd have been set to 102 s here rather than their default
values of 103 s, in order to clarify the presence of region II, which is much
thinner with the default values. Region I produces exploding cases (γs > γd),
region II has pure decay cases (γ̂s + 1/(8τ) > γ̂d > γ̂s) and region III has
decay–with–oscillation cases (γ̂d > γ̂s + 1/(8τ)). The regions are separated
by plotting two contours for the eigenvalue with the largest real part. The
contour where that real part is zero separates regions I and II. The contour
where the imaginary part of that same eigenvalue is zero separates regions
II and III.

with

ξd = ξ − ∆ξ

ξs = ξ + ∆ξ (59)

We furthermore introduce

τ0 ≡ (τs + τd)/2

∆τ ≡ τs − τd (60)

so that the relation
∆ξ = σ2(τs − τd) = σ2∆τ. (61)

follows immediately from the definition of terms. The assumption that the
two convective time scales are close together means that we can take ξ ≫
|∆ξ| or τ ≫ |∆τ | below.
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Figure 7: Solution for the unforced p = 2 system with parameters chosen
to illustrate region I of Fig. 6. Blue is for the deep mode and green for the
shallow mode. The parameters are γd = 2, γs = 0.4, βd = 0.2, βs = 4 Jm2

kg−2 and τd = τs = 102 s, together with the default choices for αs and αd

described in Section 3.2. Note that these choices give γ̂s = 4 × 10−3 s−1

and γ̂d = 2 × 10−3 s−1, so that γ̂s > γ̂d. The initial conditions are Md(0) =
Ms(0) = 10−3 kgm−2s−1 and Ad(0) = As(0) = 10 Jkg−1. Shown in the
same format as in Fig. 1.
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Figure 8: Solution for the unforced p = 2 system with parameters chosen
to illustrate region II of Fig. 6. Blue is for the deep mode and green for
the shallow mode. The parameters are τd = τs = 102 s, together with the
default choices for α, β and γ described in Section 3.2. Note that these
choices give γ̂s = 10−3 s−1 and γ̂d = 2 × 10−3 s−1, so that γ̂s + 1/8τs >
γ̂d > γ̂s. The initial conditions are Md(0) = Ms(0) = 10−3 kgm−2s−1 and
Ad(0) = As(0) = 10 Jkg−1. Shown in the same format as in Fig. 2.
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Figure 9: Solution for the unforced p = 2 system with parameters chosen to
illustrate region III of Fig. 6. Blue is for the deep mode and green for the
shallow mode. The parameters are γd = 8, γs = 0.1, βd = 0.2, βs = 4 Jm2

kg−2 and τd = τs = 102 s, together with the default choices for αs and αd

described in Section 3.2. Note that these choices give γ̂s = 10−3 s−1 and
γ̂d = 8 × 10−3 s−1, so that γ̂d > γ̂s + 1/8τs. The initial conditions are
Md(0) = Ms(0) = 10−3 kgm−2s−1 and Ad(0) = As(0) = 10 Jkg−1. Shown
in the same format as in Fig. 2.

The eigenfrequency equation for any values of τ was stated as 52 above.
In the limit of equal shallow and deep time scales it reduces to Eq. 53 giving
us the leading–order solution ξ ≡ ξ0 = 0 or γ̂s − γ̂d just as in Eq. 54, with
corresponding eigenfrequencies as given in Eq. 55. With the notation of the
current subsection, these read

σ0 = − 1

4τ0
±
[

(

1

4τ0

)2

+
ξ0

2τ0

]1/2

(62)

To obtain the leading corrections to these results for a difference in time
scales, we write ξ = ξ0 + ξ1 and expand the eigenfrequency equation 52 to
include first order terms in ∆ξ and ξ1. We first note that

ξsξd = (ξ0 + ξ1 + ∆ξ)(ξ0 + ξ1 − ∆ξ) = (ξ0 + ξ1)
2 − ∆ξ2 ≃ ξ2

0 + 2ξ1ξ0 (63)

so that ∆ξ does not enter into this expression at the leading order. As a
result, at first order Eq. 52 is

2ξ0ξ1 + (γ̂d + γ̂s)∆ξ + (γ̂d − γ̂s)ξ1 = 0 (64)

or
(2ξ0 + γ̂d − γ̂s)ξ1 + (γ̂d + γ̂s)∆ξ = 0 (65)
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leading to
ξ1 = −(2ξ0 + γ̂d − γ̂s)

−1(γ̂d + γ̂s)∆ξ (66)

For the case of ξ0 = 0 we have σ0 = 0 or σ0 = −1/(2τ0). The first of
these possibilities gives ∆ξ = 0 at leading order and so ξ1 = 0. The second
possibility gives

ξ1 = −
(

γ̂d + γ̂s

γ̂d − γ̂s

)

τs − τd

4τ2
0

= −λ1∆ξ (67)

where we have defined

λ1 ≡ γ̂d + γ̂s

γ̂d − γ̂s
(68)

For the case of ξ0 = γ̂s − γ̂d we have

ξ1 = λ1∆ξ (69)

Expressions 67 and 69 are the first order expressions for the corrections to
each of the solutions to ξ. However, we wish to translate these corrections
into the corresponding corrections to the eigenfrequnecies σ. In order to
make this translation we write σ = σ0 + σ1, substitute this form into the
definition for either of ξs or ξd (Eq. 51) and expand all variables to first
order in the time scale difference. The result is that

σ1 =
ξ1

4σ0τ0 + 1
(70)

So for the non-trivial case with ξ0 = 0 we have

σ0 = − 1

2τ0
σ1 = −ξ1 = λ1∆ξ (71)

so that

σ = − 1

2τ0
+

(

γ̂d + γ̂s

γ̂d − γ̂s

)

τs − τd

4τ2
0

+ O(τs − τd)
2 (72)

which is a real correction to a real eigenvalue.
For the case of ξ0 = γ̂s − γ̂d we have

σ0 = − 1

4τ0
± λ0 σ1 = ±λ1

λ0

∆ξ

4τ0
= ±λ1

λ0
σ2

0

∆τ

4τ0
(73)

where

λ0 =
1

4τ0
[1 + 8τ0(γ̂s − γ̂d)]

1/2 (74)
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By further using the relation

σ2
0 =

1

(4τ0)2
+ λ2

0 ∓
λ0

2τ0
(75)

we obtain the following expression for the correction term

σ1 = ±λ1

λ0

(τs − τd)

4τ0

[

1

(4τ0)2
+ λ2

0 ∓
λ0

2τ0

]

(76)

In summary we obtain

σ = − 1

4τ0
± λ0

{

1 + λ1
(τs − τd)

4τ0

[

1 +
1

(4τ0λ0)2
∓ 1

2τ0λ0

]}

(77)

Since λ1 is real, the eigenvalue as a whole must be real unless λ0 is
imaginary. Simple inspection of Eq. 74 shows that this requires γ̂d > γ̂s +
(1/8τ0) as was already derived for the case of equal time scales in the previous
subsection. Assuming that λ0 is indeed imaginary, the next question to ask
is whether there are circumstances in which the real part of the eigenvalue
vanishes. If so then a periodic solution can be obtained.

The real part of the eigenvalue in this case is

− 1

4τ0
− λ0

{

λ1
(τs − τd)

4τ0

1

2τ0λ0

}

= − 1

4τ0

[

1 + λ1(τs − τd)
1

2τ0

]

(78)

which will vanish if

τd − τs =
2τ0

λ1
= 2τ0

(

γ̂d + γ̂s

γ̂d − γ̂s

)

(79)

Given that γ̂d and γ̂s are positive, the factor in brackets in the above equation
can have a modulus that is no larger than 1. Thus, in order for the real part
to vanish the difference between the shallow and deep time scales must
be larger than the mean time scale. Since this contradicts our original
assumption that the time scale difference can be treated as a perturbation,
the conclusion must be that a periodic solution cannot be obtained for a
small time scale difference.

We have checked this analysis numerically by solving the full eigenvalue
equation for cases where τs is 10% larger than τd and vice versa. The
resulting phase diagrams are shown in Fig. 10 and may be compared with
Fig. 6. The lines separating regions I/II and II/III have different slopes for
τs 6= τd and so tend towards each other in a part of phase space. Thus,
the analysis in this section does raise the possibility that the system can
produce a periodic solution, but demonstrates that this will not occur in
practice unless there is a substantial difference between the shallow and
deep time scales.
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Figure 10: As in Fig. 6 but plotted for τs = 110 s (left) and for τd = 110 s
(right), all other parameters remaining unchanged.

4.6.3 When τs ≪ τd

Having established that a periodic solution does not occur for τs = τd (Sec-
tion 4.6.1) or for τs ≈ τd (Section 4.6.2), the natural next step in the analysis
is to consider the behaviour of the system when these two time scales are
well separated. In the present subsection, we consider τs ≪ τd, and in the
following subsection, we will consider τs ≫ τd.

Starting from the eigenvalue equation as expressed by 51 and 52, the
limit of τs ≪ τd can be considered by setting ξs ≃ σ while retaining the full
formula defining ξd. As a result, Eq. 52 reduces to

σ2(2στd + 1) + γ̂dσ − γ̂sσ(2στd + 1) ≃ 0 (80)

or

σ2 +
1

2τd
(1 − 2τdγ̂s)σ +

1

2τd
(γ̂d − γ̂s) ≃ 0 (81)

which has the solution

4τdσ ≃ −(1 − 2τdγ̂s) ± [(1 + τdγ̂s)
2 − 8τdγ̂d]

1/2 (82)

The solution is oscillatory when 8τdγ̂d > (1 + τdγ̂s)
2, and it becomes purely

oscillatory when τdγ̂s = 1/2. Substituting the latter condition into the
former we find that the conditions for a pure oscillation can be written as

τdγ̂s = 1/2 and γ̂d < (9/16)γ̂s (83)
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Hence, the self–amplification rate, γ̂s, of shallow convection must balance
with the self–dissipation rate, τ−1

d , of deep convection in order to obtain a
purely oscillatory solution. Moreover, the self–dampening of deep convection
through γ̂d should not be too strong.

4.6.4 When τs ≫ τd

Now we briefly consider the opposite limit of τs ≫ τd, repeating a similar
procedure as in Section 4.6.3. The eigenvalue equation in this limit is

σ2 +
1

2τs
(1 + 2τsγ̂d)σ +

1

2τs
(γ̂d − γ̂s) ≃ 0 (84)

which has the solution

4τsσ ≃ −(1 + 2τsγ̂d) ± [(1 − τsγ̂d)
2 + 8τsγ̂s]

1/2 (85)

In this limit the eigenvalues are real for any choice of parameters.

4.7 The p = 2 equations with vanishing determinant: Peri-

odic solution

In Section 4.6 we considered various special or approximate cases of the un-
forced coupled p = 2 system. An interesting form of solution that can arise is
a periodic form, with the explosive and destructive tendencies of the system
being offset against each other. Such a solution can only be obtained under
a careful choice of the parameters: and, in particular, it does not occur for
our default set described in Section 3.2. Here we consider what constraints
on the parameters must be satisfied for a periodic solution. Unlike the pre-
vious subsection, we do not seek to understand the behaviour of the system
in any limiting regime, but rather consider the general constraints.

Assuming a periodic solution, we can write σ = iω where ω is real.
Substituting this form into the eigenvalue equation 48, and equating the
real and imaginary parts produces

−ω2

2

(

1

τd
+

1

τs

)

+
1

4τdτs
(γ̂d − γ̂s) = 0 (86)

ω2 =
γ̂d − γ̂s

2(τd + τs)
(87)

and

−ω3 +
ω

4

[

1

τdτs
+ 2

(

γ̂d

τd
− γ̂s

τs

)]

= 0 (88)
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ω2 =
1

4

[

1

τdτs
+ 2

(

γ̂d

τd
− γ̂s

τs

)]

(89)

respectively. Both equations for ω must be satisfied simultaneously to realize
a periodic solution, which produces a constraint on the parameters.

γ̂d − γ̂s

2(τd + τs)
=

1

4

[

1

τdτs
+ 2

(

γ̂d

τd
− γ̂s

τs

)]

(90)

This can be rearranged to read

τ2
d γ̂s − τ2

s γ̂d =
τd + τs

2
(91)

This is a necessary but not sufficient condition since it must be checked that
the resulting ω is indeed real. From Eq. 87 this requires that γ̂d > γ̂s.

An interesting consequence of this condition can immediately be recog-
nized. Rewriting Eq. 91 as

γ̂d =

(

τd

τs

)2

γ̂s −
(

τd + τs

2τ2
s

)

(92)

it therefore follows that a periodic solution requires τd > τs.
It is straightforward to check that the general constraints of Eq. 91 and

γ̂d > γ̂s are consistent with the constraints previously derived for particular
special cases and limits.

• For the case of τs = τd = τ as considered in Section 4.6.1, Eq. 91 gives
γ̂s − γ̂d = τ−1 which violates the constraint γ̂d > γ̂s and so there is no
periodic solution.

• In the limit of τs ≪ τd as considered in Section 4.6.3, Eq. 91 immedi-
ately gives τdγ̂s = 1/2 as derived previously.

• In the limit of τd ≪ τs as considered in Section 4.6.4, Eq. 91 immedi-
ately gives τsγ̂d = −1/2 which cannot be satisfied and so there is no
periodic solution.

4.8 Summary of results for the coupled p = 2 system

The system of Eqs. 13 and 14 arises from Arakawa and Schubert’s (1974)
energy cycle description for a system with two types of convection, along
with Pan and Randall’s (1998) assumption for the relationship between con-
vective kinetic energy and cloud–base mass flux. All of the parameters in
those equations are assumed to be positive in accordance with the arguments
presented in Section 2.

The main results arising from our analysis of the system are that:
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• The unforced shallow system is unstable in isolation (Section 4.1)
whereas the unforced deep system in isolation has vanishing convective
activity (Section 4.2).

• The coupled system may be unstable, damping or neutral according
to the parameter settings. It may also exhibit periodicity. These pos-
sibilities were simply demonstrated for a limiting case where the mass
fluxes equilibriate much more quickly than the cloud work function
(Section 4.3).

• Solutions of particular interest are those for which the destabilizing
and stabilizing tendencies of shallow and deep convection respectively
are balanced. Such solution may still vary in time but they do not
persistently grow or decay. A necessary condition for such a solution
is that the determinant of the interaction matric Kij should vanish
(Section 4.4.1; Eq. 32).

• Assuming a vanishing determinant:

– The solution takes the form of Eq. 42, with formulae for the co-
efficients being given in Section 4.5 and the cubic eigenfrequency
equation being given in Eq. 48.

– A necessary condition to avoid an exploding solution is that γ̂d ≥
γ̂s (Section 4.5; Eq. 50). If the solution does not explode, it will
either decay towards an equilibrium configuration (possibly an
oscillatory decay), or else it may produce persistent oscillations.

– Persistent oscillations require the parameters to satisfy a further
constraint, Eq. 91. They will not occur for τs = τd (Section 4.6.1)
or for τs ≈ τd (Section 4.6.2). They can only occur if τd > τs

(Sections 4.6.3, 4.6.4 and 4.7).

5 Analysis of the system: the p = 1 case

In Section 4 we investigated the energy-cycle system arising from the use
of p = 2 in Eq. 5. As discussed in Section 3.1, the alternative of p = 1 is
also an attractive possibility to consider, and doing so is the purpose of the
present section. Setting p = 1 in Eq. 5 and substituting into Eqs. 3 and 4,
the energy-cycle equations read

Ṁs =
Ms

τs

(

As − As0

As0

)
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Ṁd =
Md

τd

(

Ad − Ad0

Ad0

)

(93)

Ȧs = γsMs − βdMd + Fs

Ȧd = βsMs − γdMd + Fd (94)

where

As0 =
αs

τs

Ad0 =
αd

τd
(95)

The analysis of the nonlinear p = 1 case in this section proceeds along sim-
ilar lines as for the linear p = 2 case in the previous section. Thus, we
begin by considering shallow and deep convection separately in Sections 5.1
and 5.2 respectively. The coupled system is considered in general terms in
Sections 5.3 to 5.5 and its behaviour is exemplified by some useful lineariza-
tions presented in Sections 5.6 and 5.7. A summary of the results obtained
is given in Section 5.8.

Since the p = 1 system is nonlinear, it is convenient to describe it in
terms of nondimensional parameters from the outset, as seen below. We
introduce the nondimensional couplings by

γ̂s =
γsτ

2
s Ms0

αs
=

γsτsMs0

As0
β̂s =

βsτsτdMs0

αd
=

βsτsMs0

Ad0

γ̂d =
γdτsτdMd0

αd
=

γdτsMd0

Ad0
β̂d =

βdτ
2
s Md0

αs
=

βdτsMd0

As0
(96)

The reader should note that these rescaled coupling parameters are defined
differently from Eq. 28 which introduced notation convenient for analysis
of the p = 2 system. Since the p = 2 and p = 1 systems are analysed
quite separately in this report there can be no scope for confusion. Here we
have introduced arbitrary constants Ms0 and Md0 to describe typical values
of the mass fluxes for shallow and deep convection respectively. Rather
than choosing values for these parameters, it is convenient to choose instead
particular values for the nondimensional parameters γ̂s and γ̂d and then
to use the definition of those parameters in order to set Ms0 and Md0.
Specifically we take

γ̂s = 1 γ̂d = 1 (97)

so that

Ms0 =
αs

γsτ2
s
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Md0 =
αd

γdτsτd
(98)

and

β̂s =
αsβsτd

αdγsτs

β̂d =
αdβdτs

αsγdτd
(99)

It is also convenient to define a parameter for the ratio of shallow and
deep time scales,

µ =
τs

τd
(100)

Using the default parameter set discussed in Section 3.2 the parameters
introduced in the present section take the values Ms0 = 10−2 kgm−2s−1,
Md0 = 5 × 10−3 kgm−2s−1, β̂s = 2, β̂d = 1/2 and µ = 1. These mass flux
scalings are consistent with the typical values estimated by Yano and Plant
(2012b).

5.1 Shallow convection only

The equations for the shallow mode only are (with dimensional variables)

Ṁs =
Ms

τs

(

As − As0

As0

)

Ȧs = Fs + γsMs. (101)

As before, we neglect any large-scale forcing of shallow convection so that
Fs = 0. We also non-dimensionalize this system in terms of the scaling
parameter for shallow mass flux, Ms0, that was introduced above, and the
stationary value, As0 for the shallow cloud work function. Hence,

Ms = Ms0xs, As = As0(1 + ys) (102)

so that xs and ys are the nondimensionalized mass flux and cloud work
function respectively. We furthermore nondimensionalize time with τs to
obtain

ẋs = xsys

ẏs = γ̂sxs (103)

using the nondimensional parameter γ̂s defined above. These equations are
further simplified by recalling that, without loss of generality, we set γ̂s = 1
above.
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The shallow-only equations may be rewritten as

dxs

xsys
=

dys

xs
= d(t/τs) (104)

from which the first equality gives

dxs = ysdys. (105)

This can be readily integrated to obtain the path of the system in phase
space:

xs =
1

2
(y2

s − ys(0)
2) + xs(0) (106)

Substitution into the cloud work function equation leads to

ẏs =
1

2
(y2

s − ys(0)
2) + xs(0) ≡

1

2
(y2

s − r2
s) (107)

Thus, the behaviour of the solution depends on the combination r2
s ≡

ys(0)
2 − 2xs(0) from the initial conditions. For r2

s < 0 then the cloud
work function must increase without limit, and likewise the mass flux will
explode, as can be readily seen from its tendency equation. For r2

s = 0, we
have

ẏs =
1

2
y2

s (108)

which is easily integrated to give

ys =
2

2/ys(0) − (t/τs)
. (109)

In this case the cloud work function (and the mass flux) explode to infinity
at t = 2τs/ys(0) if its initial value is larger than the equilibrium value (i.e.,
ys(0) > 0) or else it approaches the equilibrium value (with vanishing mass
flux) if the initial value is smaller than this. For r2

s > 0, the solution for the
cloud work function is

ys = −rs

[(

ys(0) − rs

ys(0) + rs

)

erst/τs + 1

] [(

ys(0) − rs

ys(0) + rs

)

erst/τs − 1

]−1

(110)

In this case, the cloud work function tends to a stationary value of −rs

as t → ∞ times and its stationarity implies that the mass flux must van-
ish. Examples of exploding and decaying solutions of the unforced shallow
equations are shown in Figs. 11 and 12 respectively.
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Figure 11: Solution for the unforced shallow mode alone in the p = 1 system.
The parameters are the default set described in Section 3.2, giving scaling
factors of As0 = 1 Jkg−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The initial
conditions are xs(0) = 0.1, ys(0) = 0 so that r2

s = −0.2. On the left and
right respectively are shown the time series of the nondimensionalized cloud
work function and of the nondimensionalized mass flux.

5.2 Deep convection only

The equations for the deep mode only are (with dimensional variables)

Ṁd =
Md

τd

(

Ad − Ad0

Ad0

)

Ȧd = Fd − γdMd (111)

As before, we neglect any large-scale forcing of deep convection, Fd = 0. We
also non-dimensionalize this system in terms of the scaling parameter for
deep mass flux, Md0, that was introduced above, and the stationary value,
Ad0 for the deep cloud work function. Hence,

Md = Md0xd, Ad = Ad0(1 + yd) (112)

so that xd and yd are the nondimensionalized mass flux and cloud work
function respectively. Anticipating later analysis of the coupled system we
furthermore nondimensionalize the time by using τs rather than τd, to obtain

ẋd = µxdyd

ẏd = −γ̂dxd (113)
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Figure 12: Solution for the unforced shallow mode alone in the p = 1 system.
The parameters are the default set described in Section 3.2, giving scaling
factors of As0 = 1 Jkg−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The initial
conditions are xs(0) = 0.1, ys(0) = −0.5 so that r2

s = 0.05. From left to right
are shown: the time series of the nondimensionalized cloud work function,
the time series of the nondimensionalized mass flux, and the trajectory in
the phase space of the nondimensionalized cloud work function (horizontal
axis) and the nondimensionalized mass flux (vertical axis).

using the nondimensional parameters defined above. These equations are
further simplified by recalling that, without loss of generality, we set γ̂d = 1
above.

The deep-only equations may re–written as

dxd

µxdyd
= −dyd

xd
= d(t/τs) (114)

As for the isolated shallow–convection system, the first equality can be read-
ily integrated to give a phase–space solution,

xd = −µ

2
(y2

d − yd(0)
2) + xd(0). (115)

Substitution of the orbit equation into the cloud work function equation
leads to

ẏd = −µ

2
(y2

d − yd(0)
2) + xd(0) ≡ −µ

2
(y2

d − r2
d) (116)

Thus, the behaviour of the solution depends on the combination r2
d ≡

yd(0)
2 +(2/µ)xd(0) from the initial conditions. This combination is guaran-

teed to be positive and the resulting cloud work function evolution is given
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by

yd = −rd

[

1 +

(

yd(0) − rd

yd(0) + rd

)

e−µrdt/τs

] [

1 −
(

yd(0) − rd

yd(0) + rd

)

e−µrdt/τs

]−1

(117)
Thus, the cloud work function approaches −rd as t → ∞. Substitution of
this asymptotic tendency into the mass flux tendency equation shows that
the mass flux vanishes as t → ∞. Examples of numerical solutions to the
unforced deep equations are shown in Figs. 13 and 14 for cases of initial
growth or decay respectively.
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Figure 13: Solution for the unforced deep mode alone in the p = 1 system.
The parameters are the default set described in Section 3.2, giving scaling
factors of Ad0 = 10 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1 and τs = 103 s. The
initial conditions are xd(0) = 0.2, ys(0) = 5 so that rd = 5.04. Shown in the
same format as in Fig. 12.

5.3 General case

We now proceed to discuss the coupled system of deep and shallow convec-
tion with p = 1. The relevant dimensional equations are given in Eqs. 93 and
94, and the forcings will again be set to zero. In terms of the dimensionless
parameters and variables introduced by Eqs. 96–100, these equations read

ẋs = xsys (118)

ẋd = µxdyd (119)

ẏs = xs − β̂dxd (120)

ẏd = −xd + β̂sxs. (121)
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Figure 14: Solution for the unforced deep mode alone in the p = 1 system.
The parameters are the default set described in Section 3.2, giving scaling
factors of Ad0 = 10 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1 and τs = 103 s. The
initial conditions are xd(0) = 0.2, ys(0) = 5 so that rd = −0.5. Shown in
the same format as in Fig. 12.

As with the coupled p = 2 system, our main interest is whether the
possible explosive growth of shallow convection and the damping of deep
convection can be coupled in such a way as to produce self–perpetuating
behaviour, with deep convection acting as a break on shallow convection
and shallow convection in turn providing a surrogate forcing for deep con-
vection. Recalling Section 4.4.1, we first note that the condition of a van-
ishing determinant for the Kij matrix is a prerequisite for such behaviour.
Since this condition arises from the cloud work function equations alone, it
applies regardless of the choice of p. The corresponding constraint on the
parameters is as stated in Eq. 32. In non-dimensional units, it takes the
form

β̂sβ̂d = 1. (122)

Asssuming a vanishing determinant, the cloud work function tendencies
are then linked as in Eq. 35, or in non-dimensional units

ẏs = β̂dẏd. (123)

Accordingly, the cloud work functions themselves are linked by Eq. 36, or
in non-dimensional units

ys − ys(0) = β̂d (yd − yd(0)) . (124)
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Thus the cloud work functions for both modes evolve in phase for a vanishing
determinant.

5.4 The p = 1 equations with vanishing determinant: Gen-

eral considerations

Using Eq. 124 (relating the cloud work functions) in Eq. 118 (the evolution
equation for shallow mass flux) we find

ẋs = xsys(0) + β̂dxs (yd − yd(0)) . (125)

The deep cloud work function yd can then be eliminated by substituting
from Eq. 119, the evolution equation for deep mass flux. The result is

ẋs

xs
=

β̂d

µ

ẋd

xd
+ ys(0) − β̂dyd(0) (126)

Thus, in order to obtain a closed solution in phase space, an additional
constraint on the initial conditions is required. Specifically, the initial cloud
work functions must be related by

ys(0) = β̂dyd(0) (127)

because otherwise the integration of Eq. 126 will produce a term propor-
tional to time. We call this condition the initial periodicity condition. A
consequence is that the two nondimensionalized cloud work functions are
then proportional for all times, as can be seen from Eq. 124. Clearly the
condition is satisfied if both cloud work functions start from their equilib-
rium values, ys(0) = yd(0) = 0.

A vanishing determinant and initial periodicity are necessary conditions
for the periodicity of the solution to the coupled system, but they are not
sufficient conditions. We investigate the system further below assuming the
initial periodicity to hold. For the remainder of this subsection, however, we
examine the character of the solutions when the initial periodicity condition
is not met. In order to do so, it is convenient at this point to introduce some
more notation, defining the dimensionless parameters

q =
β̂d

µ
=

βdαd

γdαs
(128)

and
rc = ys(0) − β̂dyd(0). (129)
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The initial periodicity condition corresponds to rc = 0, while for the default
parameters described in Section 3.2 we have q = 1/2. In terms of these
parameters, Eq. 126 can be expressed as

ẋs

xs
= q

ẋd

xd
+ rc. (130)

Integration of the above equation gives

xs

xs(0)
=

(

xd

xd(0)

)q

erc(t/τs) (131)

For rc > 0 then xs ≫ xd as t → ∞ so that deep convection becomes negligi-
ble and the system approaches the behaviour of the one-mode shallow-only
system. As discussed in Section 5.1, that system may either explode or de-
cay to zero activity. Likewise, for rc < 0 then xs ≪ xd as t → ∞ so that
shallow convection becomes negligible and the system approaches the be-
haviour of the one-mode deep-only system. As discussed in Section 5.2 that
system will always decay to zero activity. Examples of numerical solutions
to the coupled equations for rc > 0 and rc < 0 are shown in Figs. 15 and 16
respectively.
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Figure 15: Solution for the unforced p = 1 system with parameters chosen
to violate the initial periodicity condition. Blue is for the deep mode and
green for the shallow mode. The parameters are the default set described
in Section 3.2, giving scaling factors of Ad0 = 10 Jkg−1, As0 = 1 Jkg−1,
Md0 = 5× 10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The
initial conditions are xd(0) = 0.2, xs(0) = 0.1, yd(0) = 0 and ys(0) = 1 so
that rc = 1. Shown in the same format as in Fig. 11.
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Figure 16: Solution for the unforced p = 1 system with parameters chosen
to violate the initial periodicity condition. Blue is for the deep mode and
green for the shallow mode. The parameters are the default set described
in Section 3.2, giving scaling factors of Ad0 = 10 Jkg−1, As0 = 1 Jkg−1,
Md0 = 5× 10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The
initial conditions are xd(0) = 0.2, xs(0) = 0.1, yd(0) = 1 and ys(0) = 0 so
that rc = −0.5. Shown in the same format as in Fig. 12.

5.5 Behaviour of the system with initial periodicity condi-

tions

We now consider the character of the solution assuming both a vanishing
determinant and the initial periodicity condition, rc = 0. The key issue
here is to identify whether any additional conditions are required in order
to obtain a periodic solution.

When initial periodicity holds, the relationship between shallow and deep
mass flux in Eq. 131 reduces to

xs

xs(0)
=

(

xd

xd(0)

)q

(132)

The path of the solution in phase space can also be derived for the other
variables. For example, a solution in terms of the deep variables xd, yd can
be obtained by first substituting for xs from Eq. 132 into Eq. 121 to obtain
a differential equation containing xd and yd. Combining that with Eq. 119
we can then eliminate the time to obtain a differential equation connecting
xd and yd. Integrating the resulting equation produces

µy2
d

2
+ xd −

β̂s

q
xs(0)

(

xd

xd(0)

)q

=
µyd(0)

2

2
+ xd(0) −

β̂s

q
xs(0) (133)
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Similarly it is straightforward to find the solution path in the shallow part
of phase space to be

y2
s

2
− xs + β̂dqxd(0)

(

xs

xs(0)

)1/q

=
ys(0)

2

2
− xs(0) + β̂dqxd(0) (134)

Together Eqs. 132, 133 and 134 describe the complete solution in phase
space. We now consider the form of that solution. In order to do so we
examine below the solution in the phase space of the deep variables. An
analysis in terms of the shallow variables has been performed along very
similar lines and is entirely consistent with the conclusions reached below.

We first define the function

Xd(xd) = xd −
β̂s

q
xs(0)

(

xd

xd(0)

)q

(135)

and the constant

ud = µ
yd(0)

2

2
+ xd(0) −

β̂s

q
xs(0) (136)

so that Eq. 133 reads

µ
y2

d

2
+ Xd(xd) = ud. (137)

An extreme value for Xd occurs at

xex
d =

(

xd(0)
q

β̂sxs(0)

)1/(q−1)

(138)

at which point

Xd(x
ex
d ) =

(

1 − 1

q

)

[

xd(0)
q

β̂sxs(0)

]1/(q−1)

(139)

To see what kind of extreme value this is, we can look at the second derivative

d2Xd

dx2
d

= −(q − 1)
β̂sxs(0)x

q−2
d

xd(0)q
(140)

Thus, the form of the solution depends on q with three possibilities to
be considered further in the following three subsections: q > 1 in which case
Xd has a maximum, q = 1 in which case Xd is unbounded, and q < 1 in
which case Xd has a minimum. From Eq. 137 we immediately notice that
for y2

d to be bounded then Xd must have a minimum. Thus, if q < 1 then
we ensure a solution that cannot explode. Examples and further discussions
are given below.
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5.5.1 Form of solution for q > 1

If q > 1 then Xd has a maximum at a positive value of Xd as sketched in
Fig. 17 (on the left).

Figure 17: Sketch of the function Xd(xd) for (left) q > 1, (center) q = 1 and
(right) q < 1.

Consider the point P at which yd = 0 in the phase space of (xd,Xd). Here
Xd has its maximum value that could be obtained in an actual solution of
Eq. 137, with Xd(xd) = ud. This point could correspond to the maximum
possible value of the function Xd(xd) as determined above, but more likely
is that there are two possible solutions, P, for Xd(xd) = ud on either side of
that maximum. We label those points as P1 and P2 on the left and right
of the maximum respectively. Which side of the Xd(xd) curve an actual
solution remains will depend upon the initial conditions.

Suppose that we are initially on the left-hand branch of the curve (i.e.,
if xd(0) < xex

d ). Any value of yd 6= 0 that occurs in the solution must
correspond to a smaller value of xd compared to that at P1. This means
that the solution can only occupy the region between P1 and the origin, thus
including the possibilty of xd → 0 (and also xs → 0) so that all convective
activity dies out. Fig. 18 illustrates a numerical solution.

Otherwise the initial state may be on the right-hand branch of the Xd(xd)
curve (i.e., with xd(0) > xex

d ). In that case any value of yd 6= 0 that occurs
in the solution must correspond to a larger value of xd compared to that at
P2. This means that the solution occupies a region between P2 and a point
where xd → ∞ (and also xs → ∞). Thus the system is able to explode.
Fig. 19 illustrates a numerical solution for this case.
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Figure 18: Solution for the unforced p = 1 system with q > 1. Blue is for the
deep mode and green for the shallow mode. The parameters are the default
set described in Section 3.2 except for αd = 5 × 104 m2 s−1, giving scaling
factors of Ad0 = 50 Jkg−1, As0 = 1 Jkg−1, Md0 = 2.5 × 10−2 kgm−2s−1,
Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The parameter q = 2.5. The
initial conditions are xd(0) = 0.08, xs(0) = 0.1, yd(0) = 0 and ys(0) = 0 so
that rc = 0. The maximum of Xd(xd) occurs for xex

d = 0.127. Shown in the
same format as in Fig. 12.

5.5.2 Form of solution for q = 1

If q = 1 then Xd becomes simply proportional to xd and so the function
does not have any extreme values. A sketch of the situation can be seen in
Fig. 17 (in the centre). Specifically, we have

Xd = xd

[

1 − β̂s

q

xs(0)

xd(0)

]

(141)

According to the sign of the factor in square brackets, Xd is a straight line
through the origin with either positive or negative gradient.

Consider the case of a positive gradient (i.e., if qxd(0) > β̂sxs(0)) and a
point P1 in the phase space of (xd,Xd) at which yd = 0 and so Xd(xd) =
ud. This is the maximum value of Xd that can be obtained in an actual
solution to our system and any other value of yd that occurs must therefore
correspond to a smaller value of xd compared to that at P1. This means
that the solution can reach a situation where xd → 0 (and also xs → 0) so
that all convective activity dies out. Fig. 20 illustrates this case numerically.

For the case of a negative gradient, we consider a point P2, again defined
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Figure 19: Solution for the unforced p = 1 system with q > 1. Blue is for the
deep mode and green for the shallow mode. The parameters are the default
set described in Section 3.2 except for αd = 5 × 104 m2 s−1, giving scaling
factors of Ad0 = 50 Jkg−1, As0 = 1 Jkg−1, Md0 = 2.5 × 10−2 kgm−2s−1,
Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The parameter q = 2.5. The
initial conditions are xd(0) = 0.04, xs(0) = 0.1, yd(0) = 0 and ys(0) = 0 so
that rc = 0. The maximum of Xd(xd) occurs for xex

d = 0.025. Shown in the
same format as in Fig. 11.

by yd = 0 and Xd(xd) = ud. In this case any other value of yd that occurs
in the solution must make Xd more negative and must therefore correspond
to a larger value of xd compared to that at P2. Thus the system is able to
explode. Fig. 21 illustrates this case numerically.

5.5.3 Form of solution for q < 1

If q < 1 then Xd has a minimum at a negative value of Xd. A sketch of the
situation can be seen in Fig. 17 (on the right).

Once again we consider a point P in the phase space of (xd,Xd) given by
yd = 0 and hence Xd(xd) = ud. The point could correspond to the minimum
of the function Xd(xd) as derived above, but more likely is that there are
two possible solutions for P on either side of that minimum. We label those
points as P1 and P2 on the left and right of the minimum respectively.

Suppose that the initial conditions place us on the P1 side of the curve
(i.e., if xd(0) < xex

d ). Any non-zero value of yd that occurs in the solution
must correspond to a larger value of xd compared to that at P1. This means
that the solution can access the P2 side of the curve although it cannot go
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Figure 20: Solution for the unforced p = 1 system with q = 1. Blue is for
the deep mode and green for the shallow mode. The parameters are the
default set described in Section 3.2 except for αd = 2 × 104 m2 s−1, giving
scaling factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1, Md0 = 10−2 kgm−2s−1,
Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions are
xd(0) = 0.2, xs(0) = 0.1, yd(0) = 0 and ys(0) = 0 so that rc = 0. Shown in
the same format as in Fig. 12.

beyond the point P2 itself because there are no values of yd that could allow
it.

Otherwise, for initial conditions on the P2 side of the curve, any non-
zero value of yd that occurs corresponds to a smaller value of xd compared to
that at P2. This means that the solution can access the P1 side of the curve
although of course we cannot go past the point P1 itself. Fig. 22 illustrates
the periodic solution that is found numerically for q < 1.

5.6 Linearization of the p = 1 system

The p = 1 system is fully nonlinear as emphasized by Yano and Plant (2012a)
for the one–mode case. It is nonetheless revealing to consider linear analyses
to study the evolution in the vicinity of various situations of particular
interest. Important questions concern the behaviour of the system when
it deviates slightly from the full set of conditions for periodicity that were
determined in Sections 5.3 to 5.5. After presenting a linear formulation in
Section 5.6.1 below, we then consider a range of special cases in turn.
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Figure 21: Solution for the unforced p = 1 system with q = 1. Blue is for
the deep mode and green for the shallow mode. The parameters are the
default set described in Section 3.2 except for αd = 2 × 104 m2 s−1, giving
scaling factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1, Md0 = 10−2 kgm−2s−1,
Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions are
xd(0) = 0.1, xs(0) = 0.2, yd(0) = 0 and ys(0) = 0 so that rc = 0. Shown in
the same format as in Fig. 11.

5.6.1 General approach for linearization with vanishing determi-

nant

Consider a linearization of the coupled p = 1 system about an arbitrary
reference state, which we will denote by using a subscript r. If the departure
from the reference state is denoted using a prime then the linearized form
of the coupled Eqs. 118 to 121 becomes

ẋ′

s = xsry
′

s + ysrx
′

s (142)

ẋ′

d = µ(xdry
′

d + ydrx
′

d) (143)

ẏ′s = xsr − β̂dxdr + x′

s − β̂dx
′

d (144)

ẏ′d = −xdr + β̂sxsr − x′

d + β̂sx
′

s (145)

We specialize to reference states that satisfy

xsr = β̂dxdr (146)

xdr = β̂sxsr. (147)

The combination of these two constraints means that β̂sβ̂d = 1 and so we are
dealing with a vanishing determinant as discussed in Section 5.3. This means
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Figure 22: Solution for the unforced p = 1 system with q < 1. Blue is for the
deep mode and green for the shallow mode. The parameters are the default
set described in Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1, As0 =
1 Jkg−1, Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s.
The initial conditions are xd(0) = 0.2, xs(0) = 0.2, yd(0) = 0 and ys(0) = 0
so that rc = 0. The parameter q = 0.5. Shown in the same format as in
Fig. 12.

that the cloud–work functions are linked by Eq. 124, and by furthermore
taking the initial state to be the reference state this reads

y′s = β̂dy
′

d. (148)

Since the above relation must be satisfied at all times, this includes the initial
time, and so the reference state must itself satisfty the initial periodicity
condition,

ysr = β̂dydr. (149)

Although this constraint and Eq. 146 mean that reference state is not arbi-
trary it should be recognized that there is still considerable freedom remain-
ing in its choice. Using Eq. 148 to eliminate y′d, Eqs. 142 to 144 become

(

d

dt
− ysr

)

x′

s = xsry
′

s (150)

(

d

dt
− ysr

q

)

x′

d =
xsr

µq2
y′s (151)

ẏ′s = x′

s − µqx′

d (152)
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where we have also made use of Eqs. 146 and 148 to eliminate xdr and
ydr respectively and have expressed the final result using the parameter q
defined in Eq. 128. From the above equations we can now easily derive an
eigenvalue equation. Specifically, Eq. 152 gives

σy′s = x′

s − µqx′

d (153)

such that by eliminating y′s Eqs. 150 and 151 become

[σ(σ − ysr) − xsr]x
′

s + µqxsrx
′

d = 0 (154)

and
[

σ

(

σ − ysr

q

)

+
xsr

q

]

x′

d −
xsr

µq2
x′

s = 0 (155)

respectively. Now by taking the determinant of the above two equations, we
obtain the eigenvalue equation

σ2 − ysr

q
(1 + q)σ +

1

q

(

xsr(1 − q) + y2
sr

)

= 0 (156)

This is the statement of the eigenvalue problem for a linearization of the
coupled p = 1 system about an initial reference state for which the conditions
146 and 147 hold. We consider two possible choices of reference state in the
next subsections.

5.6.2 Reference state 1: Linearization about zero mass flux

For a linearization about zero mass flux we set xsr = xdr = 0 so that the
cubic eigenvalue equation 156 reduces to

σ2 − ysr

q
(1 + q)σ +

1

q
y2

sr = 0 (157)

with roots σ = ysr and ysr/q. Thus, the modes are either both growing or
both decaying according to the sign of the anomalous cloud work function.
The result accords with the physical expectation that from an initial state
of zero mass flux then excess of cloud work function beyond the equilib-
rium value will lead to the growth of convection, whereas a reduction below
equilibrium will produce decay of any linear fluctuation.

Figs. 23 and 24 show example results for this approximation with ysr

positive and negative respectively. The plots include the solution obtained
from the fully nonlinear equations as well as that from the linearized equa-
tion set. The two solutions agree very well, up to t ∼ 3τs in the former case
and at all times in the latter case.
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Figure 23: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described in
Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1, Md0 =
10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial
conditions are xd(0) = 2×10−3, xs(0) = 10−3, yd(0) = 2 and ys(0) = 1. Blue
is for the deep mode and green for the shallow mode using the fully nonlinear
equations. Red is for the deep mode and cyan for the shallow mode using
the linearized equations described in Section 5.6.1 and a reference state of
xsr = xdr = 0. Shown in the same format as in Fig. 11.

5.6.3 Reference state 2: Linearization about cloud work function

equilibrium

Equilibrium of the mass flux tendency equations, 118 and 119, occurs when
the cloud work functions are ys = yd = 0 respectively. Linearizing about
that state reduces the eigenvalue equation 156 to

σ2 =

(

q − 1

q

)

xsr (158)

Thus, a linear perturbation about the cloud work function equilibrium state
is exponentially growing for q > 1 and oscillatory for q < 1, consistent with
the nonlinear analysis of Section 5.5. Figs. 25 and 26 show example results
for this linear regime with q > 1 and q < 1 respectively.

An interesting point to notice is that the square of the oscillation fre-
quency (assuming q < 1) is proportional to the reference/initial state mass
flux, here written in terms of shallow convection. Thus, the period of os-
cillation could be arbitrarily increased by decreasing the initial amplitude
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Figure 24: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described
in Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1,
Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s . The
initial conditions are xd(0) = 2 × 10−3, xs(0) = 10−3, yd(0) = −0.5 and
ys(0) = −0.25. Blue is for the deep mode and green for the shallow mode
using the fully nonlinear equations. Red is for the deep mode and cyan for
the shallow mode using the linearized equations described in Section 5.6.1
and a reference state of xsr = xdr = 0. Shown in the same format as in
Fig. 12.

of convective activity. In principle, the oscillation period could even be
extended to an MJO time scale.

Let us now extend the above analysis by supposing the reference state
to be a small departure from the cloud work function equilibrium. We set
ysr = ǫ and expand the eigenvalue equation 156 in powers of ǫ. Writing the
eigenvalues as σ ≈ σ0 + σ1 with σ0 given by Eq. 158 and σ1 being linear in
ǫ, the eigenvalue equation reads

2σ0σ1 − (1 + q)
ǫ

q
σ0 = 0. (159)

at first order in ǫ. This may be rearranged to give

σ1 =
1 + q

2q
ǫ (160)

Thus, the effect of this correction depends on the sign of the departure from
the cloud work function equilibrium value. A slight excess (deficit) of the
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Figure 25: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described
in Section 3.2, except for αd = 5 × 10−4m2s−1, giving scaling factors of
Ad0 = 50 Jkg−1, As0 = 1 Jkg−1, Md0 = 2.5 × 10−2 kgm−2s−1, Ms0 =
10−2 kgm−2s−1 and τs = τd = 103 s. The parameter q = 2.5. The initial
conditions are xd(0) = 0.041, xs(0) = 0.101, yd(0) = 0 and ys(0) = 0. Blue
is for the deep mode and green for the shallow mode using the fully nonlinear
equations. Red is for the deep mode and cyan for the shallow mode using
the linearized equations described in Section 5.6.1 and a reference state of
xsr = 0.04, xdr = 0.1, ysr = ydr = 0. Shown in the same format as in
Fig. 11.

cloud work function increases (decreases) the growth rate for the q > 1 case
and produces a slowly growing (decaying) aspect to the oscillatory solution
for q < 1. A numerical example of the correction in an oscillatory case is
shown in Fig. 27.

5.6.4 Linearization with a time scale separation

The above numerical examples were for cases where µ = 1 and showed that
the linearized equations are able to give a good approximation to the full
system, at least for times t of order a few τs. However, it should be noted
that a linearization works less well if there is a time scale separation.

Suppose first that shallow convection is damped very slowly compared
to deep convection so that τs ≫ τd, or in other words µ ≫ 1. In this limit
shallow convection dominates and the system quickly comes to resemble the
shallow-only regime which is markedly nonlinear. Longer integrations with
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Figure 26: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described
in Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1,
Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The
parameter q = 0.5. The initial conditions are xd(0) = 0.201, xs(0) = 0.101,
yd(0) = 0 and ys(0) = 0. Blue is for the deep mode and green for the
shallow mode using the fully nonlinear equations. Red is for the deep mode
and cyan for the shallow mode using the linearized equations described in
Section 5.6.1 and a reference state of xsr = 0.1, xdr = 0.2, ysr = ydr = 0.
Shown in the same format as in Fig. 12.

q < 1 confirm that deep convection can tame this growth tendency and
produce the oscillating solution expected but clearly such behaviour is only
apparent for the full nonlinear system. Fig. 28 illustrates these points.

In the opposite limit of µ ≪ 1 shallow convection is rapidly damped
compared to deep convection. Here again, numerical tests of the linearized
system perform relatively poorly. Fig. 29 gives an illustration. In order
for linearity to be a good approximation we require the deep and shallow
modes to be well balanced at all times, while the fully nonlinear equation
set is needed to handle a situation where one of the modes dominates the
instantaneous dynamics.

5.7 Linearization for the case of a non-zero determinant

We now return to the linearized equations 142 to 145 but develop these in
a different way. In Section 5.6.1 we restricted attention to reference states
satisfying Eqs. 146 and 147, thereby commiting to the case of a vanishing
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Figure 27: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described
in Section 3.2 giving scaling factors of Ad0 = 16.67 Jkg−1, As0 = 1 Jkg−1,
Md0 = 8.3 × 10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The
parameter q = 0.5. The initial conditions are xd(0) = 0.201, xs(0) = 0.101,
yd(0) = ǫ and ys(0) = 2ǫ. Blue is for the deep mode and green for the
shallow mode with ǫ = 0. Red is for the deep mode and cyan for the shallow
mode using ǫ = 10−4. Purple is for the deep mode and lime green for the
shallow mode using ǫ = 10−4. All integrations used the linearized equations
described in Section 5.6.1 and a reference state of xsr = 0.1, xdr = 0.2,
ysr = ys(0), ydr = yd(0). Shown in the same format as in Fig. 12.

determinant. The purpose of the present subsection is to make a linear ex-
pansion for a non-zero determinant. We do however constrain the reference
states of interest by linearizing about the equilibrium values of the cloud
work function so that ysr = ydr = 0.

The linearized equations for this situation read as follows.

ẋ′

s = xsry
′

s (161)

ẋ′

d = µxdry
′

d (162)

ẏ′s = xsr − β̂dxdr + x′

s − β̂dx
′

d (163)

ẏ′d = −xdr + β̂sxsr − x′

d + β̂sx
′

s (164)

Taking a time derivative of the last two equations and then using the first
two to eliminate ẋ′

s and ẋ′

d we find that

ÿ′s − xsry
′

s + β̂dµxdry
′

d = 0 (165)
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Figure 28: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described in
Section 3.2, except for τd = 100s, giving scaling factors of Ad0 = 100 Jkg−1,
As0 = 1 Jkg−1, Md0 = 5 × 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and
τs = 103 s. The parameter q = 0.5. The initial conditions are xd(0) = 0.003,
xs(0) = 0.101, yd(0) = 0.2 and ys(0) = 1. Blue is for the deep mode and
green for the shallow mode using the fully nonlinear equations. Red is for
the deep mode and cyan for the shallow mode using the linearized equations
described in Section 5.6.1 and a reference state of xsr = 0.1, xdr = 0.001,
ysr = 1 and ydr = 0.2. Shown in the same format as in Fig. 11.

ÿ′d + µxdry
′

d − β̂sxsry
′

s = 0 (166)

It is then straightforward to obtain the eigenvalue equation

(σ2 − xsr)(σ
2 + µxdr) + µβ̂dβ̂sxsrxdr = 0 (167)

or
σ4 + (µxdr − xsr)σ

2 + (β̂sβ̂d − 1)µxsrxdr = 0 (168)

The solution may be written as

σ2 =
σ2

0

2

(

1 ± (1 − λ)1/2
)

(169)

where we have defined
σ2

0 = xsr − µxdr (170)

λ =
4(β̂sβ̂d − 1)µxsrxdr

σ4
0

(171)
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Figure 29: Numerical example solution for a linearized approximation of
the unforced p = 1 system. The parameters are the default set described in
Section 3.2, except for τd = 104s, giving scaling factors of Ad0 = 1 Jkg−1,
As0 = 1 Jkg−1, Md0 = 5 × 10−4 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and
τs = 103 s. The parameter q = 0.5. The initial conditions are xd(0) = 2.001,
xs(0) = 0.101, yd(0) = −0.5 and ys(0) = −0.025. Blue is for the deep mode
and green for the shallow mode using the fully nonlinear equations. Red
is for the deep mode and cyan for the shallow mode using the linearized
equations described in Section 5.6.1 and a reference state of xsr = 0.1,
xdr = 2, ysr = −0.025 and ydr = −0.5. Shown in the same format as in
Fig. 11.

The behaviour depends on the initial mass flux difference between shallow
and deep convection, as measured by σ2

0 , and on the departure from a van-
ishing determinant, as measured by λ.

If λ ≤ 1 then σ2 is purely real and is either positive or negative in
accordance with the sign of σ2

0. Thus, there are purely oscillatory modes
for σ2

0 < 0 or both growing and decaying modes for σ2
0 > 0. The other

possibility is that λ > 1 and so σ2 is complex. In that case there are both
decay and growing oscillatory modes regardless of the sign of σ2

0 .
Most of these cases contain a growing mode indicating that there are no

stable values of the mass flux when the coupled p = 1 system is started from
the equilibrium values of the cloud work function. A numerical example is
shown in Fig. 30. However, an exception occurs for σ2

0 < 0 and λ ≤ 1 in
which case a linear perturbation produces a periodic solution, although this
is no longer true in a fully nonlinear regime. An example solution for this
regime is given in Fig. 31 and shows that convective activity is dissipated
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away in the nonlinear regime, but that the system continues to oscillate in
the linear approximation. The approximation breaks down relatively quickly
in this case, at t ∼ 0.5τs.
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Figure 30: Solution for the unforced p = 1 system with finite determinant.
The parameters are the default set described in Section 3.2, with the ex-
ception of βd = 0.2 Jm2kg−2, giving scaling factors of Ad0 = 10 Jkg−1,
As0 = 1 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and
τs = τd = 103 s. The initial conditions are xd(0) = 0.201, xs(0) = 0.501,
yd(0) = 0 and ys(0) = 0. The parameters σ2

0 = 0.3 and λ = 4.4. Blue is
for the deep mode and green for the shallow mode using the fully nonlinear
equations. Red is for the deep mode and cyan for the shallow mode using
the linearized equations described in Section 5.7 and a reference state of
xsr = 0.5, xdr = 0.2, ysr = ydr = 0. Shown in the same format as in Fig. 11.

5.8 Summary of results for the p = 1 system

The system of Eqs. 93 and 94 arises from Arakawa and Schubert’s (1974) en-
ergy cycle description for a system with two types of convection, along with
Yano and Plant’s (2012a) linear assumption for the relationship between
convective kinetic energy and cloud–base mass flux. All of the parameters
in those equations are assumed to be positive in accordance with the argu-
ments presented in Section 2.

The main points arising from our analysis of the system are that:

• The stability of the unforced shallow system in isolation depends on
the initial conditions (Section 5.1), specifically the combination r2

s ≡
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Figure 31: Solution for the unforced p = 1 system with finite determinant.
The parameters are the default set described in Section 3.2, with the ex-
ception of βd = 0.2 Jm2kg−2, giving scaling factors of Ad0 = 10 Jkg−1,
As0 = 1 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and
τs = τd = 103 s. The initial conditions are xd(0) = 4.001, xs(0) = 0.501,
yd(0) = 0 and ys(0) = 0. The parameters σ2

0 = −3.5 and λ = 0.65. Blue is
for the deep mode and green for the shallow mode using the fully nonlinear
equations. Red is for the deep mode and cyan for the shallow mode using
the linearized equations described in Section 5.7 and a reference state of
xsr = 0.5, xdr = 4, ysr = ydr = 0. Shown in the same format as in Fig. 12.
Dashed curves are linear solutions.

ys(0)
2 − 2xs(0). For r2

s < 0 the system explodes, for r2
s = 0 it either

becomes infinite at the finite time t = 2τs/ys(0) (if ys(0) > 0) or else
all convection is damped out (if ys(0) < 0), and for r2

s > 0 then all
convection is always damped out. Thus, in contrast to the p = 2
system, isolated shallow convection is not necessarily explosive but
may decay if the initial mass flux is not too strong.

• The unforced deep system in isolation has vanishing convective activity
(Section 5.2), regardless of the initial conditions. Thus, it behaves
qualitatively like the p = 2 system.

• The coupled system may be unstable, damping or neutral according to
the parameter settings and the initial conditions. It may also exhibit
periodicity. As for the p = 2 system, solutions of particular interest are
those for which the destablizing and stabilizing tendencies of shallow
and deep convection respectively are balanced. Such solutions may still
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vary in time but they do not persistently grow or decay. A necessary
condition for such a solution is that the determinant of the interaction
matric Kij should vanish (Section 4.4.1; Eq. 32).

• The nonlinear p = 1 system also has a further requirement on the
initial conditions (Section 5.4; Eq. 127), which we call the initial peri-
odicity condition. The requirement is that rc = ys(0)− β̂dyd(0) = 0. If
the determinant vanishes but rc 6= 0 then the coupled system aproaches
a single-mode system as t → ∞ with shallow (deep) convection domi-
nant for rc positive (negative).

• Assuming a vanishing determinant and initial periodicity:

– The shallow and deep convective mass fluxes are linked through
a power relationship with power q = (βdαd)/(γdαs) as given in
Eq. 132 of Section 5.5. The qualitative behaviour of the two–
mode system is controlled by this power q,

∗ For q > 1 (Section 5.5.1) either all activity dies out or else the
system explodes. Which of these possibilities occurs can be
determined from the initial mass flux, which must be smaller
than a threshold value for decay. The threshold for the deep
convective mass flux is stated in Eq. 138.

∗ For q = 1 (Section 5.5.2), the deep and shallow mass fluxes
are proportional and again either all activity dies out or else
the system explodes. Which of these possibilities occurs can
be determined by comparing the initial values of mass flux for
deep and shallow convection. Decay occurs if the deep con-
vective mass flux is sufficiently strong that xd(0) > β̂sxs(0).

∗ For q < 1 (Section 5.5.3), the solution is periodic regardless
of any further considerations of the initial conditions.

– We considered a linearization of the equations in order to consider
the system with vanishing determinant but with a small depar-
ture from initial periodicity. Specifically, we expanded about a
reference state that respects initial periodicity (Section 5.6.1).

∗ Departures from a reference state of zero mass flux produce
growth if the reference cloud work functions are larger than
their equilibrium values and decay otherwise (Section 5.6.2).

∗ Departures from the equilibrium values of the cloud work
functions grow for q > 1 and are oscillatory for q < 1 (Sec-
tion 5.6.3).
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∗ Numerically the linearized solutions provide a good descrip-
tion for µ ∼ 1 but perform poorly for µ ≫ 1 and µ ≪ 1
(Section 5.6.4) in which one mode dominates and non-linear
effects are important.

– We also considered a linearization of the equations in order to
explore the case of a non-vanishing determinant with a small
departure from equilibrium values of the cloud work functions
(Section 5.7). In that case most parameter settings and initial
conditions lead to a growing mode increasing the linear depar-
ture from the cloud work function equilibrium. However, the
departure may be neutral, producing a periodic solution of the
linearized equations, if σ2

0 < 0 and λ ≤ 1 where σ0 and λ are
defined by Eqs. 170 and 171 respectively.

To summarize the summary, for most configurations of the p = 1 system
convection will either decay or explode and the rules above enable us to
determine which of these will occur for any given parameter settings and
initial conditions. However, the system also supports a bounded periodic
solution under the following conditions:

1. The matrix determinant must vanish, βdβs = γdγs.

2. The forcing must satisfy Fs = γs

βs
Fd which of course includes the case

of no forcing.

3. The initial conditions for the cloud work function must satisfy As(0)−
As0 = γs

βs
(Ad(0) − Ad0)

4. The other parameters of the problem must respect the inequality q < 1.

6 Final remarks

A careful consideration of the behaviour of the two mode system has been
presented in this report, and should be considered a last step before we move
on to consider fully statistical aspects of the convective energy–cycle system
with many convective modes. Understanding the basic behaviour of the
two–mode system under interactions between shallow and deep convection
is an indispensable starting point for the multi–mode system.

Although a full discussion of the implementation of the prognostic energy–
cycle into a convection parameterization is beyond the scope of the present
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report, the principle is clear. It is straightforward to implement the energy-
cycle formulation into standard mass–flux based convection parameteriza-
tions (cf., Arakawa and Schubert 1974), because the energy cycle can be con-
sistently reproduced under this parameterization framework (cf., Yano and
Plant 2011, 2012a). A similar energy cycle has already been implemented
into a spectral mass–flux parameterization by Pan and Randall (1998). How-
ever, they did not consider coupling between different convective modes. The
inclusion of such couplings presents no formulational difficulties.

Another interesting possibility could be to exploit the above results as
selection criteria for use alongside existing equilibrium shallow and deep
convcetive parameterizations. Current models typically use somewhat ad
hoc criteria for deciding whether to apply a shallow scheme or a deep scheme
or possibily both. However, from the results presented above, we can always
determine which of three situations arises in a coupled prognostic system:

1. the freely-running system with no external interactions (i.e., no forc-
ing) would decay to zero. In this situation, deep convective dynamics
is dominant so we should make a call to the deep parameterization
only.

2. the freely-running system with no external interactions (i.e., no forc-
ing) would explode. In this situation, shallow convective dynamics is
dominant so we should make a call to the shallow parameterization
only.

3. the freely-running system with no external interactions (i.e., no forc-
ing) is periodic. In this situation, shallow and deep convective dynam-
ics are very tightly coupled together so we should make calls to both
of the parameterizations.

A Dimensional analysis and the functional rela-

tion, Eq. 5

A general functional relation 5 with p 6= 2 may at first sight be objected to on
dimensional grounds. A dimensional analysis says that the only consistent
manner for linking the kinetic energy density, k (J/kg), and a characteristic
velocity scale, wchar, would be to set

k =
1

2
w2

char (172)
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The purpose of this appendix is to show that this standard expression of
dimensional analysis does not contradict with Eq. 5.

The convective kinetic energy, K, (which is vertically integrated) is given
by

K =

∫ zT

zB

σc
ρ

2
w2dz (173)

where w is the vertical velocity in the convective updraft and where attention
has been restricted to the vertical component of velocity only, as in Yano
and Plant (2012a). All other notation is as defined in the main text. This
quantity K is to be compared with the cloud–base mass flux, which is defined
by

Mb = ρbσbwb. (174)

In order to relate the vertically–integrated convective kinetic energy, K,
with the convective energy density, k, we normalize the former by using the
cloud–base values, σb and ρb, and we measure its vertical scale by h. As a
result,

K = ρbσbhk

∫ 1

0

σ

σb

ρ

ρb

(

w

wchar

)2

d(z/h) (175)

The integral now depends on dimensionless vertical profiles only and we
can denote its value as 2ζ, which is assumed to take a fixed value for some
suitable choice of wchar.

Hence we can write

K = ζ
w2

charhMB

wb
(176)

Now we must address the issue of the characteristic velocity scale wchar. It is
immediately clear that the choice of this scale, and its dependence (if any) on
the cloud-base mass flux will determine a suitable choice for p in an equation
of the form of Eq. 5. In other words p = 2 is not demanded by a priori by
a dimensional analysis. A choice of p indicated by dimensional analysis can
only begin to be discussed after one has introduced and justified physical
assumptions to obtain the velocity scale wchar. Some specific examples are
discussed below.

1. As a trivial example we could set wchar ∼ L
1/2
v where Lv is the latent

heat of vaporization. It must be stressed do not believe this scaling to
be physically appropriate but clearly the latent heat parameter Lv is
a relevant quantity for moist convection and on dimensional grounds
alone this scaling cannot be held objectionable. In this case we might
then choose p = 1 if we believe that ζh/wb can be treated as constant,
or p = 0 if we believe that ζhσb can be treated as constant.
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2. A more reasonable possibility is to choose wchar = wb so that wb is the
only velocity scale involved. In that case K ∼ σbw

2
bh. This consistent

with p = 2 in Eq. 5 if ζh/ρbσb can be treated as constant for a given
convection type. However, we argued in Plant and Yano (2012a) this
cannot be strictly true, because numerical results show that σb does
indeed change with a change of Mb. In particular, if changes of Mb are
dominated by those in σb rather than those in wb (which we argued
was a better interpretation of the numerical results), then we may
set p = 1 by treating ζhwb as constant. Thus, we see that apparent
inconsistency of Eq. 5 with the dimensional analysis stems from the
fact that nondimensional variables such as σb may play a leading role.

3. Other scales for wchar have been proposed. For example, Grant and
Brown (1999); Grant and Lock (2004) considered a velocity scale based
on CAPE,

wcp =
√

CAPE (177)

and a convective velocity scale w∗ defined by

w∗ =

(

CAPE
Mb

ρb
h

)1/3

. (178)

This latter scale is obtained by equating the generation and dissipa-
tion rates of turbulent kinetic energy and scaling these as CAPEMb

and ρbw
∗3/h respectively. Grant and Brown (1999) in their Figure 4

showed results for scaling the convective-core contribution to kinetic
energy from their simulations for shallow convection. The results show
that wchar = wcp and wchar = w∗ are both effective at collapsing the
curves, although the latter case is perhaps a little better and is the
one that is consistent with their physical arguments.

If we take wchar = wcp then this would suggest taking p = 1 if
ζ CAPEh/wb is treated as constant or else p = 0 if ζ CAPEhρbσb

is treated as constant.

On the other hand, if we take wchar = w∗ then this would suggest
taking p = 5/3 if (CAPE h/ρb)

2/3h(ζ/wb) can be treated as constant
or p = 2/3 if (CAPEh/ρb)

2/3hζρbσb can be treated as constant. Of
course, it must be remembered that the velocity scale w∗ is based on
a different assumption by Grant and Brown (1999) for the form of the
dissipation rate compared to that in the main text.

References

67



Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble
with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO
relative to maximum rainfall. J. Atmos. Sci., 64, 2332–2354.

Betts, A. K., 1997: Trade cumulus: observations and modelling. In: The Physics

and Parameterization of Moist Atmospheric Convection, Kluwer Academic
Publ., 99–126.

Deadorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37,
1211–1213.

Emanuel, K. A., and M. Bister, 1996: Moist convective velocity and buoyancy
scales. J. Atmos. Sci., 53, 3276–3285.

Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large–scale cir-
culation in convective atmospheres. Quart. J. Roy. Meteor. Soc., 120,
1111–1143.

Grant, A. L. M. and A. R. Brown, 1999: A similarity hypothesis for shallow-
cumulus transports. Quart. J. Roy. Meteor. Soc., 125, 1913–1936.

Grant, A. L. M. and A. P. Lock, 2004: The turbulent kinetic energy budget for
shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130, 401–422.

Guichard F., J. C. Petch, J. L. Redelsperger, P. Bechtold, J.–P. Chaboureau, S.
Cheinet, W. Grabowski, H. Grenier, C. G. Jones, M. Kohler, J.–M. Piriou,
R. Tailleux, and M. Tomasini, 2004: Modelling the diurnal cycle of deep
precipitating convection over land with cloud-resolving models and single-
column models. Quart. J. Roy. Meteor. Soc., 604, 3139–3172.

Hohenegger, C., and C. S. Bretherton, 2011: Simulating deep convection with a
shallow convection scheme. Atmos. Chem. Phys., 11, 8385–8430.

Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary–
layer diffusion in a global climate model. J. Climate, 6, 1825–1842.

Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE, Rev. Geophys.

Space Phys., 19, 541-576.

Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., and Schu-
bert, W. H., 1999: Trimodal characteristics of tropical convection. J. Cli-

mate, 12, 2397–2418.
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