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UNIVERSITY OF MANCHESTERABSTRACT OF THESIS submitted by Robert Plant for the Degree ofDotor of Philosophy and entitled Meson Properties in an Extended NonloalNJL ModelMonth and Year of Submission: Marh 1998

A nonloal version of the NJL model is investigated. It is based on a separablequark{quark interation, as suggested by the instanton liquid piture of the QCD va-uum. The interation is extended to inlude terms that bind vetor and axial-vetormesons. The nonloality means that no further regulator is required. Moreover themodel is able to on�ne the quarks by generating a quark propagator without polesat real energies. Features of the ontinuation of amplitudes from Eulidean spae toMinkowski energies are disussed. These features lead to restritions on the modelparameters as well as on the range of appliability of the model. Conserved urrentsare onstruted, and their onsisteny with various Ward identities is demonstrated.In partiular, the Gell-Mann{Oakes{Renner relation is derived both in the ladder ap-proximation and at meson loop level. The importane of maintaining hiral symmetryin the alulations is stressed throughout.Calulations with the model are performed to all orders in momentum. Mesonmasses are determined, along with their strong and eletromagneti deay amplitudes.9



Abstrat 10Also alulated are the eletromagneti form fator of the pion and form fators asso-iated with the proesses � ! �0 and ! ! �0�. The results are found to lead to asatisfatory phenomenology and demonstrate a possible dynamial origin for vetor{meson dominane. In addition, the results produed at meson loop level validate theuse of 1=N as an expansion parameter and indiate that a light and broad salar stateis inherent in models of the NJL type.
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Chapter 1
Introdution
1.1 QCDIt is widely aepted that strong interations are desribed by the theory of quantumhromodynamis [1℄ (QCD). This is an SU(3) gauge theory of spin 12 quarks whihinterat via the olour gauge �eld, the quanta of whih are alled gluons. The quarksthemselves have one of six di�erent avours, whih are idential with regard to theQCD Lagrangian, apart from their bare (urrent) masses. The non-Abelian nature ofthe gauge group means that there are also purely gluoni interations, arising from theuse of gauge{ovariant �eld strengths. In perturbative alulations of the running ou-pling in the theory, these gluoni self interations ause the gauge oupling strength toinrease as the energy sale dereases. Hene the theory at low energies is intrinsiallynon-perturbative. At high energies the theory is weakly oupled, a property knownas asymptoti freedom. Although the preditions of the theory have been suessfullytested in this regime, where the perturbative tehnique is a valid one, a wide varietyof alternative methods is required to probe the low-energy ontent of the theory.There are several important features of strong{interation physis whih arethought to be onsequenes of the dynamis in the low-energy regime. These fea-tures should be reeted in any attempt to model the non-perturbative dynamis, if

15



Chapter 1. Introdution 16only by means of their phenomenologial impliations. One suh feature is that ofdynamial hiral symmetry breaking. Apart from the urrent quark masses, the QCDLagrangian is invariant under the global hiral transformations,(1� 5) ! Gl(1� 5) ; (1 + 5) ! Gr(1 + 5) ; (1.1)where Gl 
 Gr 2 SU(Nf)l
 SU(Nf )r. Sine the urrent quark masses of the lightesttwo (or three) avours are small one might hope for this to be a useful approximatesymmetry at low energies, where the heavy{quark avours are not relevant to thephysis. However, the observed spetrum of exitations above the vauum state doesnot exhibit hiral symmetry. The physial vauum itself is therefore onsidered notto be invariant under hiral transformations, the axial part of the hiral group beinga spontaneously broken symmetry. The required phase transition from the hiralvauum to the physial vauum, whih realizes only the vetor part of the group,is believed to be inherent in the non-perturbative setor of the theory. Assoiatedwith this transition is the appearane of a Goldstone boson. In pratie, the smallexpliit hiral symmetry breaking, owing to the non-zero urrent quark masses, meansthat the Goldstone state is manifested only approximately in the guise of the lightpseudosalars.Another important property of QCD is that of on�nement, the requirementthat only olour{singlet omposite systems of quarks and gluons an be observed asasymptoti states. There being no proof that on�nement must our in QCD, theproperty is postulated on the basis that no oloured states have ever been deteted.Qualitative arguments, based on the large N limit [2℄ or on the assumed failureof the luster deomposition priniple, indiate that on�nement should be a non-perturbative e�et, assoiated with strong, long{range fores between oloured objets.Some support for suh ideas is provided by the phenomenologial suess of potentialand string models of hadrons as well as by lattie gauge studies.One possible approah towards a pratial desription of low-energy strong physisis the use of QCD sum rules [3℄, whih aim to interpolate between the alulable1.1. QCD



Chapter 1. Introdution 17high-energy behaviour of the theory and low-energy phenomenology. Although thistehnique has a �rm theoretial footing, there may be unertainties introdued by thehoie of formulation on the phenomenologial side, while the results themselves anexhibit signi�ant dependene on the mass sale at whih the mathing is performed.Another possibility is to attempt to simulate QCD on a lattie of spae{time points [4℄.In priniple this approah ould be a soure of muh information. However, it is veryintensive numerially and aurate results are diÆult to ahieve, not least beauseof the unontrolled approximations that are presently required in pratie. Further,there is as yet an inomplete understanding of systemati errors, suh as �nite{sizee�ets. Another method, whih also expliitly enodes the full dynamial ontent ofQCD, is to work in the formalism of the Shwinger{Dyson equations [5℄. This for-malism onsists of an in�nite tower of oupled integral equations linking the n-pointfuntions of the theory to funtions with fewer external lines. In order to make the sys-tem tratable it must be trunated, with some ansatz hosen to represent the physisnegleted. The degree of approximation involved in that proess is unquanti�ed and,for an ansatz with any pretensions towards being realisti, the numerial situation aneasily beome prohibitive. The method does, however, have ertain advantages overthe lattie approah, suh as the transparent onnetion between dynamial hiralsymmetry breaking and the Goldstone harater of the pion [6℄. Yet another teh-nique ommonly applied is that of the e�etive hiral Lagrangian1 where one works interms of mesoni degrees of freedom and onstruts Lagrangians onsistent with hiralsymmetry. Although suh Lagrangians may ontain many unknown oeÆients, whihmust be determined by appeal to experiment, they are nevertheless at worst usefultools for eluidating the relationships between di�erent physial proesses.Eah of the methods outlined above is, at least in priniple, apable of beingfully onsistent with QCD. An alternative line of attak, however, is to operate in aframework whih relaxes that requirement from the outset. For instane, the starting1whih is disussed further in Appendix C.
1.1. QCD



Chapter 1. Introdution 18point ould be to postulate some e�etive quark Lagrangian. In that style of approahone aims to onstrut a model whih inorporates some important aspets of thelow-energy QCD dynamis and yet with whih atual alulations of observables arereasonably straightforward to perform. Considered from a purely phenomenologialperspetive, a model of that type should be apable of aounting for a wide range ofexperimental data, hopefully with a more limited set of free parameters than would beneeded by a model formulated at the hadroni level. Moreover, one might hope thatby exploring a variety of suh models of interating fermions it may be possible to gainsome insight into the ways in whih partiular properties of the underlying dynamisinuene the resulting observables. A simple and early example of the approah is themodel of Nambu and Jona{Lasinio [7℄ (NJL) of whih there will be a good deal moreto say later.1.2 OverviewThe main body of this thesis will present work on the development of a model ofinterating fermions. A simpler version of the model to be used was originally pro-posed by Bowler and Birse [8℄ as a tratable dynamial model whih shares severalfeatures with low-energy QCD. Being based on a four{quark interation vertex, it hassome similarities with the model of NJL. However, sine the interation of Ref. [8℄ istaken to be nonloal there are also some important di�erenes. Amongst these arefeatures whih eliminate the traditional problems of the NJL model whilst neverthe-less retaining muh of the simpliity that is its hief merit. The nonloal model wastherefore suggested as one whih o�ers an interesting improvement over the originalNJL Lagrangian. This thesis investigates the proposed model in some detail, extend-ing the treatment of Ref. [8℄ by inluding interation terms that bind the vetor andaxial vetor mesons as well as by developing a framework that enables eletromagnetiquantities to be alulated.The enlarged model to be desribed here is referred to as the nonloal extended1.2. Overview



Chapter 1. Introdution 19NJL model, details of its de�nition and motivation being presented in Chp. 2. A partof that de�nition is the spei�ation of transverse vetor and axial urrents, whih arealso disussed in that hapter. Calulations with the model will be performed to allorders in momentum but to a �nite order in the 1=N expansion. Working initially atleading order (LO) in 1=N, the resulting forms of the quark and meson propagatorsare presented in Chp. 3. In the following hapter, the means of oupling partiles toexternal urrents are explained and various Ward identities, suh as the Gell-Mann{Oakes{Renner (GMOR) relation and that for the orrelator of vetor urrents, aredemonstrated to hold. Determination of the model parameters and the resulting me-son spetrum are disussed in Chp. 5, along with the evaluations of purely hadronimeson deay modes. A variety of eletromagneti deays and form fators are al-ulated and disussed in Chp. 6. In addition, that hapter inludes desriptions ofhow other identities are satis�ed by the model alulations, spei�ally those for thepion harge and the anomalous �0 deay amplitude. Sine 1=N is not a partiularlysmall expansion parameter, an obvious desire is to examine the orretions to themodel at next-to-leading order (NLO). In Chp. 7, the theoretial basis for doing so isestablished, the extra ontributions being given for the quark and meson propagatorsand for the pion deay onstant. There are useful anellations whih an be foundamongst the graphs ontributing to the pion deay onstant at NLO and these aredetailed in Appendix A.1. It is important to ensure that the NLO treatment remainsonsistent with symmetry restritions and to that end the GMOR relation is expliitlyveri�ed in Chp. 7, drawing on results derived in Appendies A and B. Numerial re-sults from the NLO analysis are given in Chp. 8. There is some additional disussionand a summary of the �ndings in Chp. 9 where onlusions are also drawn.Chiral Symmetry ConstraintsIn the work on the nonloal extended NJL model, a onsiderable amount of attentionwill be devoted to showing that the model alulations satisfy various identities whih
1.2. Overview



Chapter 1. Introdution 20follow from hiral symmetry. Sine the interations in the model are onstruted tobe hirally symmetri, suh identities will provide useful heks on the alulations,helping to verify that all of the relevant ontributions to a proess have been orretlyidenti�ed and evaluated. This is important to establish beause a failure at anystage to inorporate hiral symmetry orretly ould greatly distort the results forobservables. The point is highlighted in Appendix C with a alulation of the raredeay �! 4�. Although this deay mode of the � meson is yet to be observed, someauthors [9, 10℄ have reently expressed hopes that it might be possible to detet it inforthoming experiments. Following some general omments about the onstrution ofhiral e�etive Lagrangians, the appendix desribes omputations of the deay usinga variety of suh phenomenologial Lagrangians. The deay widths dedued fromall of these hirally{symmetri approahes are an order of magnitude smaller thanthose whih have been estimated in models that did not respet all of the symmetryonstraints [9, 10, 11℄. The proess therefore gives a dramati illustration of the needto make sure that suh onstraints are enfored.Brief onsideration will also be given in Appendix C to the possible impliationsthat a measurement of the � ! 4� partial width ould have for the e�etive La-grangians used. In partiular, omments will address the issue of whether the deaymight be able to test any of the phenomenologial notions assoiated with the vetormesons. Suh notions will be amongst those probed within the ontext of the nonloalextended NJL model. In the remainder of this introdutory hapter, it therefore seemsappropriate to draw the reader's attention to some of those phenomenologial ideaswhih will be of partiular relevane to the work.1.3 Chiral SymmetryThe onept of hiral symmetry is a very powerful one, underpinning almost all ofthe phenomenology whih has been developed in low-energy strong physis. In orderfor it to be so useful a priniple it is neessary that the urrent quark masses be1.3. Chiral Symmetry



Chapter 1. Introdution 21small. The symmetry is then almost satis�ed by the QCD Lagrangian. The urrentmasses should be small in omparison with, say, the proton mass, whih one mightreasonably onsider to be a typial energy sale of the strong interation. In the mostreent update from the Partile Data Group [12℄, the following values were quoted forthe urrent quark masses2:mu = 2 to 8MeV; md = 5 to 15MeV; ms = 100 to 300MeV; (1.2)with the other three quark avours being heavier still. The up and down avoursof quark an therefore be regarded as light in the above sense. Going further, if thestrange quark were also inorporated then a three{avoured hiral symmetry mightprove a useful tool. However, sine the strange quark's bare mass is signi�antlylarger, there are many pratial appliations where one would need to inlude appro-priate symmetry{violating e�ets to obtain satisfatory results. While the study ofstrangeness is an important subjet in its own right, the attention of this thesis willbe foused on the lightest two avours.1.4 Constituent QuarksOf the strongly{interating states that have been so far observed there are two mainlasses: mesons, the quantum numbers of whih may be aounted for in terms ofthose of an underlying qq pair; and (anti-) baryons, similarly desribed with a (q q q)qqq struture. For ompleteness, it should also be pointed out that there is sometentative evidene for other possible strutures in observed bound states, suh as thepurely gluoni, qq moleules or hybrid qqg states. The onerns here are with themesons, being the simplest bound systems in whih to attempt to model the internaldynamial struture.2In general, the values of the quark masses are dependent upon the renormalizationsheme adopted and the sale at whih they are evaluated. The estimates quoted refer to amass{independent subtration sheme, at a sale of O(1GeV).
1.4. Constituent Quarks



Chapter 1. Introdution 22The quarks referred to in the above ategorizations of hadroni spetrosopy arenot to be identi�ed with those elementary �elds with masses of a few MeV (Eq. 1.2)found in the QCD Lagrangian. Although sharing the same disrete quantum numbersas those �elds, the quarks that appear in simple spetrosopi desriptions are objetswith masses of a few hundred MeV. E�etive masses of that order are required instraightforward spetrosopi treatments of hadroni properties, suh as their massesand magneti moments. It is postulated that the aquisition of suh an e�etivemass ours as a onsequene of the non-perturbative interations of the bare quarkswith the non-trivial vauum struture. The generation of masses for partiles throughspontaneous symmetry breaking is a familiar phenomenon from the Higgs mehanismof the eletroweak model [13℄ and is well illustrated by the inlusion of fermions in thelinear sigma model [14℄. More partiularly, the simplest available order parameter fordynamial symmetry breaking in QCD is provided by the matrix element h0j  j0i0,de�ned3 by4 h0j  j0i0 = �iTr Z d4p(2�)4S0(p); (1.3)where S0(p) is the full two-point funtion dressed by the interations of the theoryand evaluated at zero urrent quark mass. As throughout the text, the hiral limit ofa quantity is here denoted by the subsript zero. Now, the most general form of thedressed quark propagator isS�1(p) = (1 + a(p2))/p� b(p2): (1.4)For there to be a non-zero ondensate in the physial vauum, learly it must bethat b(p2) 6= 0 to give a non-vanishing Dira trae in Eq. 1.3. The existene ofa salar term in Eq. 1.4 an be interpreted as an e�etive mass for the onstituentquark, the generation of whih is therefore inextriably entwined with the spontaneous3Stritly speaking, to give a omplete de�nition, one should speify a partiular renor-malization sheme and the sale at whih the salar ondensate is to be evaluated. Never-theless the expression given is suÆient for the present purpose of supplying a suitable orderparameter.4Here `Tr' is used to denote a trae over avour, olour and Dira indies; the symbol `tr'will later be used to indiate a trae over Dira indies only. 1.4. Constituent Quarks



Chapter 1. Introdution 23breakdown of hiral symmetry. While it is obvious that this mass must run (sineasymptoti freedom demands that b(p2 ! �1) ! 0), in many studies it is assumedto be approximately onstant over the low-energy range (up to � 1 GeV). Suh anassumption is not in onit with many phenomenologial onsequenes, but an bea soure of diÆulties when imposed upon a dynamial model, suh as that of NJL.1.5 The PionsChp. 1.1 mentioned the important role played by the light pseudosalar mesons whih,in the hiral limit, are the massless Goldstone modes assoiated with dynamial hiralsymmetry breaking. A simple early model whih embodies hiral symmetry is theelebrated linear sigma model of Gell-Mann and L�evy [14℄. As well as pseudosalar�elds for the pions, the model ontains a salar �eld whih aquires a vauum expeta-tion value (�f�) and is thereby responsible for the spontaneous symmetry breakdown.The ground state is degenerate with respet to pioni exitations that lie on the hiralirle5, �2 + �2 = f 2� . An axial symmetry transformation ats to move the system be-tween these degenerate states. Its e�et an be parameterized by the matrix elementof the axial urrent, Ja�5 = 12 �a�5 , between the vauum and a single pion,h0jJa�5 (x)j�b(q)i = Æabif�q�e�iqx: (1.5)The above matrix element ontrols the weak deay of the harged pion, �� ! l��l(l = �; e) [15℄ from whih a numerial value for the pion deay onstant, f�, anbe determined. The quantity is a ruial element in any hiral model sine it is thephysial value whih sets a sale for the dynamial symmetry breaking proess. Takingthe divergene of Eq. 1.5 givesh0j��Ja�5 (x)j�b(q)i = Æabf�m2�e�iqx; (1.6)relating the pion mass to the expliit breaking of axial symmetry. The relationshipwas further developed by Gell-Mann, Oakes and Renner [16℄ (GMOR) who derived5note that the onvention is followed where an undersore denotes an isotriplet.1.5. The Pions



Chapter 1. Introdution 24the result f 2�m2� = �mh0j  j0i0 +O(m2); (1.7)where m is the average of the up and down urrent quark masses. A further assump-tion is required to obtain Eq. 1.7, namely the partial onservation of the axial urrent(PCAC). Although the urrent quark masses expliitly break the axial part of thehiral group, its urrent is regarded as onserved in the �rst instane, the e�ets ofthe atual symmetry breaking often being small orretions whih an reasonably betreated perturbatively. Eq. 1.6 implies that a suitably{normalized ��Ja�5 ould be usedas the �eld desribing an on-shell pion. Making the PCAC assumption then meansthat an extrapolation of this operator from the pion mass shell to q2 = 0 should be asmooth one and hene that low-energy matrix elements of the axial urrent divergeneare dominated by the pion. Appliation of this notion an be very powerful. Its plausi-bility may be justi�ed a posterori from the suesses of its many onsequenes. Whenombined with urrent algebra (the ommutation relations of the vetor and axialurrents), there are a wide variety of soft pion theorems whih an be dedued [17℄.Interpretation of the salar (sigma) meson in the linear sigma model is far moreontroversial. The partile is exited by fores whih at to restore a Wigner{Weylrealization of hiral symmetry, its mass parameterizing the resistane of the vauumto suh fores. However, sine there does not exist an unambiguous physial stateto identify with the �eld, it remains the subjet of debate. Suh issues are disussedmore fully in Chps. 5 and 8.1.6 The Vetor MesonsAlthough soft pion theorems provide muh useful information about proesses at thelowest energies there are important dynamial e�ets, not solely determined by sym-metry onsiderations, whih beome relevant as energies inrease. In the disussion ofsuh e�ets, the existene of more massive partiles beomes signi�ant. The lightest
1.6. The Vetor Mesons



Chapter 1. Introdution 25of these are the vetor mesons. As is disussed in Appendix C.1, the exhange of suhresonant partiles is the dominant ontribution to pion dynamis beyond the lowestenergies. The vetor mesons are also among the main ingredients in meson exhangemodels of nulear fores [18℄. Although pion exhange aounts for the major partof the long{range inter{nulear fore, inlusion of the ! meson an help to explainthe short distane repulsion between nuleons. Furthermore, the partile is onsideredto be responsible for part of the spin{orbit interation. The � meson proves to be alesser, but still signi�ant inlusion6, being relevant at omparable length sales of � 1fm. The possibility of ��! mixing [19℄ is an interesting and muh{debated aspet ofinter{nulear fores, providing a mehanism [20℄ for observed harge{symmetry viola-tions [21℄. In addition, this mixing has been suggested as a potential soure for CPviolation in B-meson deays [22℄.The vetor mesons are also highly onspiuous in disussions of the eletromag-neti ouplings of hadrons. Indeed, the very existene of the ! meson7 was �rstproposed in 1957 [23℄ in order to interpret nuleon form fators8. The � resonane wassuggested on similar grounds shortly afterwards [28℄. Sine these partiles have thesame disrete quantum numbers as the photon they an partiipate as intermediatesin eletromagneti interations. This point soon lead to the phenomenologial on-ept of vetor meson dominane (VMD) [26℄, the idea that suh intermediate statesmight atually make the dominant ontributions to eletromagneti matrix elements.The onept is perhaps most dramatially suggested by the pion form fator, whihis strongly peaked at the � meson mass [29℄. Moreover, the variation with momen-tum of this form fator, over a fairly wide range of q2, an be well desribed usingsimply a anonial � meson propagator. Experimental support for VMD an also be6there are also ontributions from ombined �� exhange whih an have important on-sequenes [18℄.7although named as �0 by the author of the initial paper.8A tentative suggestion for a new, heavy meson to aount for the phenomenologial NNspin{orbit fore an also be traed bak to that year [24℄. However, it was not until threeyears later that this was thought to be a vetor state [25, 26℄ and treated seriously [27℄ inthat ontext.
1.6. The Vetor Mesons



Chapter 1. Introdution 26inferred from various other mesoni form fators [30℄, from eletromagneti meson de-ays [31℄ and from photoprodution proesses in nulear physis [32℄. The underlyingreasons for these suesses are unlear. It is therefore of interest to examine whetherthere might be any support for the onept within a dynamial framework suh asthat of the nonloal extended NJL model. VMD an be expressed more onretely asthe assumption of an identity between the eletromagneti urrent and the anonialinterpolating �elds of the vetor mesons [33℄,J�EM(x) = �eg��0�(x)� eg!!�(x) + � � � (1.8)where the dots refer to more massive vetor resonanes. The onstants gV parame-terizing the oupling strengths between the photon and the vetor mesons are to beonsidered as being de�ned by the above �eld{urrent identity, Eq. 1.8. They an bedetermined experimentally from the deays V ! e+e�. An essential point to note,without whih Eq. 1.8 would be invalid, is that a spin-1 �eld oupled to a onservedurrent of neessity has no divergene itself, by virtue of its Proa equation9.Another phenomenologial onept, losely related to VMD, is that of a universaloupling of the vetor mesons [17, 34℄. Eletromagneti gauge invariane requires thatthe photon be universally oupled to all other elementary �elds. The ouplings toomposite states are ompliated by assoiated form fators, but for a real photonthese simply redue to the known harge of the state. Suppose now that one is pre-pared to aept an extreme form of VMD where the �eld{urrent identity is saturatedby the lightest vetor resonanes. Sine photon{hadron ouplings then take plaeexlusively via intermediate � and ! mesons, it follows that the ouplings of thesepartiles to strong states should themselves be universal. The statement will only betrue on the photon mass shell and stritly therefore universal oupling an only applyto the interations of the interpolating vetor �elds de�ned by Eq. 1.8 at the o�-shellpoint q2 = 0. Away from that point, universality an only persist by means of appar-ently improbable oinidenes relating the strong and eletromagneti form fators of9the Euler{Lagrange equation for that �eld. 1.6. The Vetor Mesons



Chapter 1. Introdution 27various targets. With that basis, an extrapolation of the priniple over a fairly largeinterval of q2, from zero to the on-shell vetor meson mass, is highly dubious; it isertainly far more implausible than the PCAC extrapolation from zero to m2�. Sur-prisingly, however, suh a bold step turns out rather well from the phenomenologialperspetive: relations between the resulting preditions for �! e+e�, �! �+�� andthe phenomenologial �NN oupling used in nulear models [35℄ are reasonably wellsatis�ed. As with VMD, the reasons for the suess of universality are not known, pre-sumably lying in some approximate property yet to be unearthed from the dynamis.Alternatively, there might of ourse just be some oinidene amongst the partiularvetor{meson ouplings whose values an be determined. This interesting question isan issue whih will reeive some attention in the remainder of the thesis. Appendix Cinludes omment on whether detetion of the �0 ! �+��2�0 deay ould in pratieprobe the strength of the ��� vertex, whih would then strengthen or weaken theexperimental support for universality. Also, Chp. 6 inludes disussion on whetheruniversality might arise from within the nonloal extended NJL model.

1.6. The Vetor Mesons



Chapter 2
Nonloal Extended NJL Model
2.1 NJL ModelThe Nambu{Jona-Lasinio (NJL) model [7, 36, 37℄ was desribed in the introdution(Chp. 1) as a dynamial model whih is very muh simpler than QCD but whihshares several qualitative features with it. Most notably, the NJL model supportsa dynamially{broken hiral symmetry, with the pions as approximate Goldstonebosons. Sine suh features have long been known in low-energy strong physis, themodel has been widely used as a starting point for the desription of light mesonistates as fermion{antifermion omposites, predating QCD and retaining its popularityto date. Viewed as a low-energy approximation to some underlying, strongly{oupledfermioni theory, variations of the model have also been studied in the ontext of thetop-quark{ondensate piture of a omposite Higgs boson [38℄.The original NJL model is based on fermioni �elds interating through a loal,hirally{invariant, four-point vertex1. The loal nature of the interation produes agreat simpli�ation of the orresponding Shwinger{Dyson and Bethe{Salpeter equa-tions. The main defets of the model, however, are diret onsequenes of this loality.1The preise form of the ation is disussed in Chp. 2.3.
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Chapter 2. Nonloal Extended NJL Model 29Spei�ally, they are that the loop integrals diverge (and so must somehow be regu-lated) and that the model is non-on�ning.The absene of on�nement in the NJL model ours beause the dynamially{generated onstituent quark mass is momentum independent. This fat imposes asevere restrition on the range of appliability of the model, sine a qq ontinuumopens up at energies of twie the onstituent mass. Only the pions lie unambiguouslybelow this threshold. The model also inludes the hiral partner of the pion, whih isloated on the threshold (indeed, just above it if one works beyond the hiral limit)and may, if desired, inlude other mesoni states. Without on�nement, however, andwith an otherwise reasonable onstituent quark mass of � 300 MeV, the � meson andother suh states would lie above the qq threshold and so ould deay into free qqstates.Sine the NJL model is non-renormalizable, in pratie it is neessary to applysome form of ultra-violet regularization with a ut-o� parameter that remains �nite.The details of the sheme adopted must be regarded as a part of the spei�ation ofthe model. A variety of shemes have been used in the literature, suh as hard three{and four{momentum ut-o�s, proper time and Pauli{Villars regulators. Although themodel does ontain regularization{independent information [39, 40℄ and results withthe various regularization shemes have been found to be qualitatively similar [41℄, thehoie of any partiular sheme laks a sound physial motivation. A feature of manyof the shemes is that as well as the form of the ut-o�, a de�nite momentum routingmust be spei�ed for loop diagrams with two-or-more quark lines [42℄. In pratiea symmetri routing is often impliitly taken in order to maintain Ward identities.Another aspet of onern is that the regularization sheme must be spei�ed yetfurther if one wishes to alulate beyond leading order in the 1=N expansion, a newut-o� being required for meson loops [43, 44, 45℄.The need for a �nite regulator in the model is somewhat problematial in theanomalous setor. If low-energy theorems for anomalous proesses (suh as that for
2.1. NJL Model



Chapter 2. Nonloal Extended NJL Model 30�0 ! ) are to hold then a omplete set of quark states is required. This anbe ahieved by leaving the anomalous diagrams ad ho unregulated [46℄ or else byinluding additional terms in the Lagrangian in order to reover the anomalous Wardidentities [40℄. Related problems our in the presene of interations of a vetorharater [46, 47, 48, 49℄ if one attempts to apply the regularization presription toboth the anomalous and non-anomalous setors.2.2 Variations on the ThemeMany attempts have been made to generalize the original NJL model [50℄ with the aimof eliminating some of the unwanted features disussed in Chp 2.1 but retaining itssuessful phenomenologial aspets [36, 37℄. One promising approah, whih providessome motivation for the model whih is studied here, is suggested by the instanton{liquid studies pioneered by Dyakonov and Petrov [51℄. In that piture, the QCDvauum is viewed in terms of a liquid of instantons (and anti-instantons), the gluonion�gurations whih onnet topologially{distint states within the vauum. Theinstantons indue an e�etive quark vertex of the 't Hooft struture [52, 53℄, whih isnonloal but has a separable form. The separable nature of this interation retains asfar as possible the simplifying features of a loal model, with the nonloality providinga natural ut-o� on all loop integrals. A similar lass of model assumes a separabledependene on the relative momentum of the qq pair and has been studied in Refs.[54,55, 56, 57℄.Other models with simple interations have been suggested based on various othertypes of gluoni �eld on�gurations postulated within the QCD vauum. For exam-ple, E�mov and oworkers [58, 59℄ start with a onstant (anti-) self-dual bakgroundgluon �eld in Eulidean spae and base their four-quark vertex on one-gluon exhangewithin suh a bakground. Yet another reent model [60℄ used a four-quark vertex me-diated by a random olour matrix, as an attempt to simulate a strongly{utuatingbakground gluon �eld (see also[61℄). 2.2. Variations on the Theme



Chapter 2. Nonloal Extended NJL Model 31It should also be mentioned that there are expliit studies of the QCD Shwinger{Dyson equations based on one-gluon exhange fores between the quarks, often us-ing e�etive gluon propagators [62, 63℄ (also see the review [5℄ and other referenestherein).The work here develops and further explores a model proposed by Bowler andBirse [8℄. It is based on a nonloal, separable, four-quark vertex and is thereforesimilar to the instanton{liquid model of Ref. [51℄. The di�erenes from the instantonmodel are that more general hoies of the interation form fator and the possibleouplings are admitted. The partiular hoie of form fator whih is adopted inthe numerial omputations an lead to quark on�nement, in the sense of a quarkpropagator without poles at real energies. It also ensures the onvergene of all quarkloop integrals, unlike that hosen in the separable model of Ref. [64℄. Only the pionsand their salar partner were studied in Ref. [8℄. In the spirit of the extended NJLmodel [37, 39, 40, 46, 65, 66, 67, 68, 69℄, other mesoni degrees of freedom, suh asthe vetor mesons, an be inorporated. Inluding these partiles enables the role ofthe on�nement mehanism to be probed, sine they have masses of around twie atypial onstituent quark mass.2.3 The Nonloal ModelFormally at least, one an imagine integrating out gluoni degrees of freedom to leavean e�etive ation for QCD expressed in terms of quark �elds only. As in the usualNJL model, suh an ation is trunated to inlude only the simplest interationspossible, keeping the two-body fores between quarks, as desribed by four-quarkverties. Indeed, at leading order in 1=N, all six-quark and higher interations ouldbe absorbed into e�etive ouplings for the four-quark terms, by replaing extra  � fators with their vauum expetation values. This is just the proedure followedin the three-avour extended NJL model [68, 69℄ with a six-quark, U(1)A-breaking
2.3. The Nonloal Model



Chapter 2. Nonloal Extended NJL Model 32't Hooft determinant2 [52℄. If there is avour asymmetry then the proess induese�etive four-quark ouplings that depend on the avour hannel. However, there isno need to onsider suh e�ets in any detail sine the present work speializes to twoavours with isospin symmetry. The ation may be written asS = Z d4x (x)(i/� �m) (x) +Xi Z Yn d4xnHi(x1; x2; x3; x4)� (x1)��i  (x3) (x2)�i� (x4): (2.1)The objet ��i in Eq. 2.1 denotes Dira, olour and isospin matries. That the matrixombinations between the quarks at x1 and x3 are the same as those between x2 andx4 is a onsequene of parity and the Lorentz, avour and olour invariane of theation. Imposing SU(2)l
SU(2)r
U(1)V symmetry restrits ertain of the possibleDira and isospin strutures to appear in the ombinationsH1(1
 1 + i5�a 
 i5�a); H2(��a 
 ��a + �5�a 
 �5�a);H5(�a 
 �a + i5 
 i5); H6(��� 
 ��� � ����a 
 ����a); (2.2)whilst the strengths of the following interations are unonstrained by symmetry on-siderations: H3(� 
 �); H4(�5 
 �5): (2.3)A wide variety of the models mentioned in Chp. 2.2 an be expressed in the aboveform, di�ering aording to the ansatz taken for fHi(x1; x2; x3; x4)g. The original NJLmodel, for instane, has H1 � R d4xQn Æ(x � xn) and a onstant oupling strength,whereas one-gluon exhange models use Hi � Æ(x1 � x3)Æ(x2 � x4)D(x1 � x2). Thepresent approah is motivated in part by the instanton{liquid model [51℄. Withinthe zero-mode approximation to that piture, there is a 2Nf -point quark interation,whih is of separable form. Reent lattie alulations o�er some support for suhnotions [71℄, suggesting that instantons do indeed dominate the vauum gluon stru-tures and showing also the importane of the zero modes to the quark propagator. In2In fat, this six-quark interation had been proposed several years earlier [70℄, albeit ona purely phenomenologial basis. 2.3. The Nonloal Model



Chapter 2. Nonloal Extended NJL Model 33momentum spae, a separable interation is one of the formHi(p1; p2; p3; p4) = 12(2�)4Gif(p1)f(p2)f(p3)f(p4)Æ(p1 + p2 � p3 � p4): (2.4)In the model of Ref. [51℄ the funtion f(p) has a partiular form and for two avoursof quark the relation G1 = �G5 follows from the struture of the 't Hooft determi-nant. Also present in that model is an interation of tensor harater but it is 1=Nsuppressed.The model studied here is similar to that of Dyakonov and Petrov [51℄, in that itis based on an interation with the separable form (Eq. 2.4). However, a more phe-nomenologial attitude is taken towards the form fator f(p) and the allowed ouplings(Eqs. 2.2 and 2.3). Only interations in the olour{singlet hannels are onsidered. Aunit matrix in olour spae is therefore assumed to be impliitly inluded whenevera matrix ombination ��i is written. The G1 oupling (in the ladder approximation)produes the pions and their isosalar salar partner, �. Couplings in the spin-1 han-nels, G2, G3 and G4, are responsible for the �, a1, ! and f1 mesons. Inluding theG5 oupling also allows the model to desribe an isovetor salar and an isosalarpseudosalar meson. The lowest{lying meson with quantum numbers orrespondingto the former is a0(980), whilst the latter is a non-strange state with the quantumnumbers of the � and �0, to be referred to as �?.The analysis does not inlude the possible tensor interations, desribed by theoupling G6. As an be seen from the following identity these an ontribute in the(axial) vetor hannels:( ��� )2 = 2T ��q2 ( ���q� : ���q� +  ���5q� : ���5q� ); (2.5)q being an arbitrary four-vetor and T �� the transverse projetor,T �� = g�� � q�q�q2 : (2.6)Suh ouplings were disussed in Ref. [68℄. They give rise to anomalous magneti{moment ouplings of the vetor mesons to onstituent quarks3. In the absene of any3The piee of axial harater in Eq. 2.5 would onstitute an independent hannel sine2.3. The Nonloal Model



Chapter 2. Nonloal Extended NJL Model 34strong phenomenologial need for suh an e�et these terms an be safely omitted.For the sake of simpliity, all of the possible independent interations are assumedto ontain the same form fator, di�ering only through the onstant oupling strengths,fGig. In the analyti work, no assumptions are required about the detailed behaviour4of the form fator. Of ourse, a spei� hoie must be made to obtain numerialresults. As in Ref. [8℄, the form fator is taken to be Gaussian in Eulidean spae5,f(pE) = exp(�p2E=�2): (2.7)This hoie was shown to be able to give quark on�nement. In fat, the possibilityof taking a di�erent � for eah of the independent ouplings has also been examined6.Doing so does not lead to any very signi�ant e�ets. This is beause the mainqualitative features are dominated by the form of the quark self-energy whih, in theladder approximation, depends only on the G1 interation.To give a omplete spei�ation of the model, there are two additional hoieswhih have to be made. One of them onerns an ambiguity in the transverse vetorand axial urrents of the model. This is a general feature of any theory with a nonloalation. Its resolution is desribed in the next setion. The other deision onerns theanalyti ontinuation of amplitudes from Eulidean to Minkowski spae. Numerialevaluations are performed in Eulidean spae beause the form fator (Eq. 2.7) isde�ned for Eulidean momenta. Sine the quark propagator of the model ontainspoles at omplex energies, it follows that the usual Wik rotation of the integrationontour [72℄ is not an appropriate ontinuation above a ertain value of the energy of anexternal line. Any theory of this type therefore requires an alternative ontinuationpresription above that energy. The method whih is followed, along with furtherits potential mixing with the transverse axial state vanishes in the avour symmetri ase.4It is neessary only that the form fator vanishes at large Eulidean momentum so thatsurfae terms may be disarded when integrations by parts are performed.5The Eulidean onventions used are that p0 = ip4E and p = �pE , so that pk = �(pk)Eand R d4p = i R d4pE.6Note that there are then some straightforward modi�ations whih one must make tovarious of the analyti expressions to be presented. 2.3. The Nonloal Model



Chapter 2. Nonloal Extended NJL Model 35disussion of these issues, is presented in Chp. 3.3.2.4 Nonloal CurrentsThe usual, loal expressions for the vetor and axial urrents do not satisfy the orretontinuity equations when one uses the equations of motion derived from the ation ofEqs. 2.1 to 2.4. The ontinuity equations for these loal urrents ontain terms whiharise as a diret onsequene of the nonloality of the ation. For example,12��( (x)� (x)) = �iPi R Qn d4xnHi(x1; x2; x3; x4)� (x1)��i  (x3) (x2)�i� (x4) �Æ(x� x3)� Æ(x� x1)�: (2.8)In order to obtain symmetry urrents with the same divergenes as the orrespondingloal urrents in QCD, and hene to maintain the orresponding Ward identities,one has to introdue additional, nonloal terms into the urrents. A Noether{likemethod of onstrution for these nonloal terms was developed7 in Ref. [8℄. Theproedure onsists of substituting for the di�erenes of delta funtions in equationslike 2.8 aording to the identityÆ(x� x1)� Æ(x� x2) = Z 10 d�dz�d� ��Æ(x� z); (2.9)z(�) being some arbitrary path from x1 to x2. The right{hand side of Eq. 2.8 an thenbe expressed as a divergene and a suitable onserved urrent de�ned.The divergene requirement for a urrent determines its longitudinal omponentwhih is, therefore, a path{independent objet. In Ref.[8℄ the hoie of path wasirrelevant sine the authors were interested only in the longitudinal omponent ofthe axial urrent, so as to determine the pion deay onstant. The transverse partof a urrent, however, is sensitive to the partiular path hosen for z(�). Indeed,ambiguity in the transverse urrent is a feature of any method used to onstruta (partially) onserved urrent orresponding to a nonloal ation. If one wishes7Some alternative, but more umbersome, methods are also mentioned in that referene.2.4. Nonloal Currents



Chapter 2. Nonloal Extended NJL Model 36to onsider eletromagneti proesses, as in Chp. 6, then it is neessary to assumesome form for the transverse urrent. This assumption is an additional part of thespei�ation of the model. In subsequent alulations, the straight line ansatz [8℄,z(�) = (1� �)x1 + �x2; (2.10)is used, sine it respets both Lorentz and translational invariane. In pratie, severalof the eletromagneti observables evaluated in Chp. 6 turn out to be dominated bythe loal piee of the vetor urrent and so should not be very sensitive to the hoieof path.The nonloal terms in the urrents, indued by the nonloal nature of the ation,are given by the momentum{spae expressions presented below. (Note that wheremomentum derivatives with respet to pi � pj our, then the ombination pi � pj isunderstood to be held �xed.) In the isosalar vetor urrent, the nonloal piees areall of the strutureJ�(I) = 1(2�)12 Xi Gi Z Yn d4pn  (p1)��i  (p3) (p2)
i� (p4)� Æ(p1+p2+q�p3�p4) Z 10 d� f(p2)f(p4) ��(p1 + p3)� f(p1+�q)f(p3�q+�q); (2.11)whih is referred to as type I. The sum over Gi(��i 
 
i�) in Eq. 2.11 runs over thesame ombinations of ouplings and Dira and isospin matries as those found in theation (Eqs. 2.2 and 2.3).The isovetor vetor urrent also has nonloal ontributions of the type-I stru-ture. In this ase the isospin and Dira matries appear in the ombinations8G1(�a 
 1 + i5 
 i5�a); G2(� 
 ��a + �5 
 �5�a);G3(��a 
 �); G4(�5�a 
 �5);G5(1
 �a + i5�a 
 i5); G6(����a 
 ��� � ��� 
 ����a): (2.12)8Although the G6 interation will not appear in the alulations, the orresponding termsin the nonloal urrents are nonetheless stated. Note that a tensor interation must beonsidered in a desription of vetor states at NLO in 1=N, a vertex of that harater beinggenerated from the Fierz rearrangement of the other ouplings (see Chp. 2.5).2.4. Nonloal Currents



Chapter 2. Nonloal Extended NJL Model 37Another type of nonloal struture also arises in this urrent,J�(II) = i�ab2(2�)12 Xi Gi Z Yn d4pn  (p1)��i � b (p3) (p2)
i��  (p4)� Z 10 d� "f(p1)f(p2) ��(p3 � p4)�f(p3 � q + �q)f(p4 � �q)�f(p3)f(p4) ��(p1 � p2)� f(p1 + q � �q)f(p2 + �q)# Æ(p1 + p2 + q � p3 � p4): (2.13)The above type-II struture ontributes in those interation hannels orrespondingto isovetor states. The Dira matries appear in the ombinationsG1(i5 
 i5); G2(� 
 � + �5 
 �5);G5(1
 1); �G6(��� 
 ���): (2.14)Turning now to the isovetor axial urrent, the type-I terms are again present.They involve the matrix ombinationsG1�ab(�  
 i5� b); G2(�5 
 ��a + � 
 �5�a);G3(�5�a 
 �); G4(��a 
 �5);G5�ab(i5� b 
 � ): iG6�ab(���5�  
 ���� b): (2.15)There are no type-II piees in this urrent, but a third kind of nonloal struture doesour, J�(III) = i(2�)12 Xi Gi Z Yn d4pn  (p1)��i  (p3) (p2)
i� (p4)� Z 10 d� "f(p2)f(p3) ��(p1 + p4)�f(p1 + q � �q)f(p4 � �q)�f(p1)f(p4) ��(p2 + p3)�f(p2 + �q)f(p3 � q + �q)# Æ(p1 + p2 + q � p3 � p4): (2.16)The relevant terms in this ase areG1(i5�a 
 1); G2�ab(�5�  
 �� b);G5(i5 
 �a); iG6(���5�a 
 ���): (2.17)
2.4. Nonloal Currents



Chapter 2. Nonloal Extended NJL Model 38It is straightforward to see that a dependene on the path variable, �, does notappear in the longitudinal omponents of the urrents. Sine Lorentz invariane de-mands that the interation form fator depends only on the square of its argument,one has, in the ase of type-I ontributions,q� ��(p1 + p3)� f(p1 + �q)f(p3 � q + �q) = 12 dd�f(p1 + �q)f(p3 � q + �q): (2.18)The � integral in q�J�(I) is therefore trivial, and produes a di�erene in form fa-tors. Similar results an be seen to hold for the longitudinal omponents of the othernonloal strutures (Eqs. 2.13 and 2.16).Useful heks on the above expressions for the urrents are provided by variousWard identities whih follow from (partial) urrent onservation. Several of theseidentities are demonstrated expliitly in Chps. 4 and 6. In the ase of the axialurrent, an extension of the arguments in Ref. [8℄ an be used to show that the Gell-Mann{Oakes{Renner (GMOR) relation [16℄ holds (Chp. 4.2). For the vetor urrents,heks are made that the two{point orrelator of vetor urrents is purely transverse(Chp. 4.4), that the qq Ward identity is satis�ed (Chp. 4.3), that the pion harge isunity (Chp. 6.2), and that the low-energy theorem for the anomalous deay �0 ! is satis�ed (Chp. 6.3).2.5 Fierzed Interations and CurrentsWhen the ation of Eq. 2.1 is used at leading order in the 1=N expansion the anti-quark loated at x1 is always assoiated with the quark at x3 whilst the position x2 issimilarly linked to x4. Working with a four-quark vertex beyond LO, however, thereare ontributions to be inluded where this will no longer be the ase. These areknown as the Fok or \exhange" terms and may be isolated by �rst performing aFierz transformation on the ation. Suh ontributions are then easily extrated byusing the Fierzed ation in just the same way that one uses the original ation at LO.
2.5. Fierzed Interations and Currents



Chapter 2. Nonloal Extended NJL Model 39The Fierzed ation of this model onsists of the following terms:14N (G1 � 2G3 + 2G4 �G5 + 12G6) (1
 1 + i5�a 
 i5�a);14N (�2G2 +G3 +G4) (��a 
 ��a + �5�a 
 �5�a);14N (�2G1 + 6G2 +G3 +G4 � 2G5) (� 
 �);14N (2G1 + 6G2 +G3 +G4 + 2G5) (�5 
 �5);14N (�G1 � 2G3 + 2G4 +G5 � 12G6) (�a 
 �a + i5 
 i5);18N (G1 �G5 � 4G6) (��� 
 ��� � ����a 
 ����a): (2.19)The nonloal terms in the vetor and axial{vetor urrents of the model alsoinvolve four quark �elds and so will also be subjet to suh e�ets at NLO. TheseFok piees in the urrents will introdue further ambiguity through the de�nition oftheir transverse parts. One way of isolating a suitable set of terms would be simplyto onstrut nonloal urrent terms from the Fierzed ation of Eq. 2.19 with exatlythe same method as was desribed in Chp. 2.4 for deduing the nonloal LO urrentsfrom the standard ation (Eqs. 2.1 to 2.4). This method of determining the Fokterms of a urrent will be alled the Fierzed{ation method. It leads to nonloalurrent strutures of the same forms as those presented previously (Eqs. 2.11, 2.13and 2.16), with the appropriate matrix insertions obtained by replaing the ouplingonstants in the original sets of insertions by the orresponding ombinations in theFierzed ation. So, for example, the presene of the type-I term G1�ab(�  
 i5� b) inthe axial urrent onstruted from the original ation implies that there is a type-IFok term of (4N)�1(G1 � 2G3 + 2G4 �G5 + 12G6)�ab(�  
 i5� b).An alternative and equally obvious approah towards �nding the Fok termsof the model's urrents would be just to make a Fierz transformation of the LOurrents already derived. This proedure is referred to as the Fierzed{urrent method.Through its appliation one enounters new types of nonloal struture. The Fierztransformation swops the roles of the  (p3) and  (p4) �elds. If the momenta are then2.5. Fierzed Interations and Currents



Chapter 2. Nonloal Extended NJL Model 40relabelled so that p3 $ p4, the resulting nonloal terms will have di�erent types ofform{fator struture. It beomes onvenient to de�ne new nonloal struture types,IV and V, as:J�(IV ) = 1(2�)12 Xi Gi Z Yn d4pn  (p1)��i  (p3) (p2)
i� (p4)� Z 10 d� "f(p2)f(p3) ��(p1 + p4)�f(p1 + q � �q)f(p4 � �q)+f(p1)f(p4) ��(p2 + p3)�f(p2 + �q)f(p3 � q + �q)# Æ(p1 + p2 + q � p3 � p4); (2.20)J�(V ) = 1(2�)12 Xi Gi Z Yn d4pn  (p1)��i �a (p3) (p2)
i� (p4)� Z 10 d� "f(p1)f(p2) ��(p3 � p4)�f(p3 � q + �q)f(p4 � �q)+f(p3)f(p4) ��(p1 � p2)�f(p1 + q � �q)f(p2 + �q)# Æ(p1 + p2 + q � p3 � p4): (2.21)The matrix ombinations in the type I to V urrents whih onstitute the Fok termswithin the Fierzed{urrent method are given below.For the Fok terms of the isosalar vetor urrent only the type-IV struture isrelevant. Apart from an overall symmetry fator of a half, the insertions appearingin this ase are just the same as those in Eq. 2.19, the Fierzed ation. This resulthighlights the di�erene between the Fierzed{ation and Fierzed{urrent methods ofonstrution, whih lies in the identity of the �elds whih one onnets via the z(�)path (Eq. 2.9). In the Fierzed{ation method, one �rst swops the roles of the  (p3)and  (p4) �elds and then onnets the  (p1) to the  (p4) �eld, ending up with thetype-I struture after relabelling. In the Fierzed{urrent method, however, the orderof operations is reversed, a path being established to link the  (p1) and  (p3) �eldsfollowed by the rearrangement whih swops the roles played by  (p3) and  (p4). Therean be no a priori physial reason to prefer one of these shemes over the other, sinethey are equally natural ways of arriving at suitable exhange urrents. For purelypratial reasons, however, the Fierzed{ation method may prove the more usefulwhen one wishes to perform NLO alulations involving transverse urrents. This is2.5. Fierzed Interations and Currents



Chapter 2. Nonloal Extended NJL Model 41simply beause the nonloal struture types I to III are retained, IV and V not beingrequired. One an therefore often write down an appropriate NLO diagram very easily,merely by hanging the overall oeÆient in the expression for a orresponding LOdiagram.Calulation of the nonloal Fok terms in the urrents by the two methods de-sribed above does at least provide a useful hek on the algebra of the Fierz transfor-mations. The longitudinal omponents, of ourse, are ditated by ontinuity require-ments and so should be idential in the two ases. For the isosalar vetor urrentsuh an equivalene is straightforward to verify, by noting the identityq�J�(IV )(��i 
 
i�) = q�J�(I)(��i 
 
i�) + q�J�(I)(
i� 
 ��i ): (2.22)The alulations of the Fok terms in the isovetor urrents an be similarly heked,with the aid of the following identities:q�j�(II) = �2q�J�(III);q�j�(V )(��i 
 
i�) = q�J�(I)(��i 
 
i�)� q�J�(I)(
i� 
 ��i ); (2.23)where j�(V ) is de�ned to be the nonloal struture of type-V (Eq. 2.21) but omittingthe �a matrix and j�(II) is to be understood as the type-II struture (Eq. 2.13) withoutthe matries � b and �  and the overall fator of �ab.It remains to state the Fok terms of the isovetor urrents within the Fierzed{urrent approah. In the isovetor vetor urrent, there are the following type-IIIterms: 18N (G1 + 2G3 � 2G4 �G5 + 12G6) �ab(� b 
 � );18N (�G1 + 2G3 � 2G4 +G5 � 12G6) �ab(i5� b 
 i5� );18N (2G2 �G3 �G4) �ab(�� b 
 ��  + �5� b 
 �5� );116N (G1 �G5 � 4G6) �ab(���� b 
 ���� ); (2.24)
2.5. Fierzed Interations and Currents



Chapter 2. Nonloal Extended NJL Model 42together with the type-IV terms12N (�G3 +G4) (�a 
 1 + i5�a 
 i5);14N (�G1 + 2G2 +G3 +G4 �G5) (��a 
 �);14N (G1 + 2G2 +G3 +G4 +G5) (�5�a 
 �5); (2.25)and the type-V insertions14N (G1 �G5 + 12G6) (1
 1� i5 
 i5);14N (�G1 + 4G2 �G5) (� 
 �);14N (G1 + 4G2 +G5) (�5 
 �5);18N (G1 �G5 � 4G6) (��� 
 ���): (2.26)The Fok terms of the isovetor axial urrent inlude insertions into the type-I stru-ture, 14N (G1 �G5 + 12G6) �ab(�  
 i5� b + i5�  
 � b);14N (G1 � 4G2 +G5) (� 
 �5�a � �5�a 
 �);14N (G1 + 4G2 +G5) (��a 
 �5 � �5 
 �);i8N (�G1 +G5 + 4G6) �ab(���5� b 
 ���� ); (2.27)along with piees of type-III struture,14N (G1 � 2G3 + 2G4 �G5 + 12G6) (i5�a 
 1);14N (G1 + 2G3 � 2G4 �G5 + 12G6) (�a 
 i5);14N (2G2 �G3 �G4) �ab(�5� b 
 �� );i8N (G1 �G5 � 4G6) (���5�a 
 ���); (2.28)
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Chapter 2. Nonloal Extended NJL Model 43and the following type-IV terms:12N (�G3 +G4) �ab(i5� b 
 � );14N (G1 +G2 +G3 +G4 +G5) (��a 
 �5);14N (�G1 +G2 +G3 +G4 �G5)(� 
 �5�a): (2.29)

2.5. Fierzed Interations and Currents



Chapter 3
Quark and Meson Propagators
3.1 Quark PropagatorAn essential ingredient of the alulations with the extended nonloal NJL modelis the dressed quark propagator. It is onstruted by means of the orrespondingShwinger{Dyson equation (SDE). Initially at least, this equation is treated in the lad-der approximation, trunating the one-quark irreduible kernel with just the tree{levelinteration. This is equivalent to working at leading order (LO) in a 1=N expansion.In order to de�ne suh an expansion for a model based on four-quark interation ver-ties, the oupling onstants must be designated as quantities of some partiular orderin N. In the 1=N expansion of QCD [2, 73℄, the large N limit is de�ned by allowingthe number of olours to tend to in�nity but with the produt g2N being held on-stant. Setting fGig to be of order N�1 is therefore onsistent with the interpretationthat the four-quark interation is generated through one gluon exhange. There is,however, no need to appeal to that prejudie. SuÆient justi�ation for adopting thishoie for the order of fGig is that it is neessary in order to produe the same largeN saling of observables (suh as the meson masses and ouplings) as in QCD.Fig. 3.1 gives an illustration of the diagrams that are summed in the ladderapproximation. In terms of a momentum{dependent quark \mass" m(p) de�ned from
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S = + G1S

Figure 3.1: The Shwinger{Dyson equation for the quark propagator in the ladderapproximation.the dressed quark propagator byS�1(p) = /p�m(p); (3.1)the LO SDE an be written asm(p) = m + iG1f 2(p)Tr Z d4k(2�)4 /k +m(k)k2 �m2(k)f 2(k): (3.2)The dressing at this order ours only through the interation in the isosalar salarhannel, as desribed by the oupling G1. The integral in Eq. 3.2 is very similar tothat appearing in the quark ondensate (de�ned in Eq. 1.3), di�ering only through thepresene of the interation form fators, f 2(k). In the original NJL model there are nosuh form fators and so the ondensate and SDE integrals are idential. With boththe loal and nonloal models, however, it is lear that the dynamial generation of aquark mass is intimately onneted to the appearane of a non-zero ondensate1. Inthe numerial treatment of the model, loop integrals like that in Eq. 3.2 are evaluatedin Eulidean spae, sine the form fator has been de�ned for Eulidean momenta.Physial results are then obtained by analytially ontinuing bak to Minkowski spae.Notie that the separable nature of the interation produes a great simpli�ationsine the dependene on the external momentum p fatorizes out of the loop integral.1It is possible in priniple with a nonloal model to have a dynamial quark mass withoutproduing a non-zero ondensate. For this to our in a separable model f2(k) would haveto hange sign at some point, a situation that is hardly physially plausible.
3.1. Quark Propagator



Chapter 3. Quark and Meson Propagators 46The solution to the LO SDE an therefore be written in the formm(p) = m + �m(0)�m�f 2(p): (3.3)Hene to obtain the full LO quark propagator it is neessary to determine only theonstant m(0). This an be done straightforwardly using iterative methods. In pra-tie it is onvenient to use Eq. 3.2 to determine the parameter G1 for a given value ofm0(0), the zero-momentum quark mass in the hiral limit. This requires a single inte-gral to be evaluated. With the hoie of a Gaussian form fator, the Gauss{Laguerretehnique (taking p2E as the non-trivial integration variable) is eminently suitable forperforming suh integrals, whih onverge with only a moderate number of absissae.If a non-zero urrent quark mass is introdued, it is a simple matter to iterate fromm0(0) to �nd the solution for m(0).The denominator of the quark propagator, p2 �m2(p2), does not have a zero atpositive (Minkowski) p2 if m(0) is suÆiently large2. This property provides a suÆ-ient, although not stritly a neessary [5, 74℄, ondition for on�nement. Althoughthere are still poles in the quark propagator, they are shifted into the omplex p2 plane.Suh behaviour is by no means unommon in models of quark on�nement based onthe solution of a Shwinger{Dyson equation [5, 63, 75, 76℄ in the ladder approxima-tion. Beause of the simpli�ations due to the separable interation, the present modelprovides a onvenient setting in whih to investigate some of the pratial impliationsof this mehanism for on�nement. As pointed out by Lee and Wik [77℄ (see alsoRef. [78℄), partiles whih have a omplex mass of this type should not be admittedas asymptoti states if one is to have a unitary S-matrix. When amplitudes havebeen de�ned in Eulidean spae, the presription for analytially ontinuing thembak to Minkowski spae must respet this requirement, as desribed in more detailin Chp. 3.3.2The absene of a pole at a spaelike momentum, whih would indiate tahyoni be-haviour, is guaranteed if the running quark mass is always positive (i.e., if the interationform fator is real).
3.1. Quark Propagator



Chapter 3. Quark and Meson Propagators 473.2 Meson PropagatorsThe meson masses and vertex funtions are found using the Bethe{Salpeter equation(BSE). This an be onsidered in its homogeneous or inhomogeneous form. As is usualin studies of NJL-like models, it is dealt with here in the framework of the latter, whihprovides a normalization for the on-shell vertex funtion. In order to maintain Wardidentities [79℄ one must use an trunation sheme whih is onsistent with that appliedto the SDE (Chp. 3.1). In the ase of the BSE, the ladder approximation entailskeeping just the tree{level ouplings from the ation in the two-quark irreduiblesattering kernel. The separable nature of the interation allows the qq satteringmatrix, T , to be written in the formT (p1; p2; p3; p4) =Yn f(pn) Æ(p1 + p2 � p3 � p4) T̂ (q); (3.4)where the total momentum of the qq pair is denoted by q = p1 � p3 = p4 � p2. TheLO BSE, shown shematially in Fig. 3.2, may be onveniently expressed in terms ofT̂ as T̂ (q) = G+GJ(q)T̂ (q); (3.5)where G is simply a matrix of the oupling onstants from the ation (Eqs. 2.1 to 2.4)and J(q) is omposed of the loop integralsJij(q) = iTr Z d4p(2�)4f 2(p+)f 2(p�)�iS(p�)�jS(p+): (3.6)In the above equation the notation p� = p � 12q has been introdued. The quarkpropagators to be used in Eq. 3.6 are the dressed propagators obtained by solving theladder SDE.The mesoni bound states are loated at the poles of T̂ . These an be determinedfrom the equation det(1�GJ(q)) = 0: (3.7)Symmetry restritions on the possible form of the interations mean that thematrixG is diagonal with respet to avour and Lorentz strutures. The full sattering3.2. Meson Propagators
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T = G + G TSS

Figure 3.2: The Bethe{Salpeter equation for qq sattering in the ladder approximation.matrix, however, is only blok{diagonal, sine there may be ertain non-zero o�-diagonal elements of J . In partiular there is a non-vanishing loop integral whihleads to mixing between the pseudosalar and longitudinal axial hannels. This �a1(and �?f1) mixing is an example of the partial Higgs mehanism that is disussed inAppendix C.3 in relation to e�etive Lagrangians of �; � and a1 mesons. It produesan axial as well as a pseudosalar omponent in the vertex funtion of the pion (and�?). In the avour symmetri ase there is no analogous mixing between the salar andvetor hannels. This an be seen from the fat that the integrand in the orrespondingelement of J (Eq. 3.6) is odd under p! �p. The absene of suh a potential mixingmeans that the longitudinal vetor hannel is quite independent of the salar one. Itis therefore important to hek numerially that a pole does not develop in the formerhannel, sine that would be unphysial.For later ease of referene, the various non-zero elements of J are labelled asfollows for the Dira matries inserted:JSS : 1
 1; JTV V : T��(� 
 �); JLV V : q�2(�i/q 
 i/q);JPP : i5 
 i5; JAP : m�1� (�i/q5 
 i5); JPA : m�1� (i5 
 i/q5);JTAA : T��(�5 
 �5); JLAA : m�2� (�i/q5 
 i/q5); (3.8)where T�� is the transverse projetor de�ned in Eq. 2.6. Working in the above basisthe mixing elements are equal, JAP = JPA.To desribe the oupling of an on-shell meson to onstituent quarks one represents3.2. Meson Propagators



Chapter 3. Quark and Meson Propagators 49the relevant hannel of T̂ , near to the orresponding pole position, asV (q)
 V (q)m2 � q2 ; (3.9)where V (q) and V (q) are referred to as the vertex funtions for the meson in theinitial and �nal states respetively. In the above expression any polarization indieshave been suppressed. The homogeneous BSE is written in terms of suh vertexfuntions and is only satis�ed at an on-shell point. O� mass shell any deompositioninto vertex and propagator whih one might make in a hannel of T̂ beomes purely amatter of onveniene | the o�-shell vertex funtion and meson propagator are notthemselves well de�ned, only the ombination ourring in T̂ being meaningful. Fromthe homogeneous BSE the relationship between the vertex funtions of the initial and�nal states an be found3, V = 0V y0. For the partiles of interest, these funtionsare: V�(q) = (g�qq �m�1� eg�qq/q)i5�a; V�(q) = g�qq;V�s(q) = g�qq/�s�a; Va1s(q) = ga1qq/�s5�a; V!s(q) = g!qq/�s;V�?(q) = (g�?qq �m�1�? eg�?qq/q)i5; Va0(q) = ga0qq�a: (3.10)For all partiles exept the pseudosalars there is no mixing, and so eah has a singleoupling onstant giqq to desribe its on-shell oupling to quarks. These ouplings arerelated to the orresponding loop integrals (Eq. 3.6) by1g2iqq = (�1)S dJiidq2 �����q2=m2 ; (3.11)where S is the spin of the meson. The ouplings of the pion to quarks, g�qq and eg�qq,are given byg2�qq = �G1�1�G2JLAA(m2)�D0�(m2) ; g�qqeg�qq = G1G2JPA(m2)D0�(m2) ; (3.12)3See, for example, Ref. [55℄ where the authors work initially with a general interationkernel for fermion{anti-fermion sattering.
3.2. Meson Propagators



Chapter 3. Quark and Meson Propagators 50where the prime indiates a derivative with respet to q2 and the pseudosalar{axialdeterminant D�(q2) is de�ned to beD�(q2) = �1�G1JPP (q2)��1�G2JLAA(q2)��G1G2J2AP (q2): (3.13)Similar expressions hold for the ouplings of the �?, with G5 and G4 playing the rolesof G1 and G2 respetively.3.3 Loop IntegralsWhen expressed in Eulidean spae, the loop integrals appearing in the ladder BSE(Eq. 3.6) take the formJij(q2) = �NNf Z d4p(2�)4 f 2(p+)f 2(p�)tij(p2; q2; p � q)(p2+ +m2+)(p2� +m2�) ; (3.14)where tij is the appropriate Dira trae and all momenta are to be understood asEulidean. The symbols m� are introdued here as a shorthand for the quark massevaluated at p�. Consider suh an integral evaluated at some timelike momentum, q =(0; iq0). Operating with a on�ning parameter set, eah quark propagator onsideredas a funtion of energy has four poles at omplex energies orresponding to a pair ofomplex{onjugate poles in p2. As q0 is inreased these poles in S(p�) are translatedparallel to the imaginary p4 axis. For any given value of jpj, there is a value of q0 forwhih poles of the p� and p+ quark propagators meet on the real p4 axis, pinhingthe ontour of integration. For larger values of q0 the poles ross this axis and mayontribute an imaginary part to the propagator in the meson hannel, dependingon the presription used to ontinue the integral beyond the pinh point. Suh aon�guration of the poles is shown in Fig. 3.3.The usual presription for an analyti ontinuation of amplitudes from Eulideanto Minkowski spae is based on a Wik rotation of the integration ontour [72℄. Thisproedure would indeed give rise to an imaginary part of the meson propagator, orre-sponding physially to the opening of a threshold for the deay of a meson into otherstates. As was explained in Chp. 3.1 that situation is inappropriate here.3.3. Loop Integrals



Chapter 3. Quark and Meson Propagators 51p4 p4
Figure 3.3: The pole struture of J loop integrals in the p4 plane. On the left{handside of the �gure, the pole positions at q0 = 0 are indiated. The open boxes denotethe poles of the p� propagator and the �lled irles those of the p+ propagator. Theright{hand side of the �gure shows the deformed integration ontour, beyond the pinhpoint. The arrows here indiate the diretions in whih the poles move as q0 inreases.A legitimate ontinuation, suitable for energies where the integration ontourbeomes pinhed, was originally suggested by Cutkosky et al [78℄. It amounts to thedeformation of the integration ontour displayed in Fig. 3.3. Whilst the presriptionensures that the resulting meson propagator does not develop an unphysial imaginarypart above the pseudo{threshold energy where the ontour beomes pinhed by theomplex poles, it does mean that the propagator annot be analytially ontinued pastthat point. Sine the method is not unique, the hoie of ontinuation presriptionmust be regarded as an additional assumption that forms part of the spei�ation ofany model with a quark propagator of this type. The suggestion of Cutkosky et al.is adopted in the present alulations having been shown in Ref. [78℄ to be onsistentwith the requirements of unitarity and maroausality.As disussed by both Cutkosky et al. [78℄ and Lee and Wik [77℄, miroausalityviolations an our in models with a Eulidean metri and states of omplex mass.However, in order for suh violations to be measurable, Lee and Wik [77℄ have es-timated that one would need to reate a wave paket of width � �1, where theomplex mass is M + 12 i. In any event, miroausality in this model is intrinsiallybroken by the use of an ation with nonloal interations.In the numerial evaluations of quark loop integrals, one an take a ontour in p43.3. Loop Integrals



Chapter 3. Quark and Meson Propagators 52that runs along the real axis. For energies jq0j above the pseudo{threshold, followingthe presription of Cutkosky et al. means that one must also inlude ontributionsfrom the residues of the poles that have rossed the axis. For a given external energythese ontributions are required at zero three{momentum up to a maximum value atthe pinh point. At larger three{momenta the integration ontour in the p4 plane is justthe real axis. Both the naive integral over Eulidean four{momentum in Eq. 3.14 andthe residue ontributions diverge at the pinh point, although these divergenes anelto leave a �nite result [78℄. This anellation ours at the level of the integrated resultrather than at all values of three{momentum owing round the loop. In numerialwork one therefore needs to regulate the two ontributions when evaluating themseparately. An aurate knowledge of the loations of the poles in the quark propagator(and hene of the pinh point) is learly a prerequisite of any regulating method. Itan be eÆiently aquired by applying the simplex tehnique [80℄ to minimize themodulus of p2E +m20(pE).
.� jpj

p4 R1 R2R3R4
Figure 3.4: In evaluating the naive integral over Eulidean momenta the integrationregion is divided as in the �gure, the pinh point being at the entre of the irle. Thesituation for negative values of p4 is obtained by a reetion in the jpj axis.The method of regularization atually used involves dividing the region of inte-gration as shown in Fig. 3.4. A funtion with the same divergene as the naive integralis subtrated from it when p lies within a radius � of the pinh point. The remainderis then integrated over the irular region aording to the robust method of Sag andSzekeres [81℄. A similar funtion is used to anel the divergent part of the residue3.3. Loop Integrals



Chapter 3. Quark and Meson Propagators 53ontribution when jpj is less than � from its pinh value and is hosen to anel exatlywith the piee that has been ut out of the naive integral. Both the regulated andunregulated parts of the jpj integral over the residue ontributions are evaluated withthe NAG routine D01AJF. This routine uses an adaptive strategy, onentrating itse�orts over any regions where the integrand behaves poorly. Sine the regulated inte-grands are neessarily the di�erene of two large numbers the deision to use robustmethods is one ditated by safety onsiderations.The other integrations required in the evaluation of J are of the naive integrandover the regions labelled R1 : : : R4 in Fig. 3.4. The semi{in�nite range of integrationin R1 : : : R3 together with the partiular form fator hosen (Eq. 2.7) strongly suggeststhat these regions be dealt with in terms of p2E and an angular variable, integrationover the former being performed using the Gauss{Laguerre tehnique. The angularparts of these integrals are treated adaptively, whih proves to be useful in R2 owingto the shape of that region near to the angular limits. Integration over R4 is donewith the NAG routine D01FDF whih transforms the region onto a irle and thenuses the Sag and Szekeres method.Eah of the numerial integrations that are summed to give the value of J(q)depends on the regularizing parameter �. An important hek on the regularizationused (and on the auray of the integration routines themselves) is that the overallresults obtained should be independent of �. This does indeed prove to be the asefor a wide range of values, although the results beome somewhat less aurate when� is small (<� 20 MeV). At small � the ontributions from R1 : : : R3 are dominant.However, these are diÆult to evaluate aurately if they inlude some of the area loseto the pinh point, in whih the integrand may be badly behaved. A good desriptionof the o�ending area requires many loal integrand evaluations, a proedure whih isnot well{suited to the Gauss{Laguerre routines. In pratie, the auray of evaluatingJ(q) is found to be best with � � 150 MeV.It should be noted that the quark propagator of the nonloal model has in fat
3.3. Loop Integrals



Chapter 3. Quark and Meson Propagators 54many omplex{onjugate pairs of poles. Suh an analyti struture is also found in thepion propagator of the NJL model within the proper time regularization sheme [82℄.In the present model these additional poles our with both on�ning and non-on�ning parameter sets and are found at large momenta. Sine their positions dependon the detailed behaviour of the form fator for large momenta, they are regarded hereas being unphysial artifats of the model. With the parameter sets seleted for thealulations that are detailed in Chps. 5 and 6, the next set of poles would result inanother pseudo{threshold at energies of � 2 GeV. The model is not intended to beredible at suh momenta. Indeed, in Chp. 5.1 a more stringent upper limit is im-posed on the range of appliability of the model. Hene, the extra poles do not posea pratial problem.

3.3. Loop Integrals



Chapter 4
Ward Identities andEletromagnetism
4.1 Couplings to the Axial CurrentThe eletromagneti or weak deay onstant of a meson is given by the matrix elementbetween the vauum and that meson of the appropriate urrent. In a nonloal modelof the type onsidered here, there are ontributions to suh matrix elements arisingfrom both the usual loal urrent and the nonloal piees disussed in Chp. 2.4. Bothof these must be inluded in order to maintain related Ward identities, whih followfrom urrent onservation. The ontributions from the nonloal part of the urrentare generated by losing one of the  � strutures in on itself and using the other toforge the link to the meson. The orresponding diagrams are shown in Fig. 4.1.Consider for example the pion deay onstant, de�ned through Eq. 1.5. The loopintegral arising from the loal part of the axial urrent is very similar to JAP , exeptthat only two (rather than four) form fators are present. One must also inludea nonloal ontribution generated by the G1(i5�a 
 1) term with type-III struture(Eq. 2.16) in the axial urrent. As was desribed by Bowler and Birse [8℄, this diagraman be written as a sum of terms, eah of whih fatorizes into two loop integrals. One
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Chapter 4. Ward Identities and Eletromagnetism 56
V V

Figure 4.1: Coupling of a partile to an external urrent. V denotes the partile'svertex funtion (Eq. 3.9).of these is somewhat similar to that in the salar quark ondensate, whilst the otherhas a pseudosalar insertion and a pion vertex funtion. It is onvenient to refer tothe loop integrals involved as being one-quark or two-quark, aording to the numberof quark propagators they ontain. The ontribution of this diagram to f� isiG12m2� Z d4k(2�)4 Tr[/k +m(k2)℄k2 �m2(k2) Z d4p(2�)4 TrV�(q)(/p� +m�)5�a(/p+ +m+)(p2+ �m2+)(p2� �m2�)�f(p+)f(p�)hf 2(k)�f 2(p+)+f 2(p�)��f(p+)f(p�)f(k)�f(k+ q)+f(k� q)�i: (4.1)In the extended version of the model there is another nonloal ontribution, whihis indued by the term G2(� 
 �5�a) with type-I struture (Eq. 2.11) in the axialurrent. In this ase, the one-quark loop has a vetor insertion. Although the va-uum expetation value of  � vanishes by Lorentz invariane, a non-zero integralis produed by a ombination of form fators whih is anti-symmetri in the loopmomentum. The ontribution of the diagram to f� is�iG22m2� Z d4k(2�)4 Tr�[/k +m(k2)℄k2 �m2(k2) f(k)�f(k + q)� f(k � q)�� Z d4p(2�)4 TrV�(q)(/p� +m�)�5�a(/p+ +m+)(p2+ �m2+)(p2� �m2�) f 2(p+)f 2(p�): (4.2)These piees of f� arising from the nonloal urrent are signi�ant numerially andare needed in order to satisfy the Gell-Mann{Oakes{Renner relation, as demonstratedin the next setion.
4.1. Couplings to the Axial Current



Chapter 4. Ward Identities and Eletromagnetism 57In the numerial evaluation of integrals like those in Eqs. 4.1 and 4.2, there aretwo non-trivial integration variables. When the external energy lies below the pseudo{threshold (see Chp. 3.3), the Gauss{Laguerre tehnique enables suh integrals to beperformed quikly and aurately. The integration variables used in suh routines arep24 and p2, with p4 having been de�ned to be in the diretion of q.A determination of the oupling strength of the a1 partile to the transverse axialurrent requires the alulation of diagrams very similar to those onerning f�. Theontributing terms from the nonloal urrent are also those relevant to the a1 ase.There is, however, an important di�erene from the analogous nonloal diagrams for f�in that the integral over the path variable � for the transverse urrent is non-trivial. Ingeneral therefore, a numerial integration over � is also required. In pratie though,with a Gaussian form fator (Eq. 2.7), suh integrals an be performed analytially,being expressed in terms of error funtions. In the type-I nonloal struture (Eq. 2.11),� appears only in the form fators assoiated with one of the loops. Hene, a diagramindued by a term of this struture is the produt of two separate loop integrals. Thisis not so for ontributions indued by type-II (Eq. 2.13) or type-III (Eq. 2.16) termsin the urrent, where the integrals for the one- and two-quark loops do not fatorize.For those diagrams generated by a type-I term, the numerial situation is thatof a produt of two two-dimensional integrals, the integrand of one ontaining theanalytially{derived ombination of error funtions. If the external energy is belowpseudo{threshold then these integrals are performed by Gauss{Laguerre methods asabove. Otherwise they must be omputed with residue ontributions inluded, asdisussed in Chp. 3.3. The diagrams generated by type-II or type-III terms in thenonloal transverse urrent have a oupled{integral struture. Using the analytialresult for the � integration then neessitates a four-dimensional numerial integral. Ittherefore beomes more eÆient to treat the � integral numerially. At eah value of�, the integrand is a produt of two two-dimensional integrals eah of whih an bedealt with in the usual fashion. The � integration is itself straightforward sine the
4.1. Couplings to the Axial Current



Chapter 4. Ward Identities and Eletromagnetism 58integrands that have been onsidered vary only very slowly in this variable.4.2 GMOR RelationThe GMOR relation (Eq. 1.7) was shown to hold at LO in Ref. [8℄, where a versionof the model was used whih had only the G1 oupling. In this setion the proof isextended to allow for the other possible ouplings in the ation (Eqs. 2.2 and 2.3), againat LO. When the model is onsidered at NLO (Chp. 7), the orretions introduedare also shown to be onsistent with the GMOR relation. As a trailer for some of thearguments and anellations invoked in that ase, the muh simpler LO proof withonly the G1 oupling is revisited below. The method di�ers from that of Ref. [8℄, beingbased on the identity/q5 = S�1(p+)5 + 5S�1(p�) + (m+ +m�)5: (4.3)Taking the diagram for the oupling of the pion to the loal axial urrent andontrating it with q� gives an expression for its ontribution to f�m2�. The loalurrent gives rise to a fator of /q5 whih an be replaed by the right{hand side ofEq. 4.3 to giveif�m2� = g�qq2 NNf "Z d4p(2�)4f(p+)f(p�)(m+ +m�)tr5S(p�)5S(p+)+ Z d4p(2�)4f(p)(f(p+ q) + f(p� q))trS(p)# ; (4.4)where, in the absene of mixing, g�qq is determined from Eq. 3.11. In the nonloalontribution to the deay onstant (Eq. 4.1), the ladder SDE (Eq. 3.2) simpli�es thepiee whih has a fator of f 2(k) sine it allows one to replae G1 times the k loopby �i(m(0)�m). A anellation an then be seen to operate between this piee andthe �rst of the integrals in Eq. 4.4, leaving only 2m from the fator of (m+ + m�)that appears in Eq. 4.4. It is just this proess of anellation between a loal{urrentdiagram and part of a nonloal ontribution whih is so useful in the analysis of the4.2. GMOR Relation



Chapter 4. Ward Identities and Eletromagnetism 59more omplex diagrams at NLO. Realling the de�nition of JPP (Eqs. 3.6 and 3.8) inorder to simplify the remaining part of Eq. 4.1, one hasif�m2� = mg�qqNNf Z d4p(2�)4f(p+)f(p�)tr5S(p�)5S(p+)+g�qq2 NNf (1�G1JPP (q)) Z d4p(2�)4f(p)(f(p+ q) + f(p� q))trS(p): (4.5)To dedue the GMOR relation now requires only the hiral expansion of JPP (q).It is straightforward to verify the result1 of Bowler and Birse that1�G1JPP (q) = �G1m h  i0m0(0)2 �G1 q2Z�0 +O(q4; m2); (4.6)where Z� is de�ned as g2�qq(G2 = 0). An expliit expression for Z� in the hiral limitwas originally presented in Ref. [8℄ and is:Z�1�0 = 2NNfm0(0)2 Z d4pE(2�)4m0(pE)2 �m00(pE)m0(pE)p2E + (m00(pE))2p4E[p2E +m0(pE)2℄2 ; (4.7)a prime denoting di�erentiation with respet to the square of the momentum argument.Substituting the expansion of Eq. 4.6 into Eq. 4.5 and evaluating the integrals in thehiral limit one arrives at f�0 = m0(0)g�qq0 ; (4.8)whih is the equivalent of the Goldberger{Treiman relation [83℄ in the model. Usingthis relation in Eq. 4.6, whih is set equal to zero at the pion pole, produes the GMORrelation.The pion mass and deay onstant are altered by mixing with the longitudinalaxial{vetor omponent of the G2 interation (see Chp. 3.2). The above proof is nowdeveloped to inorporate those e�ets, the other ouplings in the extended modelhaving no impat at LO.To alulate the pion mass at leading order in the urrent quark mass, the piondeterminant (Eq. 3.13) must be expanded up to �rst order in m and q2. Expandingthe JAP and JLAA integrals appropriately givesJPA = qq2 �I6 � 12 eI6�+ � � � ;1Note that the ladder SDE is alled upon to obtain the expression quoted.4.2. GMOR Relation



Chapter 4. Ward Identities and Eletromagnetism 60JLAA = �12G1 + 3I82 + � � � ; (4.9)where the dots refer to irrelevant higher{order terms and the following integrals havebeen de�ned: In = 4NNf Z d4pE(2�)4 f 4(pE)m(n2�2)0 (pE)[p2E +m20(pE)℄2 ;eI6 = 4NNf Z d4pE(2�)4 f 4(pE)p2Em00(pE)[p2E +m20(pE)℄2 : (4.10)By substituting the hiral expansions of Eqs. 4.6 and 4.9 into the pion determinantone �nds that m2� = � mXm0(0)2 h  i0; (4.11)where X isX = �1 + G22G1 � 3G2I82 �"G2 �I6 � 12 eI6�2 + 1Z�0 �1 + G22G1 � 3G2I82 �#�1 : (4.12)The GMOR relation will therefore be satis�ed by the extended model under the on-dition f 2�0 = m0(0)2X : (4.13)Now, if one uses the expansions of the J integrals in the de�nitions of g�qq andeg�qq (Eq. 3.12) then, at leading order in the hiral expansion, these ouplings to quarksare found to be g2�qq0 = X ; eg�qqg�qq0 = G2m�(I6 � 12 eI6)(1 + G22G1 � 3G2I82 ) + � � � : (4.14)Notie that sine g2�qq0 = X, the ondition of Eq. 4.13 is simply the modi�ed Goldberger{Treiman relation in the extended model.The alulation of f� in the extended model an pro�tably be deomposed intotwo parts. The �rst onsists simply of the same ontributions as when G2 = 0,although allowing for the hange in the g�qq oupling. In the remaining part a fatorof eg�qq is extrated, so that f� = g�qqpZ� f�jG2=0 + eg�qql: (4.15)4.2. GMOR Relation



Chapter 4. Ward Identities and Eletromagnetism 61Using Eq. 4.8 for f�0 at G2 = 0 together with Eqs. 4.12, 4.14 and 4.15, the Goldberger{Treiman ondition may be rewritten asl = m0(0)Z�0 g�qq0eg�qq �Z�0X � 1�+ � � � (4.16)= m0(0)m� �I6 � 12 eI6� + � � � : (4.17)Finally, it is neessary to make an expliit alulation of l, at leading order inthe hiral expansion, from those additional ontributions to f� whih are generated bynon-zero G2. Considering the diagrams already present without the G2 interation,suh ontributions ome from the extra ovariant in the pion vertex funtion. Fromthe oupling of the pion to the loal axial urrent one obtainsllo = 1m� " h  i04m0(0) + 34I6m0(0)# : (4.18)There is also a similar ontribution originating from the two-loop diagram where theone-quark loop has a salar insertion (Eq. 4.1). However, this ontribution turns outto be sub-leading in the hiral expansion. The remainder of l omes from the entiretyof the nonloal diagram given in Eq. 4.2. With the assistane of Eq. 4.14 the �rstterm in its hiral expansion is found to belnon-lo = �1m� " h  i04m0(0) � 14I6m0(0) + 12 eI6m0(0)# : (4.19)Adding together Eqs. 4.18 and 4.19 does indeed produe the expression on the right{hand side of the ondition of Eq. 4.17, thereby establishing the proof.4.3 Couplings to the Vetor CurrentThe ouplings ontrolling the eletromagneti deays of the vetor mesons an be al-ulated in a similar manner to the pion deay onstant, disussed in Chp. 4.1 above.Again the nonloal ontributions are numerially important and are essential if re-lated Ward identities are to be satis�ed. An example of suh an identity is presentedin Chp. 4.4 below, where the orrelator of two vetor urrents is shown to be purely4.3. Couplings to the Vetor Current



Chapter 4. Ward Identities and Eletromagnetism 62transverse. There is, however, an alternative approah towards alulating the ou-plings to the vetor mesons. One an instead work with a general formulation of thedressed qq vertex in the model. That vertex is desribed in some detail in this se-tion sine it is a neessary ingredient in the alulation of many other eletromagnetiobservables.Sine the oupling of dressed quarks to the photon is unknown2 one is obligedto take some ansatz for it in order to alulate eletromagneti proesses. A popularsheme in the literature [85, 86, 87℄, sometimes alled the impulse approximation,involves a dressed qq vertex only, negleting irreduible ouplings of the photon tomore than two quarks. The qq vertex itself is hosen to be of the Ball-Chiu [88℄ form,the hief virtue of whih is that it is a simple solution of the Ward{Takahashi identityq���(p; q) = S�1F (p+)� S�1F (p�); (4.20)where q is the photon momentum owing away from the vertex, ��, and p is themomentum owing through the vertex. (The isospin struture has been suppressedhere.) For a quark propagator without wavefuntion renormalization the Ball-Chiuvertex is �� = � + p�(p � q)(m� �m+): (4.21)With the nonloal NJL model studied here, use of the impulse approximationdoes not provide an appropriate presription for the alulation of eletromagnetiobservables. For example, as is disussed in Chp. 6.2, it would not produe theorretly{normalized value of the pion harge. In this model, the eletromagnetiouplings are ompletely spei�ed one a partiular ansatz has been hosen for thenonloal part of the vetor urrent. The unertainty inherent in the onstrution ofthe transverse part of the urrent is disussed in Chp. 2.4. Despite this, gross featuresof the nonloal urrent would remain unhanged with di�erent path ansatze.The various piees of the full qq vertex within the treatment of the extended2Although some numerial work on a BSE for the qq vertex has been attempted byFrank [84℄. 4.3. Couplings to the Vetor Current
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� = +

+ T + T
Figure 4.2: The dressed qq vertex. T denotes the qq sattering matrix in either thetransverse or longitudinal vetor hannel.nonloal NJL model are shown diagrammatially in Fig. 4.2. From the loal urrent,there is simply a ontribution to �� of the usual form, �. The nonloal urrent induesontributions where there is a losed one-quark loop, similar to those appearing in thepion deay onstant and desribed in Chp. 4.1. In the eletromagneti ase, thediagram where the losed loop has a salar insertion an be simpli�ed by using theladder SDE (Eq. 3.2) to express it as��m(0)�m� Z 10 d� ��p� f 2�p+ (�� 12)q�: (4.22)Together with the loal ontribution, this would onstitute the full vertex in a versionof the model without vetor mesons. Sine the Ward{Takahashi identity of Eq. 4.20imposes an important onstraint on the form of the vertex it should be veri�ed in thepresent approah. To do so, one uses the following identity, whih is a speial ase of
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Chapter 4. Ward Identities and Eletromagnetism 64Eq. 2.18: q� ��p� f 2�p+ (�� 12)q� = dd�f 2�p + (�� 12)q�: (4.23)The � integral involved in q��� is then seen to be trivial, and hene the Ward identityis indeed satis�ed by the sum of � and Eq. 4.22.In the extended model, with vetor{meson degrees of freedom, there is anotherontribution to �� that involves a one-quark loop. This has a vetor insertion and isgiven by�i�f(p�)f(p+)G2NNf Z d4k(2�)4 4k�k2 �m2(k2) Z 10 d� ��k� f(k�q+�q)f(k+�q): (4.24)In addition, there are piees whih ontain the propagator of an intermediate qq state inthe vetor hannels. As is illustrated in the �nal two graphs of Fig. 4.2, the propagationof suh intermediates is desribed by the T matrix of the ladder BSE (Eq. 3.5), whihmay be oupled to the vetor urrent via loal or nonloal loops. The ontribution to�� from the longitudinal hannel isi /qq2f(p�)f(p+) G2NNf1�G2JLV V (q) Z d4k(2�)4 f(k�)f(k+)(k2� �m2�)(k2+ �m2+)�tre��(k; q)(/k� +m�)/q(/k+ +m+); (4.25)while the transverse hannel givesi � � q�/qq2 ! f(p�)f(p+) G2NNf1�G2JTV V (q) Z d4k(2�)4 f(k�)f(k+)(k2� �m2�)(k2+ �m2+)�tre��(k; q)(/k� +m�)�(/k+ +m+); (4.26)where e��(k; q) is the two-quark{irreduible qq vertex onsisting of the sum of � andEqs. 4.22 and 4.24. In these expressions, m� denotes the quark mass evaluated at k�.To hek that the additional ontributions in the extended version of the model(Eqs. 4.24 to 4.26) remain onsistent with the Ward identity for the vertex, note �rstthat the quark propagator is unhanged. Hene, the sum of the loal piee and Eq. 4.22still saturates the identity. In the ontribution of the expression 4.24 to q���, Eq. 2.18
4.3. Couplings to the Vetor Current



Chapter 4. Ward Identities and Eletromagnetism 65enables the integration over the path variable to be performed. This part of q��� isthen�i /qq2 f(p�)f(p+)G2NNf Z d4k(2�)4 4q � kk2 �m2(k2)f(k)�f(k + q)� f(k � q)�: (4.27)The purely transverse piee in Eq. 4.26, whih involves a propagating � meson, isobviously irrelevant in the Ward identity. Thus anellation must our betweenEq. 4.27 and the piee oming from Eq. 4.25. To demonstrate this expliitly, oneneeds the result for q�e��. This is given by the sum of Eq. 4.27 and the expression onthe right{hand side of Eq. 4.20. Using this fat, the ontribution to q��� from thelongitudinal qq intermediate states (Eq. 4.25) an be expressed asi /qq2f(p+)f(p�) "Z d4k(2�)4 tr(/q +m� �m+)(/k� +m�)/q(/k+ +m+)(k2+ �m2+)(k2� �m2�) f(k+)f(k�)�G2JLV V (q) Z d4k(2�)4 4q � kk2 �m2(k2)f(k)�f(k + q)� f(k � q)�# G2NNf1�G2JLV V (q) : (4.28)The Dira trae in the �rst line of the above expression may be written as4(q � k�)(k2+ �m2+)� 4(q � k+)(k2� �m2�): (4.29)Hene, in eah of the resulting terms of Eq. 4.29, one of the fators k2� �m2� an beanelled with the denominator of the integral. Shifting the integration variable from kto k� as appropriate, then the �rst integral inside the square brakets of Eq. 4.28 maybe ast into the same form as the seond, demonstrating the required anellation.Note that the above disussion of vetor{meson ontributions to the dressed qqvertex has referred to the presene of the G2 oupling in the isovetor interationhannel. The results in the isosalar hannel are ompletely analogous, with thereplaement of G2 by G3.For the purpose of pratial alulations, it is onvenient to ollet together thevarious ontributions to the vertex into the following form:
4.3. Couplings to the Vetor Current
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��(p; q) = �Q+  � � q�/qq2 ! f(p�)f(p+)B(q2)�2Q Z 10 d� (p+ (�� 12)q)�m0(p+ (�� 12)q); (4.30)where the prime denotes a derivative with respet to the square of the momentumargument and the avour struture is reinstated by using the harge matrix Q =12(� 3+ 13). The funtion B(q2) aounts for the presene of vetor mesons in the modeland is given by B(q2) = 12 �� 3B2(q2) + 13B3(q2)� ; (4.31)where the funtions Bi(q2) are:Bi(q2) = ( 11�GiJTV V (q2))(Ai(q2) + iGiNNf Z d4k(2�)4 f(k�)f(k+)(k2� �m2�)(k2+ �m2+)� " 4m�m+ � 4k2 + q2 + 83  k2 � (q � k)2q2 !!�83(m+ +m�) k2 � (q � k)2q2 !Z 10 d�m0�k + (�� 12)q�#) ; (4.32)and the Ai(q2) in the above equation originate from the one-quark loop with a vetorinsertion and are given byAi(q2) = �8i3 GiNNf Z d4k(2�)4 k2 � (q � k)2=q2k2 �m2(k2)� Z 10 d� �f 0(k + �q)f(k � q + �q) + f(k + �q)f 0(k � q + �q)�: (4.33)Writing Ai(q2) and Bi(q2) in Eulidean spae and then performing an integrationby parts in Eq. 4.33, one �nds that Bi(0) = 0. This is simply a onsequene of thedi�erential form of the vertex Ward identity, Eq. 4.20,��(p; 0) = Q ��p�S�1F (p): (4.34)Hene, in proesses where the photon is on-shell, the qq vertex is unhanged by theexistene of vetor{meson degrees of freedom in the model.
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Chapter 4. Ward Identities and Eletromagnetism 67Returning to the issue of oupling an on-shell vetor meson to the vetor urrent,the amplitude an be alulated from a quark loop linking the meson vertex fun-tion to that part of the qq vertex whih does not inlude the ontribution from thepropagating transverse vetor hannel (Eq. 4.26). Attempting to inlude that piee ofthe vertex would ause the amplitude to diverge. Diagrammatially, it would merelyamount to the addition of another bubble onto the vetor{meson hain (see Fig. 7.3).Sine the expression 4.26 is purely transverse, the Ward identity for the vertex stillholds.4.4 Vetor{Current CorrelatorThis setion presents a proof that the model satis�es a Ward identity requiring theorrelator of a vetor urrent with an arbitrary urrent, J , to be purely transverse.The diagrams to be onsidered are analogous to those disussed in Chps. 4.2 and 4.3regarding the oupling of a meson to the vetor or axial urrent. The proof onstitutesa further useful test of the general proedure for the ouplings of urrents, as well asproviding a hek on the result for the nonloal vetor urrent onstruted in Chp. 2.4.Suppressing any Dira or isospin indies that might be assoiated with J , the orrelatoris de�ned as: �a�(q) = i Z d4xeiqxh0jTfV a� (x)J(0)gj0i; (4.35)with vetor{urrent onservation implying the Ward identityq��a� = 0: (4.36)In the analysis that follows, use of the isovetor vetor urrent is assumed when writingthe expressions, and so J must also be of isovetor harater to obtain a non-zeroorrelator. In the isosalar ase, one proeeds in exatly the same way but with all �matries set to unity and with the oupling onstant G2 replaed by G3.The diagrams relevant to the orrelator are shown in Fig. 4.3. The �rst diagramappearing in that �gure shows a two-quark loop whih ouples J to the loal part of4.4. Vetor{Current Correlator
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V �lo J G1; G2 J

V �lo T J G1; G2 T JFigure 4.3: Diagrams ontributing to the vetor{urrent orrelator.the vetor urrent. It makes the following ontribution to q��a�(q):i2 Z d4p(2�)4 Tr/q�a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+) : (4.37)In writing the above expression, �J has been used to represent the matrix insertioninto the loop due to the J urrent. Note that it has omponents in the avour, olourand Dira spaes.The seond diagram in Fig. 4.3 shows the diret oupling of J to nonloal termsin the vetor urrent. A diagram of this form is generated by the G1(�a 
 1) type-Iterm (Eq. 2.12) in the urrent and ontributes the following to q��a�(q):G12 Z d4k(2�)4 Tr (/k +m(k2))k2 �m2(k2) f 2(k) Z d4p(2�)4 Tr �a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+)��f 2(p+)� f 2(p�)�: (4.38)The expressions given in Eqs. 4.37 and 4.38 are the only LO ontributions in a versionof the model whih has just the G1 oupling. They should therefore anel with eahother, sine the Ward identity of Eq. 4.36 must hold in that version. The Dira traein Eq. 4.37 may be simpli�ed with the help of the identity/q = (/p+ �m+)� (/p� �m�) + (m+ �m�): (4.39)Eah of the �rst two terms on the right{hand side of Eq. 4.39 enables one to anela fator of a quark propagator in the orresponding integrals. On translating the4.4. Vetor{Current Correlator



Chapter 4. Ward Identities and Eletromagnetism 69integration variables, the resulting ontributions from these two terms an be seen toanel with eah other. Furthermore, sine the k integral of Eq. 4.38 is known fromthe ladder SDE (Eq. 3.2), the sum of Eqs. 4.37 and 4.38 beomesi2 Z d4p(2�)4 Tr �a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+) (m+ �m�)� i2(m(0)�m) Z d4p(2�)4 Tr �a(/p� +m�)�J(/p+ +m+)(p2� �m2�)(p2+ �m2+) �f 2(p+)� f 2(p�)� (4.40)whih is zero, as required.If an interation in the vetor hannel, G2, is inluded in the model then there areadditional diagrams involved in the orrelator. One suh diagram is similar to thatof Eq. 4.38 but with a vetor rather than a salar insertion into the one-quark loop.It is generated by the G2(� 
 ��a) type-I term in the vetor urrent. The otheradditional diagrams (see Fig. 4.3) involve intermediate vetor states, desribed by theT matrix of the ladder BSE. When the intermediate qq state is onneted to the loalpart of the vetor urrent it produes a ontribution to q��a�(q) of�12q2 G21�G2JLV V (q) Z d4p(2�)4 Tr /q�a(/p� +m�)/q� b(/p+ +m+)(p2� �m2�)(p2+ �m2+) f(p+)f(p�)� Z d4k(2�)4 Tr /q� b(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k+)f(k�): (4.41)The integral over p in the above expression may be rewritten by substituting fromEq. 4.39 for the /q insertion oming from the ontration of q� and the loal urrent(i.e., the insertion assoiated with the isospin matrix �a). One then obtains�12q2 G21�G2JLV V (q) Z d4k(2�)4 Tr /q� b(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k+)f(k�)�(Z d4p(2�)4 Tr �a(/p� +m�)/q� b(/p+ +m+)(p2� �m2�)(p2+ �m2+) f(p+)f(p�)(m+ �m�)+ Z d4p(2�)4 Tr �a/q� b(/p +m(p2))p2 �m2(p2) f(p)�f(p+ q)� f(p� q)�) : (4.42)Consider now the diagram whih is generated by the nonloal G1(�a 
 1) type-I termand has an intermediate longitudinal vetor state. This diagram anels the ontri-bution oming from the �rst of the p integrals in the expression 4.42. The origin of4.4. Vetor{Current Correlator



Chapter 4. Ward Identities and Eletromagnetism 70that piee was the term m+ �m� in the /q identity used in writing Eq. 4.42. Hene,this proess of anellation between a nonloal diagram with a salar insertion and ananalogous loal{urrent diagram is idential to the one desribed above whih operatesbetween Eqs. 4.37 and 4.38.Taking stok, there remains a piee from Eq. 4.42 as well as the two diagramsindued by the nonloal type-I struture G2(� 
 ��a). These diagrams ontributethe following to q��a�(q):G22q2 Z d4p(2�)4 Tr /q(/p +m(p2))p2 �m2(p2) f(p)�f(p+ q)� f(p� q)�� Z d4k(2�)4 Tr /q�a(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k�)f(k+) (4.43)and: iG22(q2)2 G21�G2JLV V (q) Z d4p(2�)4 Tr /q(/p +m(p2))p2 �m2(p2) f(p)�f(p+ q)� f(p� q)�� Z d4`(2�)4 Tr /q�a(/̀� +m(`�))/q� b(/̀+ +m(`+))(`2� �m2(`�))(`2+ �m2(`+)) f 2(`�)f 2(`+)� Z d4k(2�)4 Tr /q� b(/k� +m(k�))�J(/k+ +m(k+))(k2� �m2(k�))(k2+ �m2(k+)) f(k�)f(k+): (4.44)Using the fat that the ` integral in Eq. 4.44 is by de�nition (Eqs. 3.6 and 3.8) just�iÆabq2JLV V (q); (4.45)the sum of Eqs. 4.43 and 4.44 an be seen to anel with the remaining piee ofEq. 4.42, thereby ompleting the proof.
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Chapter 5
Numerial Results | Hadroni
5.1 Numerial FitsThe nonloal extended NJL model, as de�ned in Chp. 2, has seven parameters whihmust be �xed from experimental information. They are: the urrent quark mass (m),the range of the form fator (�) and �ve interation oupling onstants. Considering�rst the ouplings G1 and G2 only, the quantities hosen for �tting the model param-eters are m� = 140 MeV, f� = 93 MeV and m� = 770 MeV. At LO, these quantitiesdo not depend on the remaining three ouplings. This leaves one parameter undeter-mined whih may be used to haraterize eah of several parameter sets investigated.This parameter is taken to be m0(0), the zero{momentum quark mass obtained in thehiral limit of the ladder SDE (Eq. 3.2).The above approah to �xing the parameters is onvenient in that it an beperformed with a reasonably straightforward �tting proedure. One begins by seletingthe desired value for the hiral quark mass and guessing the values of � and m. Fromthe hiral limit of the ladder SDE, the G1 oupling is immediately dedued. Theurrent quark mass an then be introdued into the SDE whih is solved by iterationto obtain m(0). G2 is alulated as the inverse of JTV V (m2�) (see Eq. 3.7) whereupon allof the relevant model parameters are established in order for f� and m� to be found. �
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Chapter 5. Numerial Results | Hadroni 72and m are then adjusted and the proess repeated until the orret pion observablesare produed.One a �t parameter set has been determined from the above presription thenthe remaining three ouplings may be �xed independently to reprodue the mass ofthe orresponding meson: G3 is set by requiring m! = 783 MeV; G4 by mf1 = 1282MeV; and G5 by ma0 = 982 MeV. The meson masses are given by Eq. 3.7, whilst f�is set by the oupling of the pion to the axial urrent (Eq. 1.5) and is alulated asdesribed in Chp. 4.1. The ontributions to f� from the nonloal part of the urrentare signi�ant: the salar and vetor loop piees desribed in that hapter aountingrespetively for � 35% and � �10% of the total value.In terms of m0(0), the possible �ts have a restrited range. Having a ouplingstrong enough to realize on�nement requires thatm0(0) >� 270 MeV. Below that value,the model should only be used up to an energy orresponding to the appearane ofthe qq ontinuum at twie the value of the (purely real) quark pole. In fat only avery limited range of non-on�ning sets are possible beause the empirial masses ofthe vetor mesons are loated in this ontinuum for m0(0) <� 250 MeV.An upper limit on the aeptable values for m0(0) is imposed by the behaviour ofthe meson propagators above the pseudo{threshold energy (Chp. 3.3). The dramatihanges in behaviour whih an our beyond this point may be seen in Figs. 5.1and 5.2, where the denominators of the propagators in various sattering hannels areplotted for a �t parameter set with m0(0) = 300 MeV (set C of Table 5.1).
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Figure 5.1: The �gure shows the denominator of the propagator in the sigma hannel,1�G1JSS, along with the pion determinant de�ned in Eq. 3.13, as funtions of timelikemeson momentum. Also displayed are the denominators of the � and a1 propagators,1�G2JTV V;AA, saled by a fator of 10.
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Figure 5.2: The �gure shows the denominators of the propagators in the longitudinalhannels, 1�G2JLV V;AA, as funtions of timelike meson momentum.

5.1. Numerial Fits



Chapter 5. Numerial Results | Hadroni 75With the parameters used to draw Figs. 5.1 and 5.2, the pseudo{threshold oursat an energy of 895 MeV. At larger values ofm0(0) this energy dereases. As suggestedby the behaviour in Fig. 5.1, for large enough m0(0) two additional poles appear inthe transverse{vetor hannel above the � pole. Suh a situation is shown in Fig. 5.3.The �rst of these extra poles has a residue of the wrong sign to desribe a physialpartile. Although one might be willing to onsider parameter sets with the extrapoles, provided that they lie well above the energies of interest, in pratie this ispossible only for values of m0(0) within a very narrow range1, � 320 to 330 MeV.

Figure 5.3: The �gure shows the denominator of the transverse{vetor propagator,1�G2JTV V , as a funtion of timelike meson momentum, for a set of parameters wherem0(0) is unaeptably large.A pronouned hange in behaviour beyond the pseudo{threshold is also observedin the longitudinal{vetor hannel (Fig. 5.2) and seems to be important in ensuringthat no poles are present in this hannel. An unphysial pole does our, however, inthe pion propagator (Fig. 5.1). This unwanted pole is loated between 1:3 and 1:45GeV, depending on the parameter set used. As is implied by Fig. 5.2, its origin is the1Above this range, the minimum in Fig. 5.3 ours at a positive value and so the vetormeson beomes an unfeasibly heavy state. 5.1. Numerial Fits



Chapter 5. Numerial Results | Hadroni 76behaviour of the longitudinal axial sattering hannel (whih hanges sign near to theunphysial pole). Sine this hannel appears in the pion determinant (Eq. 3.13) dueto �a1 mixing, the extra pole would not be present in a minimal version of the model,with the G1 interation only. One should only attempt to use the extended modelat energies below the position of the unphysial pole. Note that although there is asimilar pole in the �? propagator, it lies at a higher energy than in the pion ase.In this and in subsequent hapters, numerial results are presented for parametersets whih lie near eah edge of the aeptable range for m0(0). From evaluations withsome other parameter sets, the variation of results over the full range has been foundto be generally monotoni; where it is not, the dependene on m0(0) is fairly weak.Spei�ally, results are quoted for m0(0) = 280 MeV (heneforth referred to as setA) and 320 MeV (set B)2. Details of these parameter sets are given in Table 5.1. Forompleteness, the parameter set at m0(0) = 300 MeV is also de�ned in that table (setC). This is a set in the middle part of the range, using whih many of the �gures havebeen drawn.Values of the zero{momentum quark masses alulated with these parameters atnon-zero m are also quoted in Table 5.1. They indiate that the e�et of non-zero min the ladder SDE is a signi�ant one, a urrent mass of � 10 MeV ausing the zero{momentum dynamial quark mass to inrease by � 50 MeV. It is thus worth examiningthe related issue of deviations of f� and m� from the values whih would be obtainedat leading order in the hiral expansion. Evaluating the pion quark oupling with mset to zero and then using the Goldberger{Treiman relation of Eq. 4.8 gives the valuesfor f�0 in Table 5.1. The shifts in f� indued by the urrent quark mass are thereforeseen to be appreiable, as might be antiipated from the shifts in the dynamial mass.In ontrast, the GMOR relation stands up quite well, the entries m� (GMOR) inTable 5.1 giving the pion masses at leading order in m. Suh observations suggest2Note that set B, having m0(0) lose to the maximum admissible value, ontains unphys-ial poles in the transverse vetor hannels of the type disussed earlier. The �rst of theseours at an energy of 1575 MeV in the isosalar hannel and so lies above the unphysialpole in the pion hannel. 5.1. Numerial Fits



Chapter 5. Numerial Results | Hadroni 77Parameter Set A Set B Set Cm0(0)(MeV) 280 320 300m(0)(MeV) 326 370 347m(MeV) 8:4 11:0 9:6�(MeV) 995 846 918G1(GeV�2) 37:1 57:6 46:1G2(GeV�2) �5:70 �6:53 �6:57G3(GeV�2) �5:20 �5:86 �5:99G4(GeV�2) �0:80 �4:14 �2:24G5(GeV�2) 2:57 4:76 3:34f�0(MeV) 84:6 85:1 85:0m�(GMOR) (MeV) 143:6 143:2 143:3Table 5.1: Values of the model parameters, �tted as disussed in the text. Also shownare the pion deay onstant in the hiral limit, the pion mass predited by GMORand the dynamial quark mass.that the restoring fores against deviations from the hiral irle are rather weak inthis model. Assoiated with suh a softness of the vauum, one would expet to �nda light sigma meson. This does indeed prove to be the ase, as is disussed shortly.In the hiral limit, the model quark ondensate is �(206MeV)3 and �(189MeV)3for sets A and B respetively. With non-zero urrent quark mass, the ondensateintegral is quadratially divergent. If it is regulated by subtrating the perturba-tive ondensate, slightly higher values of �(212MeV)3 and �(193MeV)3 are obtained.These are similar in size to values for the ondensate estimated from QCD sum rules [3℄.However, one should bear in mind that the ondensate in QCD is a quantity whih de-pends upon the renormalization sale and so one ought to be areful about omparingit diretly with the value obtained in a model of this type.Table 5.2 lists the positions of the �rst few sets of poles in the quark propagator.Sine it is only the �rst group of poles whih is onsidered to have physial relevane,the model should only be used up to a maximum energy of twie the real part of theseond set of poles. This limit is at 2:3 GeV and 1:9 GeV for the parameter sets Aand B respetively, and so is suÆiently far above the upper limit imposed by theunphysial pole in the pion hannel not to be of pratial onern.5.1. Numerial Fits



Chapter 5. Numerial Results | Hadroni 78Set A Set B�496� 130i �404� 257i�1168� 790i �962� 702i�1488� 1155i �1242� 1005i�1742� 1436i �1463� 1240iTable 5.2: Positions of the lowest four sets of poles in the quark propagator. Thevalues given are of pp2 in MeV.5.2 Meson SpetrumIn Table 5.3, the alulated meson masses are given, along with their on-shell ouplingsto quarks, as de�ned in Eqs. 3.11 to 3.13. As desribed in Chp. 5.1, in some instanesthe empirial masses have been used to �x model parameters.Set A Set BPartile Mass giqq egiqq Mass giqq egiqq� Fit 3:44 0:0739 Fit 3:91 0:0715� 443:2 3:51 { 465:8 4:06 {� Fit 1:12 { Fit 1:11 {a1 946:8 1:13 { 1061:5 2:27 {! Fit 1:07 { Fit 1:05 {f1 Fit 0:89 { Fit 2:51 {a0 Fit 0:75 { Fit 1:71 {�? 874:9 0:83 0:190 899:4 2:36 1:448Table 5.3: The alulated meson masses (in MeV) and the ouplings of the mesons toquarks.The salar isosalar state is rather light. For omparison, the mass of the orre-sponding partile in the NJL model [36, 37, 66, 67℄ is m2� = m2�+4m2, where m is themass of the onstituent quark. Interestingly, the � mass in the nonloal model variesonly slowly with the dynamial quark mass.There are a number of analyses of low-energy �� sattering whih have attemptedempirial determinations of the mass of the salar isosalar meson. However, the issuehas remained a ontentious one owing to the very strong oupling between this state5.2. Meson Spetrum



Chapter 5. Numerial Results | Hadroni 79and the two-pion hannel. While some analyses �nd masses of O(1 GeV) [89℄, othersindiate a muh lighter state [90℄. The sigma masses of this model, like those in theNJL model, are ompatible with the latter. Phenomenologially, however, it is perhapsa more important point that the oupling of the model salar meson to two pions isqualitatively strong (in Chp. 5.3 it is shown to be omparable to that for a partile ofequivalent mass in the linear sigma model). It is therefore eminently plausible that the1=N orretions (whih inlude two-pion intermediate states) to the salar isosalarhannel ould prove very signi�ant. The results that have been obtained from a fullNLO treatment of the nonloal model are presented in Chp. 8.The alulated a1 mass in the nonloal model is somewhat smaller than the ob-served 1230 MeV [12℄. In the ase of parameter set A, it lies a little below the pseudo{threshold, but for most of the range of admissible m0(0) it is above that energy. The�-a1 mass splitting is found to inrease with inreasing dynamial quark mass, althoughnot so rapidly as suggested by the NJL [66, 67℄ expression m2a1 = m2� + 6m2, obtainedfrom the derivative expansion of the bosonized model. As a onsequene of the upperbound on the onstituent mass, whih follows from the e�et of the pseudo-thresholdon the transverse{vetor hannel, it is not possible to reprodue simultaneously theempirial values of both the � and a1 masses in the ladder approximation. Sine thea1 meson is a very broad resonane this is not altogether surprising, NLO diagrams(suh as one with a �� loop) being potentially important for an aurate desriptionof the hannel.Sine there are important avour{mixing e�ets in the isosalar pseudosalarsetor, a realisti alulation for these mesons would require a three{avoured versionof the model. The �? mass in the two{avour model should not therefore be diretlyompared with experiment. It is nevertheless somewhat reassuring to note that thismass lies between the physial � and �0 masses of 547 and 958 MeV respetively.Another possibly important feature in the desription of the state is the e�et of axial{pseudosalar mixing with the longitudinal f1 hannel. Indeed, in a Bethe{Salpeter
5.2. Meson Spetrum



Chapter 5. Numerial Results | Hadroni 80study of a three{avour model [91℄, the /q5 term in the vertex funtion of the �was found to make signi�ant ontributions to both its mass (� 70 MeV) and deayonstant (� 30 MeV). A similar e�et has also been observed in the NJL model [68℄.In the present model, if the f1 partile is omitted by setting G4 to zero, then the �?mass with parameter set A is redued by around 20 MeV, whereas with set B it fallsby over 110 MeV. These rather di�erent behaviours are another onsequene of thedramati hanges in the meson propagators whih an our at the pseudo{threshold.When G4 = 0, the �? mass lies below the pseudo{threshold energy for the full rangeof admissible parameter sets. For non-zero G4, the mixing ats to inrease the �?mass and for parameter sets with m0(0) >� 310 MeV the mass is pushed above thepseudo{threshold, where the e�et an be greatly enhaned. In addition, the gradientof the determinant D�? (f. Eq. 3.13 and Fig. 5.1) hanges signi�antly above thepseudo{threshold with the result that for these parameter sets the oupling of the �?to quarks is onsiderably stronger.5.3 Hadroni DeaysAt leading order in 1=N, the three{meson verties are alulated from a quark loopwith insertions of three vertex funtions. In this setion results are presented for thoseinter{meson ouplings whih orrespond to physial deay amplitudes. In suh asesall of the mesons are on-shell, where the vertex funtions (and hene the mesoniouplings) are unambiguous.For an initial state of momentum q deaying to partiles with momenta q1 and q2,the quark propagators in the triangular loop are evaluated at p� 12q and p+ 12(q2�q1).If the initial state has a mass whih is greater than twie the real part of the quarkpole, then its deay modes will be sensitive to pseudo{threshold e�ets. By analogywith the loop integral in the BSE for that partile, residue ontributions must betaken into aount in the three{point diagrams (see the disussion of Chp. 3.3). It isalso possible that further residue ontributions would be required were a �nal{state5.3. Hadroni Deays
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V V1

V2
Figure 5.4: 1! 2 meson deays. There is also a similar diagram where V1 $ V2.partile to lie above the pseudo{threshold energy. However, suh a situation is notenountered in pratie for any of the amplitudes onsidered.The meson ouplings that have been evaluated are de�ned by the following matrixelements: h�a(q1)�b(q2)j�(q)i = �g���Æab;h�b(q1)�(q2)j�a(q)i = ig����ab(q2 � �� q1 � �);h�(q1)�b(q2)jaa1(q)i = 12 iga1��Æab(q1 � �� q2 � �);h�b(q1)�(q2)jaa1(q)i = �ab(ga1��(��� � �a1)� ha1��(q2 � ���)(q2 � �a1)): (5.1)The numerial values alulated for the above ouplings are given in Table 5.4, alongwith the orresponding deay widths. Working in the rest frame of the initial statepartile, the integrations have been performed in terms of the variables p4 (in thediretion of q), jpj and  (the angle between p and q1). If the angular integration isdone �rst then the result an be treated analogously to an element of J(q) (as desribedin Chps. 3.3 and 4.1). The variation of the integrands with  tends to be dominatedby a fator of sin oming from the Jaobian. It has therefore been advantageous tohoose this as a weighting funtion in the NAG routine D01ANF whih evaluates the integral by approximating the other fators with a Chebyshev series over adaptiveintervals.

5.3. Hadroni Deays



Chapter 5. Numerial Results | Hadroni 82Set A Set BCoupling Value Width(MeV) Value Width(MeV)g���(MeV) 1438 108:0 1625 135:1g��� 5:52 126:0 5:26 114:0ga1�� 10:65 74:0 11:77 116:4ga1��(MeV) 2174 44:0 4604 376:2ha1��(GeV�1) 18:19 { 10:87 {R �0:048 { �0:087 {Table 5.4: The on-shell three{meson ouplings, as de�ned in Eq. 5.1. Also presentedin the table are the orresponding partial widths. R is the ratio of the d- to s-waveamplitudes in a1 ! �� and is spei�ed in Eq. 5.2.If the sigma meson of the model is to be interpreted analogously to the salarpartile of the linear sigma model then its oupling to two pions should be strong.Whilst the values in Table 5.4 do not indiate a partiularly broad state, the width isappreiably redued by the small available phase spae. A useful omparison, however,is provided by the predition for the two-pion oupling g��� from the linear sigmamodel [14℄. In that model, the oupling is g��� = (m2� �m2�)=f� whih, for the sigmamasses of parameter sets A and B, gives g��� = 1901 MeV and 2122 MeV respetively.These values are � 30% larger than those quoted in Table 5.4, indiating that theoupling to pions of the salar meson in the nonloal NJL model is qualitatively similarto that of the linear{sigma{model partile. As mentioned previously, this strongoupling highlights the importane of going beyond LO in 1=N in the desriptionof the salar hannel.The alulated � meson deay width ompares reasonably well with the empirialvalue of 151 MeV. In ontrast, the equivalent LO alulation in an extended NJLmodel, using the physial � mass, signi�antly underestimates the deay rate [92, 93℄.Even with the improved desription of the nonloal model, it is not possible to hoosemodel parameters that reprodue both the empirial mass and deay width of the �in the LO approximation. Note, however, that if the model parameters for a givenm0(0) are re�tted to the empirial value of g��� rather than to the � mass, then the
5.3. Hadroni Deays



Chapter 5. Numerial Results | Hadroni 83results for observables are not qualitatively di�erent from those of the original �t. Forinstane, this proedure would inrease the � mass itself by � 20 to 60 MeV.The oupling ga1�� is not a diret observable, although the proess it desribeswould be involved in the physial deay of a1 ! 3�. The partial widths for a1 ! ��found in this model are similar to those estimated from the extended NJL model3 [94℄and from Weinberg's mended realization of hiral symmetry4 [95℄. In ontrast, thePartile Data Group [12℄ quotes an experimental upper bound on the �nal state �(��)Sof � 0:7% of the total a1 width of � 400 MeV. The strong ouplings obtained heresuggest that the model may not be onsistent with this experimental result. However,the situation is far from lear. The two{stage proess a1 ! �� ! 3� would have tobe integrated over various momenta of the intermediate salar resonane, where thea1�� and ��� ouplings may redued from their on-shell values. A hint that this mayindeed be so is provided by the ��� loop integral, whih vanishes5 when the totalenergy is around 800 MeV (see also Chp. 8.6). Furthermore, there is an amplitude forthe �(��)S �nal state originating from a diret, four{point a1 ! 3� diagram whihhas not been alulated. Although this ontribution has been estimated to be smallfrom the �rst term in the derivative expansion of the extended NJL model [67℄, higherorder terms in the expansion are liable to be important for proesses involving thea1. Hene, it remains plausible that the diret ontribution might onspire to anelsome of the amplitude due to the intermediate salar state. As is disussed in Ref. [96℄however, suh a anellation is not required by any underlying priniple suh as hiralsymmetry.The dominant deay mode of the a1 is to ��. Although the parameter set B3The authors of the ited referene quoted �(a1 ! ��) � 60 MeV.4On the basis of whih it is predited that �(a1 ! ��) = 2� 32�(�! ��) � 53 MeV.5As noted previously, the ouplings a1�� and ��� for an o�-shell sigma meson are not wellde�ned. Eah ould be multiplied by an arbitrary funtion so long as the produt of the twoouplings and the sigma propagator is preserved. However, although the magnitude of an o�-shell oupling is undetermined, any zeros in the orresponding loop integral must indiatethat the oupling has genuinely vanished. The statement in the main text is thereforeindependent of the extrapolation sheme used.
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Chapter 5. Numerial Results | Hadroni 84does produe a redible, broad width, with set A the state seems to be very narrow.Sine the �nal state has a ombined mass of 910 MeV, the allowed phase spae forthe deay is drastially redued at the model a1 masses as ompared to the empirialmass. Using parameter set A, the a1 mass is only 946:8 MeV and so the small deaywidth of 44 MeV may simply be a onsequene of the phase{spae suppression.In order to examine whether the a1�� oupling is reasonably well desribed bythe extended nonloal NJL model, it is here ompared with the desription of thesame proess using a phenomenologial mesoni Lagrangian. The CCWZ formalism(see Appendix C.4) o�ers a partiularly onvenient basis for the omparison sinethe a1 mass in that framework an be set to any desired value without violating theonstraints of hiral symmetry. A suitable Lagrangian is one obtained by onvertingthe simplest Lagrangian of the massive Yang-Mills sheme (Appendix C.3) into itsCCWZ equivalent and then adjusting the a1 mass6. The relevant interation vertiesare inluded in the Lagrangian of Eq. C.11, with the Yang-Mills ouplings being givenin Eq. C.13. They yield the preditions ga1�� = f�1� (g4(qa1 � q�) + g3(q� � q�)) andha1�� = f�1� (g4 � g3). Taking f� = 93 MeV, m� = 770 MeV and Z2 = 1=2 to be theparameters speifying the original massive Yang-Mills Lagrangian, together with theempirial a1 mass, gives a broad state of width 490 MeV. Using the a1 masses foundin the model with parameter sets A and B, the e�etive Lagrangian gives very muhsmaller widths, 23 and 132 MeV respetively. This suggests that the small widthsalulated in the nonloal model are largely due to the the small a1 mass rather thanany underestimate of the oupling strength.The amplitude for the deay a1 ! �� is a mixture of s- and d-wave omponents.In terms of the deay parameters de�ned in Eq. 5.1, the ratio of the d- to s-wave6The same onlusions are reahed if one starts from the simplest Lagrangian for �, � anda1 mesons in the hidden{symmetry formalism [97℄. The a1�� interation terms in the CCWZrepresentation of both models are generated from the gauge{ovariant kineti terms in theoriginal representations. These ontain AAV strutures, whih beome interations of theappropriate form after the shift in the axial �eld indued by diagonalization (Appendix C.3).With the minimal Lagrangians of both shemes one therefore has g3 = g4 due to the strutureof the original kineti terms, with g3 being set by the mixing parameter.
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Chapter 5. Numerial Results | Hadroni 85amplitudes is R = �p2 (E� �m�)ga1�� + jq�j2ma1ha1��(E� + 2m�)ga1�� + jq�j2ma1ha1�� ; (5.2)where E� and q� are the energy and three{momentum of the �, in the a1 rest frame.This quantity has been determined by the ARGUS ollaboration [98℄ from � -deaydata to be �0:11� 0:02. The e�etive Lagrangian approah disussed above requireshigher{order ouplings in order to obtain a non-zero ha1�� and so this ratio provides atest of suh higher{order e�ets. From the values of R given in Table 5.4, the ratio forthe parameter set A is seen to be rather low whereas the value for set B is onsistentwith the observed one. Overall, it is set B that provides the better desription of boththe a1 mass and its hadroni deays.
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Additional tests of models in whih mesons are onstruted as qq omposites areprovided by eletromagneti deays and form fators that probe the internal mesonstruture. In order to alulate suh proesses it is neessary to speify the photon{quark oupling, whih requires additional assumptions to be made about the formof the nonloal urrent. This was disussed in Chp. 2.4. The resultant oupling inthe nonloal extended NJL model and the means of alulating the eletromagnetideays of the vetor mesons were desribed in Chp. 4.3.6.1 Meson Couplings to CurrentsThe photon{vetor-meson ouplings are de�ned byh0jJ�aj�bsi = �g�Æab��s ;h0jJ�j!si = �g!��s : (6.1)Their empirial values, dedued from � ! e+e� and ! ! e+e�[12℄, are g� = 0:1177GeV2 and g! = 0:0359 GeV2. The alulated values for these ouplings, given inTable 6.1, are in reasonable agreement with the experimental ones. Similarly to the86



Chapter 6. Numerial Results | Eletromagneti 87ase of the pion deay onstant (Chp. 5.1), the nonloal diagrams with salar andvetor one-quark loops are numerially signi�ant, produing respetively � 8% and� �30% of the oupling.Set A Set B Set A Set BQuantity Value Value Quantity Value Valueg�(GeV2) 0:0889 0:0773 g� 6:67 7:67g!(GeV2) 0:0308 0:0265 g! 19:92 23:12hr2�i(fm2) 0:346 0:344 { { {g� 0:505 0:501 { { {g!�(GeV�1) �2:29 �2:25 �(! ! �) (keV) 692 669g��(GeV�1) �0:755 �0:707 �(�! �) (keV) 71:6 62:7ga1�(MeV) 140:2 201:5 �(a1 ! �) (keV) 24:7 45:7Table 6.1: Eletromagneti properties of mesons. The various ouplings appearingin the table are de�ned in Eqs. 6.1, 6.2, 6.13, 6.23 and 6.27. Also given are theorresponding radiative deay widths of the spin-1 mesons and the mean{square hargeradius of the pion.Values for the dimensionless quantities gV, as given bygV = m2VgV ; (6.2)an also be seen in Table 6.1. Universal oupling of the � (see Chp. 1.6) would preditthat g� = g���. If one ompares the results for g� with those for g��� in Table 5.4 it islear that the universality relation is violated in the model, although notably less sowith parameter set A, where both of these ouplings are loser to the empirial ones.The deviations from universality reet the fat that the vetor urrent of the modelis able to ouple through many possible states. Sine the � meson is just one suhstate there is no a priori reason to expet universality to hold.Another interesting omparison one an make with regard to the � ouplingonerns the analogous oupling of the a1 meson to the transverse axial urrent. Aoupling strength ga1 is de�ned similarly to gV,h0jJ�a5 jab1si = �ga1Æab��s : (6.3)
6.1. Meson Couplings to Currents



Chapter 6. Numerial Results | Eletromagneti 88Evaluating this oupling as desribed in Chp. 4.1 one obtains values for ga1 of 0:072GeV2 and 0:138 GeV2 with parameter sets A and B respetively. The oupling strengthfrom the loal{urrent ontribution is here redued by about a third due to the inlu-sion of the nonloal diagram with a vetor one-quark loop. Another nonloal diagramis also present but its e�et is relatively minor. No diret experimental measure-ment of ga1 exists against whih to test these results, but the quantity does appearin Weinberg's sum rules [99℄. If one assumes omplete vetor and axial{vetor mesondominane1 in Weinberg's �rst and seond sum rules, then the following relations areobtained: g2�m2� � g2a1m2a1 = f 2� ; (6.4)g� = ga1 : (6.5)The results of the model for parameter set A are onsistent with these vetor{dominaneversions of the sum rules, at the � 15% level. In ontrast, the results with set B learlyfail to satisfy the relations.6.2 Pion Form FatorA further test of the extent to whih vetor{meson dominane holds in the nonloalNJL model is provided by the pion form fator. This funtion reeives ontributionsfrom the two kinds of diagram shown in Fig. 6.1.The diagram on the left{hand side of the �gure is based on a triangular loop,and is often the only one onsidered in alulations of the form fator. For a timelikemomentum q arried by the external urrent, the situation is similar to that disussedin Chp. 5.3 for the triangle diagrams in hadroni deays, with pseudo{threshold e�etsoming into play at energies beyond twie the real part of the quark pole. The same1i.e., that the isovetor vetor and axial{vetor spetral funtions are given entirely bydelta funtions at the � and a1 masses respetively. The assumption neglets the non-zerowidths of these partiles as well as the existene of heavier resonanes.
6.2. Pion Form Fator
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V� V�� V� V�Figure 6.1: The spaelike pion form fator. There is another, similar triangle diagramwhere the photon ouples to the anti{quark.numerial methods are used as in that ase. For spaelike momenta the triangulardiagrams an be evaluated in a similar manner, working in the Breit frame.The other kind of diagram in Fig. 6.1 links the vetor urrent to the initial{ and�nal{state pions by means of two-quark loops. It will be referred to as a two-bodydiagram and is generated by the terms G1(i5
 i5) and G2(�5
�5) with type-IIstruture (Eq. 2.13) in the nonloal isovetor urrent. The ontribution from thesediagrams an be written as a sum over terms, eah of whih is a produt of two loopintegrals that are somewhat similar to those in JPP ; JAP or JLAA. The path variable ina type-II nonloal urrent is assoiated with both of the  � pairs and hene the twoloops are onneted to eah other through the integral over the path. Numerially,suh two-body diagrams are best evaluated in a way2 similar to the type-III nonloaldiagram whih is involved in oupling the a1 to the axial urrent (see Chp. 4.1). Sinethe quark propagators ourring in the two-quark loops have arguments of p � 12q�,pseudo{threshold e�ets are not relevant here.Note that the two kinds of diagram in Fig. 6.1 are separately gauge invariant. Forthe triangular diagrams, gauge invariane follows diretly from the harge onjugationproperties of the dressed quark propagator and the verties (see Ref. [100℄ for example).With two-body diagrams of the form ourring in this model, it is also a simple matter2Spei�ally, a numerial integration over the path variable is performed, and has asits integrand the produt of two three{dimensional integrals. These latter integrals areevaluated with the same numerial methods as for the triangular diagrams.
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Chapter 6. Numerial Results | Eletromagneti 90to hek that they an have no omponent whih is proportional to the momentum ofthe urrent. If suh a diagram is ontrated with the urrent's momentum, Eq. 2.18an then be used to perform the resulting path integral, whereupon the expressionvanishes.A need for two-body diagrams to be inluded has also been noted in the ontext ofmodels where the four-quark interation is dependent only on the relative momentumof the qq pair [55, 56℄. In suh a model the analogue of the two-body diagram an beredued to a single two-quark loop integral, where one of the the �qq vertex funtionsis modi�ed by the presene of the photon. Suh diagrams make no ontribution to thepion harge, unlike the two-body diagrams required in the present model. Indeed, thefat that the pion's harge should be unity, F�(0) = 1, supplies an important hekon the model alulations, both analytial and numerial. Calulation of the hargefrom the full expressions for the ontributing diagrams would be quite ompliated,but it is rather more pratiable to demonstrate the result analytially if one works inthe hiral limit.Consider initially a simpli�ed version of the model where G1 is the only ouplinginluded. When a bare � insertion is used at the qq vertex of the triangular loopsit yields the following ontribution to F�(0):2NNfg2�qq0 Z d4pE(2�)4 f 4(pE)� 12p2Ef 2(pE)f 20(pE)[p2E +m0(pE)2℄2 ; (6.6)the prime denoting di�erentiation with respet to p2E. The only other piee of theqq vertex in this version of the model is an insertion of salar harater (given inEq. 4.22). The resulting ontribution, however, turns out to be of O(m�) and so theondition an only be satis�ed through the introdution of a ontribution that omesfrom the two-body diagram. This is:�2NNfg2�qq0 Z d4pE(2�)4 f 2(pE)f 20(pE)� 14p2E(f 20(pE))2 + p2Ef 3(pE)f 00(pE)p2E +m0(pE)2 : (6.7)In deriving the expression above one exploits the fat that the path variable, �, alwaysappears in onjuntion with q and hene at q = 0 it vanishes from the integrand. The6.2. Pion Form Fator



Chapter 6. Numerial Results | Eletromagneti 91two-body diagram is then a produt of two separated loop integrals, one of whihis simply JPP (m2�). This fator is not found in Eq. 6.7, however, sine it has beeneliminated (along with the fator of G1 in the nonloal urrent) by invoking the pionBSE, G1JPP (m2�) = 1.Integration by parts an be used to remove the seond derivative of an interationform fator from Eq. 6.7. Adding the ontributions of Eqs. 6.6 and 6.7 then gives2NNfg2�qq0 Z d4pE(2�)4 f 4(pE)� p2Ef 2(pE)f 20(pE) + p4Ef 2(pE)(f 0(pE))2[p2E +m0(pE)2℄2 : (6.8)This integral should be ompared to the one in Eq. 4.7 for Z�1�0 . Realling thatequation, and the de�nition of Z�, the expression 6.8 is seen to redue to unity, asrequired.Proeeding now to the ase of the extended model, the ontributions disussedabove are no longer suÆient to produe the orret normalization of the pion harge.This is beause there are hanges to g2�qq0 whih ause it to deviate from Z�0. Amodi�ation is also made to the dressed qq vertex, spei�ally the introdution ofthe piee of Eq. 4.30 that is proportional to B(q2). Sine B(0) = 0 however, this e�etdoes not have any impliations for the harge of the pion. The new ontributionsarising from the triangular diagrams therefore originate solely in the additional /q5term of the pion vertex funtions. At leading order in the hiral expansion, and usingthe bare qq vertex, this extra term yields a ontribution of4NNf g�qq0eg�qqm� Z d4pE(2�)4 f 4(pE)m0(pE)[p2E +m0(pE)2℄2 ; (6.9)whilst the orresponding result from the dressed salar piee of the qq vertex is�2NNf g�qq0eg�qqm� Z d4pE(2�)4 p2Ef 4(pE)m00(pE)[p2E +m0(pE)2℄2 : (6.10)The two-body diagrams are also altered due to non-zero G2 beause of the extrainvariant at the pion verties. Furthermore, there is a new diagram of this kind whiharises from the type-II term G2(�5 
 �5) in the nonloal vetor urrent. At q = 0both of the two-body diagrams simplify to a sum over terms whih are produts of6.2. Pion Form Fator



Chapter 6. Numerial Results | Eletromagneti 92two independent loop integrals. In eah term, one of these integrals is just JPP (m2�),JAP (m2�) or JLAA(m2�). Sine JAP is O(m�) in the hiral expansion (Eq. 4.9), termsontaining it an be disarded. Although JLAA is of zeroth order in the pion mass, italways appears in these diagrams aompanied by at least one fator of eg�qq, whih isitself of O(m�) (see Eq. 4.14). Only the terms that are proportional to JPP survivein the hiral limit. This means that the new diagram involving the G2 term from thenonloal urrent does not in fat ontribute to the pion harge at this level. In theremaining ontributions, onsider now the loop whih multiplies JPP . Where this loopdeals with the /q5 struture of a pion vertex there is an assoiated fator of eg�qq thatredues the ontribution to one of O(m�). Hene, non-zero G2 does not a�et thetwo-body ontribution in the hiral limit.Realling the notation de�ned in Eq. 4.10, the sum of ontributions to F�(0) inthe hiral limit of the extended model an be written asg2�qq0Z�0 + g�qq0eg�qqm� �I6 � 12 eI6� ; (6.11)the �rst term oming from Eq. 6.8 and the seond from Eqs. 6.9 and 6.10. Using nowEqs. 4.12 and 4.14 for the �qq ouplings in the hiral limit, the above expression iseasily shown to be unity, ompleting the proof.Numerially one an test that the pion harge is unity to all orders in the hiralexpansion. This has indeed been veri�ed, the result holding to the auray of theintegration routines used.
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Figure 6.2: The absolute value of the pion form fator, jF�(q2)j, is plotted against q2in GeV2. The solid line is the model result; the dashed line is the VMD approximationto it. The data points are from Refs. [29, 101, 102℄.
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Chapter 6. Numerial Results | Eletromagneti 94The absolute value of the form fator over a range of values of q2 an be seen inFig. 6.2, for a �t parameter set with m0(0) = 300 MeV (detailed in Chp. 5.1). Alsoshown on the �gure are experimental data points, taken from Refs. [101, 102℄ for theregion of spaelike q2 and from Ref. [29℄ for timelike q2. In the LO approximation,the model form fator has a pole at the � meson mass. Below the pole, very littlevariation with m0(0) is found in the results when other parameter sets are used. Inthis region the model urve is seen to be in fairly good agreement with the data,although its rise is a little shallower. This is on�rmed by the alulated values of themean{square pion radius, whih are given in Table 6.1. They are somewhat smallerthan the experimental result [101℄ of 0:439� 0:008 (fm)2.The dashed urve in Fig. 6.2, labelled VMD, is plotted to test whether or not themodel result for the form fator is onsistent with VMD. Under the assumption of �dominane of the photon{pion oupling, the form fator isF�(q2) = 1� g���g� q2q2 �m2� : (6.12)The ratio of g��� to g� is underestimated by the model3, and hene when one usesthe model ouplings in Eq. 6.12, the resulting VMD form fator rises somewhat moreslowly than the data. Nonetheless this VMD approximation to the model urve is nota bad one, partiularly at low q2.

3The values of these ouplings are given in Tables 5.4 and 6.1. For the �t parameter setwith m0(0) = 300 MeV, as used in drawing Fig. 6.2, they are g��� = 5:26 and g� = 6:89.6.2. Pion Form Fator
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Figure 6.3: Various ontributions to the pion form fator, below the � pole. Thedi�erent ontributions are plotted against q2 in GeV2 and are de�ned in the text.
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Chapter 6. Numerial Results | Eletromagneti 96Fig. 6.3 illustrates the individual ontributions to the form fator, below the �pole. The urve labelled as \bare" is the ontribution oming from the triangle diagramwith the loal qq oupling (the � part of the vertex, as illustrated by the �rst diagramin the representation of the dressed qq vertex in Fig. 4.2). The urve labelled \salar"omes from the triangle diagram with a nonloal oupling (as in the seond diagram ofFig. 4.2), the one-quark loop having a salar insertion (this part of the vertex is givenby Eq. 4.22). This \salar" ontribution is negligible over the range of q2 onsidered.All other ontributions from the triangle diagrams are ombined into the urve labelled\vetor" and orrespond to the part of Eq. 4.30 that is proportional to B(q2). Sinethe transverse � meson propagator is ontained in the funtion B2(q2) (Eq. 4.32), thisurve makes the dominant ontribution lose to the � pole. At spaelike momenta,however, it is found to supply only a very small ontribution, being even smaller thanthe \salar" piee. This is hardly surprising sine one would expet that a versionof the model without the � meson (and hene without any \vetor" urve) should beable to give a reasonable aount of the spaelike form fator. The point is veri�ed byFig. 6.4 in whih the model alulation with the extended model is ompared to thatprodued when the model has only the G1 interation. These model form fators arelearly very similar in the spaelike region but it is also obvious that the inorporationof the � meson is neessary for a satisfatory desription of the timelike region.
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Figure 6.4: The absolute value of the pion form fator, jF�(q2)j, is plotted againstq2 in GeV2. The solid line gives the result alulated from the extended model, justas in Fig. 6.2. The dashed line gives the form fator alulated from the version ofthe model whih has the G1 oupling only. Both urves use a �t parameter set withm0(0) = 300 MeV as spei�ed in Chps. 5.1 and 8.1.
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Chapter 6. Numerial Results | Eletromagneti 98The ontribution from the two-body diagrams an be seen in Fig. 6.3 and provesto be relatively small in the viinity of the � mass. However it varies only very slowlywith momentum, and so quite rapidly beomes important as the spaelike momentuminreases. This is as expeted sine, for large momentum transfer to the pion, the pionvertex funtions ut down the triangle{diagram ontributions. Even at q2 = 0 though,the two-body diagrams are signi�ant. They are responsible for around a third of thepion harge, learly demonstrating the importane of inluding their ontribution.It is interesting to note that, away from the pole, muh of the variation withmomentum is ontrolled by the \bare" ontribution to the form fator, whih aountsfor � 77% of the mean{square harge radius, hr2�i. Although this urve has no � pole,when added to the \vetor" ontribution, the sum is quite lose to that of the VMDapproximation to the model. This implies that a anellation operates between the\bare" ontribution and states above the � in the \vetor" piee, leaving the � pole asthe dominant overall feature. In ontrast, although a similar mean{square radius hasbeen obtained with an extended NJL model [103℄, most of that value was asribed toa diagram involving an intermediate � meson, the bare photon vertex aounting forjust 32%.Above the � pole, the measured form fator is not well desribed by the modelurve. A possible explanation is suggested by Fig. 6.5, whih breaks the form fatordown into its various ontributions for q2 > m2�.
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Figure 6.5: Various ontributions to the timelike pion form fator, above the � pole.The di�erent ontributions are plotted against q2 in GeV2 and are de�ned in the text.
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Chapter 6. Numerial Results | Eletromagneti 100One observes in Fig. 6.5 that there is a substantial anellation at work betweenthe \bare" and \vetor" ontributions, while the \salar" and \two-body" piees arenegligible over this region. The net result is therefore liable to be very sensitive to�ne details of the model in this regime. In ommon with the results for the J loopintegrals (presented in Chp. 5.1), the \bare" and \vetor" ontributions to the pionform fator are seen in Fig. 6.5 to undergo qualitative hanges of behaviour at thepseudo{threshold energy. This ats to disrupt the anellation between them near tothat point. A onsequene is the prominene of the rather strange struture seen justabove the pseudo{threshold in Fig. 6.2. This anellation between large amplitudessuggests that the results of the model should not be regarded as reliable in the region.The statement is borne out by the strong dependene of the model results above the �pole on the parameter set hosen, whih is readily apparent if one ompares the plotsin Figs. 6.2 and 6.6.

Figure 6.6: The modulus of the pion form fator, jF�(q2)j, above the � pole is plottedagainst q2 in GeV2, along with data points from Refs. [29, 101, 102℄. The results ofthe model with parameter sets A and B are shown on the left{ and right{hand sidesof the �gure respetively.
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Chapter 6. Numerial Results | Eletromagneti 1016.3 �0 !  and Related Form FatorUse of the onserved urrent onstruted in Chp. 2.4 impliitly ensures that ele-tromagneti Ward identities are satis�ed by the model. Several examples of thesewere disussed in Chps. 4.3, 4.4 and 6.2. Another important one is the amplitudefor the deay �0 ! , whih is an example of an anomalous proess. Suh pro-esses involve the omplete set of quark states and so present a problem for the usualNJL model [40, 46, 47, 48, 49℄, where the use of a regulator means that high-energyquark states are disarded. In the nonloal model studied here, the low-energy the-orem for �0 !  may be shown to be automatially satis�ed, provided that oneinludes both of the diagrams displayed in Fig. 6.7. As well as the traditional trian-gle diagram [13, 79, 104℄, there is a two-body diagram that has a dressed qq vertex(Eq. 4.30) for one of the photons and a qqqq vertex for the other.
V� �1

�2 V� �1Figure 6.7: Diagrams ontributing to �0 ! . There are also similar diagrams with�1 $ �2.The anomalous nature of the axial part of the hiral symmetry group implies thatg� = 12 in the hiral limit [104℄, this oupling being de�ned through the amplitudeh(q1)(q2)j�0i = �2�EM�f� g������q�1 q�2 ���1 ���2 : (6.13)Working in the hiral limit, onsider �rst the simpler ase where vetor meson degreesof freedom are not present in the model, setting G2 = G3 = 0. The triangle diagramswhere both of the photons are oupled through the loal urrent (bare � insertions
6.3. �0 !  and Related Form Fator



Chapter 6. Numerial Results | Eletromagneti 102at the qq verties) ontribute an amplitude of4i�����q�1 q�2 ���1 ���2 e2g�qq0 Z d4p(2�)4 f 2(p)[p2 �m20(p2)℄3  �2m0(p2) + 4m00(p2)(p � q)2q2+4m00(p2) [p � (q1 � q2)℄2(q1 � q2)2 ! ; (6.14)where the prime denotes a derivative with respet to p2. The photons in the triangular{loop diagrams an also be oupled via the nonloal urrent, having an insertion ofsalar harater (this qq insertion is given in Eq. 4.22). The ontribution from dia-grams where one of the photons is oupled in this way is4i�����q�1 q�2 ���1 ���2 e2g�qq0 Z d4p(2�)4 f 2(p)4m00(p2)[p2 �m20(p2)℄3  p2 � (p � q)2q2� [p � (q1 � q2)℄2(q1 � q2)2 ! : (6.15)Diagrams with a nonloal oupling at both photon verties do not make any ontri-bution to the amplitude beause the resulting Dira trae vanishes. Converting thesum of Eqs. 6.14 and 6.15 into Eulidean spae, and hanging variable tot = m20(p2E)p2E ; (6.16)leads to a total amplitude of�2�����q�1 q�2 ���1 ���2 �EM� g�qq0m0(0) Z 10 dt(1 + t)3 : (6.17)The low-energy theorem now follows by invoking the analogue of the Goldberger{Treiman relation in the model. This is just Eq. 4.8, derived both in Ref. [8℄ and inChp. 4.2 by onsidering f� in the hiral limit.In the extended model with vetor mesons, the pion{quark oupling is a�etedby the pseudosalar{axial mixing indued by the G2 oupling (see Eqs. 3.10, 3.12 and3.13). However, the form of f� is also modi�ed (as desribed in Chp. 4.1) in just suh away that the Goldberger{Treiman relation remains valid (Chp. 4.2). In addition, notethat sine the photons in this proess are on-shell the relevant dressed qq verties areomposed solely of the same bare and nonloal (Eq. 4.22) piees as in the version of6.3. �0 !  and Related Form Fator



Chapter 6. Numerial Results | Eletromagneti 103the model without vetor mesons (this issue is disussed in Chp. 4.3). The sum of theontributions 6.14 and 6.15 therefore yields g� = 12 , just as in the simpler version ofthe model.The analysis outlined above is in agreement with the work of Ref. [79℄ whereit was shown that, for a quark propagator without wavefuntion renormalization,the anomaly is saturated by taking only the leading part of the pion Bethe{Salpeteramplitude, together with dressed qq strutures subjet to the Ward identity for thatvertex. The statement is non-trivial beause terms in the pion amplitude that arelinear in momentum an ontribute to the deay amplitude, even in the hiral limit.For instane, the /q5 term whih appears in V�(q) for the extended version of thismodel gives rise to additional triangle{diagram ontributions. From suh diagramswith two loal photon verties, one �nds4i�����q�1 q�2 ���1 ���2 e2 eg�qqm� Z d4p(2�)4 f 2(p)[p2 �m20(p2)℄3  �2p2 � 2m20(p2) + 4(p � q)2q2+4[p � (q1 � q2)℄2(q1 � q2)2 ! : (6.18)Sine eg�qq is of O(m�) in the hiral expansion (Eq. 4.14), the above ontribution is ofO(1). Similar diagrams with one loal and one nonloal photon vertex give4i�����q�1 q�2 ���1 ���2 e2 eg�qqm� Z d4p(2�)4 f 2(p)8m0(p2)m00(p2)[p2 �m20(p2)℄3  p2 � (p � q)2q2� [p � (q1 � q2)℄2(q1 � q2)2 ! : (6.19)The diagrams with two nonloal verties again have a vanishing Dira trae.Sine the sum of Eqs. 6.18 and 6.19 is non-zero, there must be some other ontri-bution that anels them in the full amplitude for the anomalous proess. The relevantpiee arises from the two-body diagram that is displayed on the right{hand side ofFig. 6.7. Terms in the nonloal vetor urrent of the form4 G2(�5 
 �5) with atype-I (Eq. 2.11) struture are responsible for the qqqq vertex. This diagram fator-izes into two separate loop integrals, the loop between the two photons produing the4For the sake of simpliity, isospin fators have been suppressed here.6.3. �0 !  and Related Form Fator



Chapter 6. Numerial Results | Eletromagneti 104anomalous ����� fator. The other loop is nothing more than a linear ombinationof the familiar integrals JAP (m2�) and JLAA(m2�). This ombination an be simpli�edby realling the de�nitions of the pion{quark oupling onstants in Eq. 3.12. Theontribution from this diagram in the hiral limit is given by4i�����q�1 q�2 ���1 ���2 e2 eg�qqm� Z d4p(2�)4 4f(p)f 0(p)[p2 �m20(p2)℄2  p2 � (p � q)2q2� [p � (q1 � q2)℄2(q1 � q2)2 ! : (6.20)Converting to Eulidean spae and integrating by parts, the above expression an beshown to anel exatly with the sum of Eqs. 6.18 and 6.19, demonstrating that thelow-energy theorem for �0 !  holds in the extended model.In pratie, the existene of non-zero urrent quark masses means that the physi-al amplitude di�ers slightly from its value in the hiral limit. In an expliit alulationof the full model amplitude, the two-body diagrams are treated by �rst performing thepath integration analytially. One an then apply the usual methods (see Chp. 5.3) fordealing with a single three{dimensional loop integral. The numerial results alulatedwith the nonloal NJL model for g� are given in Table 6.1. The deviations from 12 aresmall and are onsistent with those in the experimental value [12℄, g� = 0:503�0:018.The related proess where one of the photons is o�-shell, � ! �0, enables oneto probe the struture of the neutral pion. A orresponding form fator an be de�nedas F�(q2) = h�(q2)j�0ih(q2 = 0)j�0i : (6.21)It is straightforward to develop the model alulations above in order to evaluate thisform fator. The same numerial methods for dealing with the two-body diagramsan be applied both o�- and on-shell. The triangular diagrams are again evaluatedanalogously to those in the hadroni deay amplitudes of Chp. 5.3, but working herein a frame hosen suh that the spaelike momentum of the o�-shell photon has noomponent in the fourth Eulidean diretion.
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Chapter 6. Numerial Results | Eletromagneti 105Early experimental measurements of the transition form fator were attempted atsmall timelike momenta [12, 105℄ but were subjet to large unertainties. Until reentlythe best results were those obtained by the CELLO ollaboration [105℄ in the spaelikeregion, whih extends from �m2�. Their experiment investigated e+e� ! e+e��0events where one of the fermions is sattered through a very small angle (i.e., is lostdown the beam pipe), thereby indiating that the intermediate photon it emitted wasalmost real. Five data points for the form fator were quoted and are marked by openirles in Fig. 6.8. Also displayed on that �gure is the new data reported by the CLEOollaboration [106℄ who revisited the experiment at improved preision. Their datais marked with �lled boxes on the �gure whih also shows the results of the modelalulation at the �t parameter set with m0(0) = 300 MeV.The model results are not sensitive to the hoie of parameter set and are dom-inated by the ontribution from the triangle diagram with loal photon ouplings.They are in good agreement with the new experimental data and are omparable tothe results obtained in other Bethe{Salpeter approahes [86, 87℄.The dashed urve in Fig. 6.8 is the VMD predition for the form fator, given byF�(q2) = 1� 2�2f�g� XV=�;! gV�gV q2q2 �m2V ; (6.22)and using the values of the ouplings alulated in the model5. (The ouplings gV�,desribing the deays V ! �, are disussed in the following setion.) In this ase,the VMD approximation to the model result is rather poorer than it was for the pionform fator (Fig. 6.2). VMD is not inonsistent with the model at low momenta inthis proess, but the di�erene between them beomes appreiable as the spaelikemomentum inreases.
5whih are g� = 0:504, g� = 6:89, g�� = �0:712 GeV�1, g! = 20:62 and g!� = �2:14GeV�1 for the �t parameter set with m0(0) = 300 MeV that is used in drawing Fig. 6.8.6.3. �0 !  and Related Form Fator
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Figure 6.8: The ��(q2) transition form fator, de�ned in Eq. 6.21, is plotted againstq2 in GeV2. The solid line is the model result; the dashed line is the VMD approxima-tion to it. The data points are from Refs. [105℄ (open irles) and [106℄ (�lled boxes).In both of the experiments the data was measured in Q2 bins, the extents of whihare plotted here as the horizontal error bars. The vertial errors in F� are statistialonly.
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Chapter 6. Numerial Results | Eletromagneti 107For the on-shell amplitude in the hiral limit the hiral anomaly ensures that thee�ets of inluding vetor mesons in the model anel out. In fat, suh anellationsseem to persist to a large extent in the o�-shell amplitude and at non-zero urrentquark mass. Evidene for this laim is supplied by Fig. 6.9, where the transition formfator is shown in a simpler version of the model whih inludes only the pions andthe sigma meson. As in the ase of the pion form fator at spaelike momenta, thereis little di�erene between the extended and simple versions of the model, with bothgiving a good desription of the data.

Figure 6.9: The ��(q2) transition form fator is plotted against q2 in GeV2. Thesolid line gives the result alulated with the extended version of the model, just asin Fig. 6.8. The dashed line gives the result alulated from the version of the modelwhih has the G1 oupling only. Both urves use a �t parameter set with m0(0) = 300MeV as spei�ed in Chps. 5.1 and 8.1.
6.4 Radiative Deays and a Related Form FatorThis setion disusses the model results for the deays of spin-1 mesons into � �-nal states. Shematially, the alulations involve triangle and two-body diagrams,analogous to those of Fig. 6.7. 6.4. Radiative Deays and a Related Form Fator



Chapter 6. Numerial Results | Eletromagneti 108Just as in the anomalous pion deay, the piee of the nonloal urrent that givesrise to the two-body diagrams for V ! � is the type-I (Eq. 2.11) term with Dirastruture G2(�5 
 �5). These two-body diagrams may similarly be redued to asingle two-quark loop integral, the other loop being a known ombination of pioniJ integrals. The resulting ontributions do not prove to be numerially important inthese deays, produing less than 1% of the total amplitudes.Results for these ouplings, as de�ned byh(q1)�0(q2)j!i = ieg!������q�1 q�2 ��� ��! ;h(q1)�b(q2)j�ai = iÆabeg�������q�1 q�2 ��� ��� ; (6.23)are given in Table 6.1, along with the orresponding deay widths. Sine isospinsymmetry has been assumed there is no �ab3 omponent to the �� matrix element.The deay widths obtained for the harged and neutral � mesons are therefore equal.These model results agree well with the experimental values [12℄:�(! ! �) = 717� 43keV;�(�0 ! �0) = 121� 31keV;�(�� ! ��) = 68� 8keV; (6.24)the di�erene between the measured harged and neutral � deays not being onsideredstatistially signi�ant in view of the large error bars [107℄.Extending the !� amplitude to o�-shell photon momenta, the model desriptionan be ompared to the form fator as measured in Ref. [108℄. The reation ��p !n! ! n�0�+�� was studied to investigate the form fator in the range from 4m2� to(m! �m�)2. Working with a de�nition ofF!�(q2) = h�(q2)�j!ih(q2 = 0)�j!i ; (6.25)the model results and the experimental data are shown in Fig. 6.10. In ommon withthe other eletromagneti form fators presented in this hapter, the �t parameter setwhere m0(0) = 300 MeV has been used in plotting the model results, whih have beenfound not to be sensitive to the set hosen.6.4. Radiative Deays and a Related Form Fator
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Figure 6.10: The !��(q2) form fator is de�ned by Eq. 6.25. Its square is plotted ona logarithmi sale against q2 in GeV2. The solid line is the model result; the dashedline is the VMD approximation to it. Data points are taken from Ref. [108℄.
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Chapter 6. Numerial Results | Eletromagneti 110In Fig. 6.10 the model is seen to be in agreement with the data points at lowq2 but there is a disrepany at higher energies. The same observations are true ofother theoretial alulations [109℄. It may be that there is some e�et on this formfator from the tail of the �0 resonane [30℄. Another potentially important missingingredient in the present alulation is !� mixing, sine a alulation of this formfator within an SU(3) e�etive Lagrangian approah [110℄ has found a signi�antdependene on the mixing strength. Improved data would be needed to draw any�rmer onlusions and there are indeed hopes that the experimental situation will belari�ed by forthoming experiments at VEPP-2M or DA�NE [107℄.For this form fator, omparison with the VMD predition,F!�(q2) = 1� g!��g!�g� q2q2 �m2� ; (6.26)is not ompletely straightforward, sine the oupling g!�� annot be alulated on-shell. Nonetheless, a reasonable estimate of it an be made by extrapolating to thesoft{pion limit6 (zero pion four{momentum). For a variety of �t parameter sets overthe admissible range, the results for g!�� determined in this way are within 20% of thepredition of universal oupling, g!�� = g!�g�. The urve orresponding to Eq. 6.26with the estimated !�� oupling7 is that whih is labelled as VMD in Fig. 6.10. Itprovides a very good approximation to the results of the full alulation in the model.

6In that limit, the pseudosalar{axial mixing element, JPA, vanishes. Hene, the vertexfuntion for the soft pion is taken to be g�qqi5�a.7For the parameter set used in plotting the �gure it is estimated to be 15:2 GeV�1. Theother ouplings needed are quoted in footnote 4.6.4. Radiative Deays and a Related Form Fator



Chapter 6. Numerial Results | Eletromagneti 111

Figure 6.11: Various ontributions to the !��(q2) form fator are plotted against q2in GeV2. The ontributions are de�ned in the text (see Chp. 6.2).

6.4. Radiative Deays and a Related Form Fator



Chapter 6. Numerial Results | Eletromagneti 112Deomposing the form fator as in Chp. 6.2, the individual ontributions areshown in Fig. 6.11. The two-body diagrams are negligible over the region onsidered.The ontribution oming from the \salar" part of the dressed qq vertex (Eq. 4.22)is larger but is still a minor e�et. As in the ase of the pion form fator (Chp. 6.2),the model result turns out to be dominated by the bare, loal photon vertex andthe \vetor" part of the qq vertex. The latter ontribution inludes the model �meson propagator and so it beomes inreasingly important as the timelike momentuminreases towards the � pole. It appears that a anellation is ating between the loalontribution and that from states other than the � meson in the \vetor" ontributionso as to produe a result whih is lose to that of VMD with universality.In the amplitude for the deay a�1 ! ��, the ontribution due to two-body dia-grams is generated by the terms in the nonloal urrentG1(i5
i5) andG2(�5 
 �5)whih have a type-II struture (Eq. 2.13). These are the very terms that gave riseto the two-body diagrams in the pion form fator (Chp. 6.2). The same numerialmethods are used in omputing the analogous a1� diagrams. Sine the a1 mass liesabove the pseudo{threshold energy for parameter set B, the evaluation of both thetriangle and the two-body diagrams requires residue ontributions in that ase.Gauge invariane imposes the following struture on the deay amplitude:h(q1)�b(q2)jaa1i = i�ab3ega1� "�a1 � �� + 2(q2 � �a1)(q2 � ��)(m2a1 �m2�) # : (6.27)In the isosymmetri ase, there is no Æab omponent to the amplitude, whih is on-sistent with the fat that the radiative deay of the neutral a1 meson has not beendeteted [12℄. The values alulated for ga1�, and the orresponding deay widths,an be seen in Table 6.1. With parameter set A the salar part of the nonloal photonoupling and the two-body diagrams make relatively small ontributions to the totalamplitude. Working with set B, these ontributions are substantial but largely anelwith eah other. The �nal results for all hoies of parameters are muh smaller thanthe experimental measurement [111℄ of 640� 246 keV.
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Chapter 7
Next-to-Leading Order Treatment
7.1 NLO CorretionsFrom even the most ursory survey of the literature it is apparent that the NJL modelhas long been popular in low-energy strong physis. However, almost all alulationswith the model, and its various o�spring (Chp. 2.2), have been restrited to leadingorder (LO) in the 1=N expansion. To a large extent, this is beause the alulationsat next-to-leading order (NLO) are muh more ompliated, both analytially andnumerially. Part of the original motivation for the NJL model, and one of the reasonsfor its ontinued popularity, is its very simpliity at LO. One might therefore take theview that a large inrease in omplexity is not justi�ed for a model that was neverintended to produe highly aurate numerial results. An additional point of diÆultyis that the model must be spei�ed further at NLO sine one has to regularize bothquark and meson loops.On the other hand, sine 1=N is suh a modest expansion parameter, it does seemimportant to try to estimate the size of some NLO e�ets. Even if were of interestfor no other reason, this is a neessary aspet of the validation of the perturbativeapproah. For some quantities it may be that the expansion oeÆients onspire tomake the NLO term similar in size to the LO one. This possibility has to be eliminated

113



Chapter 7. Next-to-Leading Order Treatment 114if a LO alulation is to be viewed as a reasonable approximation to the full modelresult.The most appealing point about a NLO analysis, however, is that the LO treat-ment of a four-quark model neglets physial proesses that are known to be quali-tatively important (see Chps. 5.2, 5.3 and 6.2). For instane, several of the partilesdesribed by suh models (�, �, a1) are broad states, yet the model meson propagatorsat LO are purely real. At NLO the partile widths are inorporated in a ompletelynatural way, by inluding diagrams with purely mesoni intermediates in the BSE.Suh diagrams might well prove important in model desriptions of, say, the sigmameson.In this and the following hapter, work is presented whih aims to go some waytowards an improved understanding of four{quark models at NLO. Some aspets ofthe original NJL model at NLO have been investigated by various authors. Severalsuh works, however, have been onerned only with subsets of the full NLO orre-tions [93, 112, 113℄. As stressed in Refs. [43, 44℄, this is a somewhat unsatisfatoryapproah sine failure to inlude all of the relevant diagrams an ause Ward identitiesand hiral symmetry onstraints to be violated. To this author's knowledge, onsistentNLO treatments are only available in Refs. [43, 44, 45℄, using respetively an e�e-tive ation method, an appropriate seletion of Feynman diagrams and a bosonizedapproximation. In the remainder of this hapter, the Feynman diagrams required atNLO in the nonloal NJL model are presented. This model is a partiularly onve-nient one in whih to examine NLO e�ets. Sine it does not need regularization, oneavoids ambiguities that our in the original NJL model. In addition, the Gaussianform fator (Eq. 2.7) of the nonloal model allows ompliated NLO diagrams to beevaluated eÆiently with Gaussian numerial tehniques. Note that some preliminarywork on quark properties at NLO in the nonloal model an be found in Ref. [114℄.
7.1. NLO Corretions



Chapter 7. Next-to-Leading Order Treatment 1157.2 Quark Propagator at NLOAt NLO the quark self-energy is supplemented by two new kinds of diagram, speif-ially a tadpole and a meson loud ontribution. A starting point for deduing bothof these ontributions is the Fok diagram, whih arises from the Fierzed form of theation (disussed in Chp. 2.5).
G1 (4N)�1(G1 � 2G3 + 2G4 �G5 + 12G6)Figure 7.1: The LO and Fok diagrams in the Shwinger{Dyson equation are shownon the left{ and right{hand sides of the �gure respetively. Note that they have beendistinguished by separating slightly the quark lines assoiated with eah of the   fators in the interation.The interation terms of the Fierzed ation (Eq. 2.19) desribe the onsequenesof exhanging the quark �elds in the model ation of Eqs. 2.1 to 2.4. They lead todiagrams whih are very similar to those at LO but are suppressed by one power ofN due to a restrition on the sum over olour. Fig. 7.1 illustrates the point with aomparison of the LO and Fok diagrams in the Shwinger{Dyson equation. In theLO diagram, the one-quark loop is obtained by losing in on itself one of the   fators from the G1 interation. Any olour of quark an ow around the resultingloop. The Fok diagram though is onstruted by breaking the one-quark loop of theLO diagram and attahing the ends to the legs of the propagating quark. The sameolour index must then be maintained throughout the diagram.The Fok diagram in Fig. 7.1 an be used as a seed for other NLO ontributionsto the SDE. An example is shown in Fig. 7.2. It is generated by inserting a two-quarkloop into the Fok diagram. Suh a loop is simply a J integral from the LO BSE

7.2. Quark Propagator at NLO
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Figure 7.2: A diagram in the Shwinger{Dyson equation at NLO.(Chp. 3.2). In omparison with the Fok diagram, the diagram in Fig. 7.2 has anadditional fator of an interation oupling onstant, whih is of O(N�1 ). However,this is ompensated for by a fator of N from the olour trae over the two-quark loopand so Fig. 7.2 onstitutes another NLO ontribution. One an insert more two-quarkloops in a similar fashion, thereby generating many more NLO diagrams. Combiningall suh diagrams amounts to a sum over hains of the two{quark loops (illustratedby Fig. 7.3).
Figure 7.3: A hain of two-quark loops. Sums of suh hains are used in the onstru-tion of the T matrix at LO.Realling Chp. 3.2, the sum of hains an be seen to produe the qq satteringmatrix at LO. In fat, at NLO, the full SDE an be expressed in terms of the ladderdiagram of Fig. 3.1 and the extra diagram shown in Fig. 7.4. The SDE beomes:S�1F (p) = /p�m � iG1f 2(p)Tr Z d4k(2�)4SF (k)f 2(k)+if 2(p)Xi Z d4k(2�)4 T̂ (�i 
 
i; k)�iSF (p� k)
if 2(p� k); (7.1)
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Chapter 7. Next-to-Leading Order Treatment 117where the notation T̂ (� 
 
; q) has been introdued to denote that hannel of thesattering matrix T̂ (q) whih desribes the propagation from a qq state with matrixstruture 
 to the state with struture �. It is to be understood as the LO satteringmatrix of Eq. 3.5, whih is learly of O(N�1 ). The summation over the index iindiates that all of the Dira and isospin strutures in the sattering matrix are tobe inluded.
TSF

Figure 7.4: The NLO part of the Shwinger{Dyson equation.Note that the Fok diagram on the right{hand side of Fig. 7.1 is impliit in theseond of the integrals appearing in Eq. 7.1. As the seed for the sattering matrix, itan be isolated simply by taking the �rst term from the right{hand side of Eq. 3.5.Equation 7.1 illustrates that in general the quark SDE and meson BSE form partof a system of oupled integral equations. A perturbative expansion in 1=N thereforeprovides a great simpli�ation by allowing the solutions to be built up separately oneorder at a time. Although the SDE as written above ontains all of the requiredterms at LO and NLO, it also inludes some unwanted higher order terms. In orderto restrit it to the terms of interest the full quark propagator is written in the formS�1F (p) = S�1(p) + �N (p) + � � �SF (p) = S(p)� S(p)�N(p)S(p) + � � � ; (7.2)where � is the quark self-energy and a onvention is followed whereby a symbol withthe subsript N represents the NLO ontribution to that quantity. The same symbolwithout this subsript is to be understood as referring to the quantity evaluated at7.2. Quark Propagator at NLO



Chapter 7. Next-to-Leading Order Treatment 118LO. In Eq. 7.2, therefore, the dots indiate irrelevant terms beyond NLO. Substitutingthe deomposition into Eq. 7.1 and equating terms at eah order of 1=N, one of oursereovers the familiar ladder SDE (Eq. 3.2) at LO. The NLO terms meanwhile onsistof a ontribution involving the sattering matrix along with a piee oming from aNLO self-energy insertion into the ladder self-energy diagram,�N (p) = iG1f 2(p)Tr Z d4k(2�)4S(k)�N (k)S(k)f 2(k)+if 2(p)Xi Z d4k(2�)4 T̂ (�i 
 
i; k)�iS(p� k)
if 2(p� k): (7.3)One an substitute for �N (k) in Eq. 7.3 using the full expression on the right{handside of that equation. This immediately leads to an expliit expression for the NLOself-energy:�N (p) = f 2(p) + if 2(p)Xi Z d4k(2�)4 T̂ (�i 
 
i; k)�iS(p� k)
if 2(p� k); (7.4)where  = �G11�G1JSS(0)Xi Tr Z d4k(2�)4 Z d4`(2�)4 T̂ (�i 
 
i; k � `)�S(k)�iS(`)
iS(k)f 4(k)f 2(`): (7.5)The two piees of Eq. 7.4 are the tadpole and meson loud ontributions advertised atthe start of this setion. In diagrammati language, they are shown in Fig. 7.5. Thediagram on the left{hand side of the �gure is responsible for the ontribution f 2(p).It is generated by the exhange of a zero{momentum � meson between the quark anda virtual meson. Sine  is a momentum{independent onstant this ontribution is ofthe same form as the LO running quark \mass", m(0) � m (see Eqs. 3.1 and 3.3).The other diagram in Fig. 7.5 illustrates the emission and subsequent reabsorptionof a virtual meson. Its evaluation requires an expliit integration to be performed ateah value of the quark momentum and produes a wavefuntion renormalization /pomponent as well as a salar term.
7.2. Quark Propagator at NLO
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 �

11�(0) 
 �
Figure 7.5: Diagrams ontributing to the NLO quark self-energy. A double line is usedto denote the propagation of a qq state, as desribed by the LO sattering matrix.The qq system has initial and �nal state matrix strutures that are spei�ed in theopen irles at the ends of the double line.7.3 Meson Propagators at NLOAt LO, the mesoni bound states are onstruted from the ladder Bethe{Salpeterequation, as desribed in Chp. 3.2. The natural basis for disussion of the NLOversion of this equation deals with orretions to the basi two-quark loop, Jij. Oninorporating the NLO ontributions into an expanded de�nition of J , the satteringmatrix will retain the form of Eqs. 3.4 and 3.5. Suh NLO orretions are of threedistint kinds. They arise from a NLO quark self-energy insertion, from t-hannelone-meson exhange between the quarks and from the ombination of two three-mesonverties.

ji
Figure 7.6: The LO loop in the Bethe{Salpeter equation.
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Chapter 7. Next-to-Leading Order Treatment 120The graphial notation of Fig. 7.6 is used in this setion. The �gure represents thetwo-quark loop that appears in the LO BSE. Eah ross denotes the relevant matrixinsertion (�i or �j) as well as two interation form fators (eah of these is evaluatedat the momentum of a onneted internal quark line).

ji

 �

11�(0)
(a) 
 � ji (b)Figure 7.7: Diagrams appearing in the BSE at NLO as a onsequene of the NLOquark self-energy. There are also similar diagrams, with fermion arrows in the oppositediretions.An obvious orretion to a LO J loop is generated by replaing a LO quarkpropagator with its NLO part. This results in the following ontribution to JNij(q2),whih is illustrated in Fig. 7.7:�iTr Z d4p(2�)4�iS(p�)�N (p�)S(p�)�jS(p+)f 2(p�)f 2(p+)�iTr Z d4p(2�)4�iS(p�)�jS(p+)�N (p+)S(p+)f 2(p�)f 2(p+): (7.6)Another kind of NLO ontribution is based on a Fok diagram. The Fok diagramin the BSE is onstruted by a rearrangement of the quark lines at one of the intera-tion verties in a hain of LO loops. It is shown on the left{hand side of Fig. 7.8 below.Just as in Chp. 7.2, a diagram of the same order in 1=N an be generated from it by7.3. Meson Propagators at NLO



Chapter 7. Next-to-Leading Order Treatment 121
ji ji

Figure 7.8: The Fok diagram in the Bethe{Salpeter equation is shown on the left{hand side of the �gure. Note that it has been distinguished from two suessive LO Jloops by slightly separating the quark lines assoiated with eah of the  � fators inthe interation vertex. Another NLO BSE diagram is shown on the right{hand sideof the �gure.inserting a two-quark loop. Doing so gives the diagram shown on the right{hand sideof the same �gure. One an proeed to reate hains of suh loops (Fig. 7.3). In fat,just as for the ase of the quark propagator, the Fok ontribution is only the �rstterm in a set of diagrams whih produe a LO sattering matrix when summed. Theirtotal amounts to the exhange of a t-hannel virtual meson between the two quarklines of a LO J loop. It is shown in Fig. 7.9 and makes the following ontribution toJNij(q2):Xr Tr Z d4p(2�)4 Z d4k(2�)4 T̂ (�r 
 
r; p� k)�iS(k�)
rS(p�)�jS(p+)�rS(k+)�f 2(k�)f 2(k+)f 2(p�)f 2(p+): (7.7)
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� ji () 


�

� ji (d)Figure 7.9: Meson exhange diagrams in the BSE at NLO. There are also similardiagrams, with fermion arrows in the opposite diretions.Finally, there is a NLO ontribution that involves intermediate two{meson states(it is illustrated in Fig. 7.9d). Diagrams of this form allow the instability of a me-son to be reeted in its propagator by introduing an imaginary omponent abovethe threshold energy for physial meson deays into two partile �nal states. Theyare reated by joining together two LO three{meson verties1, eah of whih is ofO(1=pN). In writing an expliit expression for these BSE diagrams, it is onvenientto use funtions L and L that desribe the LO three{meson verties.

q; � q1; �1
q2; �2 q; �q1; �1

q2; �2
Figure 7.10: The three-point loops L and L. They are de�ned respetively by thediagrams on the left{ and right{hand sides of the �gure, together with similar diagramswhere the fermion arrows point in the opposite diretions.1Suh verties were onsidered in the ontext of meson deays in Chp. 5.3.
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Chapter 7. Next-to-Leading Order Treatment 123L is de�ned to be:L(q; q1; q2; �;�1;�2) = iTr Z d4p(2�)4�S(p�)�2S(p� 12(q1 � q2))�1S(p+)�f 2(p�)f 2(p+)f 2(p� 12(q1 � q2))+iTr Z d4p(2�)4�S(p�)�1S(p+ 12(q1 � q2))�2S(p+)�f 2(p�)f 2(p+)f 2(p+ 12(q1 � q2)); (7.8)and L is a similar funtion for the 2! 1 version of the loop,L(q; q1; q2; �;�1;�2) = iTr Z d4p(2�)4�S(p+)�1S(p� 12(q1 � q2))�2S(p�)�f 2(p�)f 2(p+)f 2(p� 12(q1 � q2))+iTr Z d4p(2�)4�S(p+)�2S(p+ 12(q1 � q2))�1S(p�)�f 2(p�)f 2(p+)f 2(p+ 12(q1 � q2)): (7.9)Clearly L and L are symmetri under 1$ 2. Using the ross notation, these funtionsrepresent the triangular loops shown in Fig. 7.10. The ontribution to JNij(q2) fromthe diagram of Fig. 7.9d an then be written as follows:�iXr;s Z d4p(2�)4 T̂ (�r 
 
r; p+)T̂ (�s 
 
s;�p�)L(q; p+;�p�; �i;
r;
s)�L(q; p+;�p�; �j;�r;�s): (7.10)7.4 Diagrams for Coupling to Currents at NLOA NLO determination of the oupling between a partile and an external urrentrequires the alulation of additional diagrams. Suh diagrams are onsidered in thepresent setion, taking the pion deay onstant as an example. (Note that the atualexpressions for the various NLO ontributions to f� an be found in Appendix A.1.)At LO the pion deay onstant reeives two kinds of ontribution, whih arise fromthe loal and nonloal parts of the axial urrent (see Chp. 4.1). At NLO several of7.4. Diagrams for Coupling to Currents at NLO



Chapter 7. Next-to-Leading Order Treatment 124the extra diagrams an be straightforwardly derived by modifying loops whih appearin the LO diagrams. Starting from a one-quark or a two-quark loop at LO, thereare NLO orretions whih follow by analogy with diagrams from the SDE and BSErespetively. Both the one- and two-quark loops are orreted due to a NLO quarkself-energy insertion (whih is omposed of the two diagrams shown in Fig. 7.5). Atwo-quark loop should also be orreted due to t-hannel virtual meson exhange anddue to intermediate two{meson states. Introduing these orretions results in thediagrams of Figs. 7.11 and 7.12.Other NLO ontributions arise from the fat that the vertex funtion whih de-sribes the oupling between a meson and dynamial quarks has a NLO omponent(Eq. 7.13). Diagrams (k) and (l) of Fig. 7.13 are the obvious onsequenes of thispoint.
V� �N
(a); (b)Figure 7.11: The �gure shows the sum of the NLO diagrams (a) and (b) in the ouplingof the pion to the axial urrent. Diagram (a) inludes only that part of the NLO quarkself-energy shown on the left{hand side of Fig. 7.5; diagram (b) inludes only that partshown on the right{hand side of the same �gure.
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�NV� (); (d)


�V� (e)

 �


�V� (f) �NV� (g); (h)
�V� (i) 
 �

�V� (j)Figure 7.12: The �gure shows the sum of the NLO diagrams () and (d) in the ouplingof the pion to the axial urrent. Also shown is the sum of diagrams (g) and (h), aswell as the diagrams (e), (f), (i) and (j). Diagrams () and (g) inlude only that partof the NLO quark self-energy shown on the left{hand side of Fig. 7.5; diagrams (d)and (h) inlude only that part shown on the right{hand side of the same �gure. Notethat there are also similar diagrams, with fermion arrows in the opposite diretions.
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Chapter 7. Next-to-Leading Order Treatment 126Sine there are four quark �elds in the nonloal part of the axial urrent oneshould onsider the e�ets of exhanging the roles played by the �elds. As for theinteration verties, suh e�ets an be desribed by Fok terms, whih are suppressedby one power of N in omparison with the original terms of the nonloal urrent (seeChp. 2.5). Although there is an ambiguity in de�ning their transverse omponents,this is of no onern in the alulation of the pion deay onstant. One ould of oursereate further NLO diagrams by appending two-quark loops to the Fok diagram.However, it is demonstrated in Appendix A.1 that suh ontributions are automatiallyinluded in other diagrams and therefore it is more onvenient to treat the Fokdiagram (Fig. 7.14) separately.There are two more NLO diagrams to be inluded in the oupling of a meson toan external urrent. They are shown in Fig. 7.15. Diagram (o) is similar to some otherNLO ontributions in that it arises from the exhange of a virtual meson between twoquarks. It reognizes the possibility that the two quarks need not neessarily belongto the same quark loop. The remaining NLO diagram, (n), is somewhat similar todiagram (j) of Fig. 7.12 and ours beause the nonloal urrent an be oupledthrough two two-quark loops (f. the two-body diagrams ontributing to several ofthe eletromagneti proesses desribed in Chp. 6).
VN� (k) VN� (l)Figure 7.13: The NLO diagrams (k) and (l) in the oupling of the pion to the axialurrent. VN� is the NLO part of the pion vertex funtion.
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V� (m)Figure 7.14: The NLO diagram (m) in the oupling of the pion to the axial urrent.Note that it has been distinguished from a similar LO diagram by slightly separatingthe quark lines assoiated with eah of the   fators in the nonloal urrent.



�

�V� (n) V� 
 �

(o)Figure 7.15: The NLO diagrams (n) and (o) in the oupling of the pion to the axialurrent.Pion Deay Constant at NLOAs mentioned in Chp. 4.2, the /q5 identity of Eq. 4.3 is a useful tool for simplifyingthe various NLO ontributions to the pion deay onstant. As in the LO proof ofGMOR disussed in that setion, the identity enables a diagram generated by theloal urrent to be rewritten in suh a way as to eliit a anellation with part of asimilar nonloal ontribution. After making suh simpli�ations, some other usefulanellations among the NLO diagrams an be identi�ed. These are disussed inAppendix A.1, whih speialises to a version of the model with the G1 oupling only.In that ase, the NLO omponent of f� is shown to redue to the following:
7.4. Diagrams for Coupling to Currents at NLO
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fN� = ig�qqG12m2� JNPP (q2) Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+g�qqmm2� �J (a)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�+g�qqmm2� �J (b)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�+g�qqmm2� �J ()NPP with f 2(p+)f 2(p�)! f(p+)f(p�)�+g�qqmm2� �J (d)NPP with L! L0�+ig�qq2m2� (1�G1JPP (q2)) Z d4p(2�)4Tr [S(p)S(p)℄ f 3(p)�f(p+ q) + f(p� q)�� g�qq2m2� (1�G1JPP (q2))Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)Tr hS(p)�iS(k)
iS(p)i�f 3(p)�f(p+ q) + f(p� q)�f 2(k)+gN�qqg�qq f�(LO); (7.11)where J (x)Nij denotes the ontribution to JNij from the BSE diagram labelled (x) (seeFigs. 7.7 and 7.9) and L0 is a variation2 on L.7.5 GMOR at NLOIn the previous setions of this hapter, the diagrams required in a NLO treatment ofthe nonloal NJL model have been disussed. In all ases the diagrams are deduedby inspetion, sometimes using the Fok terms as a guide. Obviously, it is importantto have a hek that a onsistent set of diagrams has been identi�ed. To this end,the Gell-Mann{Oakes{Renner relation is demonstrated to hold at NLO in the model,albeit in the simpler version without vetor mesons. As a �rst step in establishing therelation, onsider the hiral expansion of the pion mass.The pion pole is loated at1�G1JPP (q2)�G1JNPP (q2) = 0; (7.12)2It di�ers from Eq. 7.9 in having f(p+)f(p�) instead of f2(p+)f2(p�).7.5. GMOR at NLO



Chapter 7. Next-to-Leading Order Treatment 129and, in the absene of mixing3, the oupling of the partile to dynamial quarks isdetermined by the relation:(g�qq + gN�qq + � � �)�2 = d(JPP + JNPP + � � �)dq2 �����q2=m2� ;gN�qq = �g�qq2 dJNPPdq2 �����q2=m2� 24 dJPPdq2 �����q2=m2�35�1 : (7.13)If one substitutes the hiral expansion of JPP (q2) (Eq. 4.6) into the on-shell onditionof Eq. 7.12, it is immediately lear that the hiral expansion of JNPP (q2) must startat O(q2; m) in order for the pion to remain a Goldstone boson in the hiral limit. Byde�nition, the oeÆient of O(q2) in that expansion provides an expliit expression forgN�qq0, the details of whih are not needed here. The alulation of the O(m) term isdetailed in Appendix B, where it is also heked that there is indeed no term in JNPPwhih survives in the hiral limit. It is suÆient here to quote the �nal result fromthat appendix, whih is obtained by imposing the on-shell ondition on Eq. B.15,m2� = �(g�qq0 + gN�qq0)2m[h  i0 + h  iN0℄(m0(0)� 0)2 +O(m2): (7.14)Hene, the hiral expansion of the pion Bethe{Salpeter amplitude retains the samestruture as at LO (f. Eq. 4.11), with NLO hanges to the expressions for its on-shell oupling to quarks and for the dynamial quark mass. The shift in the former isjust that whih might be antiipated from the expanded de�nition of the pion{quarkoupling onstant. However, the dynamial mass sale that appears in Eq. 7.14 isnot so obvious. The shift in this mass sale is given entirely by the oeÆient of thetadpole diagram (see Fig. 7.5). This is despite the fat that the meson loud of adressed quark does make a ontribution to its salar self-energy at zero momentum3Although the G2 interation (whih auses �a1 mixing) is not inluded in the version ofthe model onsidered here, it may nevertheless seem plausible that a /q5 omponent to thepion Bethe{Salpeter amplitude ould appear as a NLO e�et. The possibility an be ruledout if the Fierz rearrangement of the (1
 1 + i5�a 
 i5�a) interation does not ontain aNLO exhange interation of the harater (�5�a 
 �5�a). This is indeed so, as seen inChp. 2.5.
7.5. GMOR at NLO



Chapter 7. Next-to-Leading Order Treatment 130(see Chp. 8.2)4.The GMOR relation will be satis�ed if a modi�ed version of the Goldberger{Treiman relation holds in the hiral limit at NLO,f�0 = m0(0)� 0g�qq + gN�qq= m0(0)g�qq � gN�qqg�qq :m0(0)g�qq � 0g�qq +O(N�2 ): (7.15)The term of O(N0 ) on the right{hand side of this ondition was shown in Chp. 4.2 tobe given by the LO part of f�. Full details of the proof that the hiral limit of Eq. 7.11produes the O(N) terms an be found in Appendix A.2.

4The meson loud also generates a term of O(m) in the hiral expansion of JNPP (seeEq. B.5). 7.5. GMOR at NLO



Chapter 8
Numerial Results | NLO
8.1 Model ParametersThe model at NLO is onsidered in this hapter mainly in the simple ase whereonly the G1 interation is present. Even so, the numerial integrals involved in theevaluation of NLO diagrams are rather ompliated and so are diÆult to perform tohigh auray within a reasonable time. It is therefore onvenient to �t the modelparameters at LO and then onsider the NLO hanges to the observables. Apart fromthe exlusion of the ouplings G2 : : : G5, the parameters at LO are �tted aordingto the method desribed in Chp. 5.1. This means that m0(0) is left free and used toharaterize a possible parameter set. When vetor interations are inluded in themodel an upper bound on m0(0) is imposed by the behaviour above pseudo{thresholdof the LO sattering matrix in the vetor hannel (see Chp. 5.1). In this simplerversion of the model, however, parameter sets over a wider range of m0(0) an beinvestigated. Details of the sets used1 are given in Table 8.1.

1Note that the parameters given di�er slightly from those quoted in Ref. [8℄ where a verysimilar �t was made at the same values of m0(0). This is simply beause the alulations ofRef. [8℄ were performed within the hiral expansion of the model [115℄.131



Chapter 8. Numerial Results | NLO 132m0(0) G1(GeV�2) m � m(0) Pole200 14:3 4:8 1459 245 �261250 30:5 7:8 1064 298 �384300 53:8 11:0 861 351 �415� 235i350 85:9 14:2 734 406 �338� 292i400 128:1 17:5 647 461 �287� 312i450 181:7 20:8 583 516 �252� 320i500 248:0 24:1 535 572 �225� 322iTable 8.1: Values of the model parameters, �tted at LO. Also shown is the dynamialquark mass and the position of the lowest set of poles in the LO quark propagator.Apart from G1, all quantities are given in MeV.Table 8.2 lists the values of various quantities alulated at LO from the parametersets of Table 8.1. The results are qualitatively quite similar to those obtained in theextended version of the model (as disussed in Chps. 5.2 and 5.3).m0(0) Cond. g�qq m� g�qq g��� �(� ! ��)200 246 2:56 385 2:56 1092 63:5250 210 3:13 423 3:24 1336 94:4300 189 3:70 454 3:91 1562 126:3350 173 4:28 477 4:54 1732 152:0400 162 4:87 492 4:98 1783 158:7450 153 5:46 489 4:56 1489 111:0500 146 6:04 478 5:25 1515 116:2Table 8.2: Calulations at LO with the nonloal NJL model. The ouplings to quarks,g�qq and g�qq are dimensionless; all other quantities are given in MeV. `Cond.' refersto the quark ondensate, evaluated in the hiral limit. Relevant ouplings are de�nedin Eqs. 3.11 and 5.1.
8.2 Corretions to the Quark PropagatorNumerisThe form of the quark self-energy at NLO was desribed in Chp. 7.2. It ontainsa piee whose momentum dependene is entirely ditated by the interation form8.2. Corretions to the Quark Propagator



Chapter 8. Numerial Results | NLO 133fators (the tadpole diagram) and another piee whose evaluation needs a separateintegration at eah quark momentum. Determining the oeÆient of the tadpolerequires an integral over �ve non-trivial dimensions whilst the other piee needs afour{dimensional numerial integration. The NLO quark self-energy is therefore farfrom easy to evaluate. Furthermore, this must be done many times and over a widerange of quark momenta in order to evaluate NLO diagrams in the BSE (see Eq. 7.6).Thus there are obvious bene�ts in simplifying the self-energy integrands.Two of the non{trivial integration variables in Eqs. 7.4 and 7.5 ome from theevaluation of J integrals in the LO sattering matrix. Working in Eulidean spae,and taking the momentum routings of Eqs. 7.4 and 7.5, these J integrals always havea spaelike momentum argument. With that restrition they are smooth analytifuntions, as is illustrated by Fig. 8.1.

Figure 8.1: The �gure shows the denominators of the pion and sigma propagators,1�G1JPP;SS, as funtions of spaelike meson momentum. The pion hannel is plottedwith a solid line; the sigma hannel with a dashed line. The parameter set used isthat with m0(0) = 300 MeV in Table 8.1.The NLO self-energy integrals may be simpli�ed by approximating JSS and JPPwith analyti �ts. The remaining two and three dimensional integrations an then8.2. Corretions to the Quark Propagator



Chapter 8. Numerial Results | NLO 134be done both quikly and aurately using Gauss{Laguerre tehniques. Rapidly{onverging �ts are provided by the series expansionsJij(q2) =Xn anTn �x(q2)� ; (8.1)where fTng are Chebyshev polynomials and x is hosen to bex = exp q2�2! : (8.2)In pratie ten evaluations in eah hannel of J are used to alulate the �rst ten termsin the series. That this proedure gives a good approximation to these funtions hasbeen tested from evaluations at other momenta2. Moreover, a few of the NLO BSEintegrals have been ompared to brute fore determinations, where J is evaluatednumerially at eah value of momentum. The results on�rm the validity of usingthe series �ts sine they are in agreement to within the unertainties introdued bynumerial integration over the other variables.ResultsThe results for the NLO quark self-energy are presented below, using the notation ofEq. 1.4. They are in agreement with those found in Ref. [114℄, where an alternativedisussion of �N in the nonloal NJL model is available. Figs. 8.2 and 8.3 showthe funtions that desribe the vetor (a(p)) and salar (b(p)) omponents of theinverse quark propagator respetively. They are plotted for both spaelike and timelikemomenta, but only up to an energy given by the real part of the pole in the LO quarkpropagator. This is beause of the form of the ontributions where the quark line isdressed by virtual pion and sigma louds (shown on the right{hand side of Fig. 7.5).The orresponding integral in Eq. 7.4 inludes the propagator S(p � k) and so thenaive ontour of integration along the real k4 axis beomes pinhed above that energy.2Over the range that dominates the self-energy integrands (up to � 500 MeV), the errorsin the �ts have been found to be less than 0:01% in all ases.8.2. Corretions to the Quark Propagator
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Figure 8.2: The �gure shows the dimensionless funtion a(p) from the inverse quarkpropagator, plotted against p2 in GeV2. The funtion is de�ned by Eq. 1.4 and onlybeomes non-zero beyond LO. Also shown are the ontributions to a(p) obtained bydressing the quark line with pion and sigma louds. The parameter set used is thatwith m0(0) = 300 MeV in Table 8.1.

8.2. Corretions to the Quark Propagator



Chapter 8. Numerial Results | NLO 136At LO there is no wavefuntion renormalization of the quark propagator. Thereare however NLO ontributions to the /p omponent. Fig. 8.2 shows that these rangeup to � 0:25, whih is onsistent with the expeted magnitude of 1=N orretions. Anintriguing aspet of the results is the appearane of a sudden dip in a(p) just beforethe LO pseudo{threshold energy. It would ertainly be interesting to examine thebehaviour of the funtion above this energy, although that would require a detailedanalysis of the pole struture at NLO, whih is beyond the sope of the present work.Also plotted on the �gure are the individual ontributions to a(p) whih arise fromdressing the quark line with virtual pions and with virtual sigma mesons. The pionloud is obviously the main e�et. Sine its propagator has a pole at small timelikemomentum, one expets the T matrix in the pseudosalar hannel to be large atmodest values of spaelike momenta (the region whih dominates the NLO integrals).This is veri�ed by Fig. 8.1. Note also that an extra fator of three is assoiated withthe pion ontributions due to isospin multipliity.The salar omponent of the NLO quark self-energy reeives ontributions fromboth the tadpole and the meson{loud diagrams of Fig. 7.5. Fig. 8.3 demonstratesthat the addition of the tadpole ontribution to the LO funtion, m(p), has very littlee�et (i.e., the onstant  (Eq. 7.5) is muh smaller than m(0)). The meson{louddiagrams are rather more signi�ant, inreasing b(0) by a typial 1=N level of � 25%.The NLO shift in the quark \mass" funtion b(p)=(1+ a(p)) is therefore fairly modest(an inrease of � 15% at zero momentum).
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Figure 8.3: The �gure shows the funtion b(p) from the inverse quark propagator,plotted in GeV against p2 in GeV2. The funtion is de�ned by Eq. 1.4 and orrespondsto m(p) at leading order. It is shown at LO and at NLO, together with the sum ofthe LO result and the tadpole ontribution. The parameter set used is that withm0(0) = 300 MeV in Table 8.1.
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Chapter 8. Numerial Results | NLO 138The NLO quark self-energy has little impat on the values of the model on-densate, whih are quoted in Table 8.3. Although there are slight inreases for theunon�ned parameter sets the results are very lose to the LO values given in Ta-ble 8.2. The same observation holds true3 in the loal NJL model when proper timeregularization of the quark loops is used [43℄, although in the O(4) sheme there areappreiable NLO shifts.m0(0) Cond.  0 0(�) 0(�)200 259 �25:0 �25:3 �90:2 64:9250 215 �12:4 �8:0 �44:2 36:2300 190 �5:2 1:7 �22:4 24:1350 174 �0:005 8:8 �8:6 17:4400 162 4:1 14:6 1:4 13:1450 153 7:7 19:6 9:5 10:2500 145 10:8 24:2 16:3 7:9Table 8.3: Properties of the quark propagator at NLO. All quantities are quoted inMeV. `Cond.' refers to the quark ondensate, evaluated in the hiral limit. The on-stant  from the NLO tadpole diagram is de�ned in Eq. 7.5, (�) being the ontributionto it from the tadpole in the hannel of the � meson.Fig. 8.4 shows the breakdown of the NLO part of b(p) into ontributions omingfrom intermediate pions and sigma mesons. As for a(p), the diagrams with a pion in-termediate are more important than those involving its hiral partner. Quark dressingdue to meson louds in the original NJL model has been investigated by Quak andKlevansky4 [112℄. They found that the pion loud tends to inrease b(p) but that thisis partially anelled by the sigma loud. The nonloal model studied here supportsthe onlusion and is able to plae it on a �rmer footing sine there are no ambiguitiesassoiated with the meson loop regularization5.
3At least for values of the quark mass below � 600 MeV.4Unfortuantely, the tadpole ontributions were not identi�ed by those authors.5Moreover, unlike Ref. [112℄, the present work does not replae the model meson propa-gators with their anonial forms. 8.2. Corretions to the Quark Propagator
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Figure 8.4: The �gure shows the NLO ontributions to the funtion b(p). The fullNLO omponent is plotted in GeV against p2 in GeV2, together with its deompositioninto the parts that involve intermediate pions and sigma mesons. The parameter setused is that with m0(0) = 300 MeV in Table 8.1.
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Chapter 8. Numerial Results | NLO 140Although the tadpole diagrams in the NLO quark self-energy are not numeriallysigni�ant, it is nevertheless interesting to onsider them in more detail. As noted inChp. 7.5, 0 is an important quantity for NLO hanges to the pion mass and deayonstant (see Eqs. 7.14 and 7.15). Sine 0 and the NLO shift in the quark ondensateare both small, the pion observables will be little altered unless the state is muh morestrongly oupled to quarks at NLO. One might therefore wonder whether there shouldbe some physial reason for 0 to be small, perhaps beause of hiral symmetry. Theentries in Table 8.3 for the pion and sigma tadpoles are quite suggestive at low andintermediate m0(0). For instane, with the set at m0(0) = 200 MeV, the pion tadpoleadds as muh as 45% of the LO hiral quark mass, but this is anelled to a largeextent by the sigma tadpole. The proess does not persist at larger m0(0), however,where the pion tadpole hanges sign.NLO Quark Self-Energy in the Extended ModelIn the extended version of the model there are additional ontributions to the NLOquark self-energy from the tadpoles and meson louds of other mesoni states. Al-though alulation of the properties of these mesons at NLO would demand a gooddeal of further work, it is straightforward to evaluate their ontributions to �N . Inso doing, the model ouplings G2 : : : G5 are taken to be those set by the the LOphenomenology. The parameter sets A, B and C of Chp. 5.1 produe the results ofTable 8.4. As in the simple version of the model, there is only a modest hange tothe ondensate and the onstant  is small. Comparison with the entries at similarm0(0) in Table 8.3 indiates that pseudosalar{axial mixing is an important e�et,but one whih is anelled owing to the simultaneous introdution of the model �meson. Bearing in mind the freedom to set model ouplings independently, the entriesof Tables 8.3 and 8.4 argue against any suggestion that 0 should be a priori smalldue to hiral symmetry.
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Chapter 8. Numerial Results | NLO 141Quantity Set A Set C Set Bm0(0) 280 300 320Cond. 187 180 175 �9:1 �5:2 �1:20 �1:2 3:6 8:40(�) 17:9 16:8 11:30(�) 31:0 26:5 22:70(�) �63:8 �53:4 �38:40(�L) 25:9 22:3 16:50(a1) �5:6 �5:6 �4:80(!) �19:4 �16:2 �11:50(!L) 7:9 6:8 4:90(f1) �0:3 �0:7 �1:00(�?) 0:7 3:0 4:50(a0) 4:5 4:1 4:2Table 8.4: Properties of the quark propagator of the extended model at NLO. Allquantities are quoted in MeV. `Cond.' refers to the quark ondensate, evaluated inthe hiral limit. The onstant  from the NLO tadpole diagram is de�ned in Eq. 7.5,(�) being the ontribution to it from the tadpole in the hannel of the � meson.The funtion b(p) for the parameter set C is plotted in Fig. 8.5. Its breakdownis shown in Fig. 8.6. As in the situation with the tadpoles, pseudosalar{axial mixingmakes a de�nite di�erene to the ontribution from the pion loud (ompare Figs. 8.4and 8.6). However, the e�et is anelled by vetor meson louds to leave an overallresult whih is very similar to the one found in the simpler version of the model(ompare Figs. 8.3 and 8.5).
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Figure 8.5: The �gure shows the funtion b(p) from the inverse quark propagator ofthe extended model. It is plotted in GeV against p2 in GeV2. The funtion is shown atLO and at NLO, together with the sum of the LO result and the tadpole ontributions.
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Chapter 8. Numerial Results | NLO 143In Fig. 8.7 the funtion a(p) is shown for the parameter set C. It is rather di�erentin harater from result obtained in the simpler version of the model (Fig. 8.2). Mixingin the pion hannel and the louds of the spin-1 states are again signi�ant. In a(p)however, these e�ets reinfore eah other. Thus the funtion is muh larger than inthe simpler model. This is potentially of onern beause it suggests that the NLOdiagrams tend to deon�ne the quarks in the extended model. A de�nite statementannot however be made without a full NLO analysis of meson properties. The set Cparameters are �xed from meson masses at LO. Sine 1=N e�ets ould alter thesesigni�antly, it is quite possible that set C may not onstitute a reasonable hoie ofmodel parameters at the NLO level.An obvious di�erene between Figs. 8.2 and 8.7 is the absene in the latter ofa sharp dip just before the LO pseudo{threshold energy. The ontributions fromthe louds of the salar, purely pseudosalar, transverse vetor and transverse axialhannels all exhibit suh a dip (Figs. 8.2 and 8.7). It is eliminated in the extendedmodel due to the ontributions from longitudinal qq states. In partiular, the removalthrough mixing of the steep drop that ours in the pion ontribution is ruial inaounting for this behaviour.8.3 Corretions to the Meson PropertiesNumerisThe NLO diagrams in the BSE are of the forms given in Eqs. 7.6, 7.7 and 7.10. Sineeah of these requires an integration over several non-trivial variables, time onstraintssuggest that suitable approximation shemes be developed.In Chp. 8.2, an aurate series �t to the LO J integrals at spaelike momentawas used to assist in the evaluation of the NLO quark self-energy. In performing theBethe{Salpeter integrals of the struture given in Eq. 7.6, �N an be evaluated justas in Chp. 8.2. It an then be treated as part of a two-dimensional integrand, whih
8.3. Corretions to the Meson Properties



Chapter 8. Numerial Results | NLO 144is integrated over the variables p2 and p24 using Gauss{Laguerre methods (p4 is in thediretion of q). For a timelike external momentum the arguments p2� of �N in Eq. 7.6are omplex in Eulidean spae and hene the NLO part of the quark self-energy anitself be omplex. In pratie, however, the imaginary part of �N does not ontributeto the BSE integral. To see this, note that �N is a real funtion6, satisfying Shwarz'sreetion property: �N (p2�) = ��N(p2). Sine this is the ase, the imaginary part of�N in the two terms of Eq. 7.6 an be shown to anel simply by reversing the signof one of the p4 integration variables7.Eq. 7.7 represents the exhange of a qq state between the two quark lines ofa LO bubble loop. With the routing used in that equation, the momentum of theintermediate state is always spaelike and so its propagation an be approximated bya Chebyshev series �t (Eq. 8.1). One is then left with a �ve{dimensional integrandwhih may be expressed as a funtion of p4, k4, p2, k2 and  , the angle between p andk. Eah of these is summed in the usual way, the �rst four with Gaussian tehniquesand the angular variable using the method desribed in Chp. 5.3 in the ontext ofthree-quark loops.The remaining NLO BSE integral is given in Eq. 7.10. It has a two{dimensionalintegrand and is summed using Gaussian methods in terms of the variables p2 and p4.At eah integration point the funtions T̂ , L and L must be determined numerially.The three-quark loops, L and L, an be omputed in the same way as the 1 ! 2meson deays of Chp. 5.3. The LO sattering matries in Eq. 7.10 annot howeverbe represented by using Eq. 8.1 to �t to Jij. The Eulidean momenta of the qqintermediates in this diagram is omplex for a timelike external momentum. O� thereal axis, the LO J integrals are themselves omplex and an only be �tted as funtionsof two variables. In onstruting an appropriate �t, the momentum routing of Eq. 7.10is a judiious hoie. Sine k2�E = (k2+E)� and J(`2E) satis�es the Shwarz reetion6For this statement to be true, one requires that the interation form fator f(p) is areal funtion. It then follows that the LO quark self-energy is a real funtion (see Eq. 3.3),whereupon the property an be seen to hold for �N by inspetion of Eq. 7.4.7Assuming that �i = �j . 8.3. Corretions to the Meson Properties



Chapter 8. Numerial Results | NLO 145property8, the range of the �t an be restrited to:=(`2E) : 0!1: (8.3)A further restrition an be imposed given that the BSE at NLO is only onsidered upto energies of EPT, the pseudo{threshold energy at twie the real part of the pole in theLO quark propagator9. Therefore, a non-zero value for j=(k2�E)j indiates a minimumpossible jk4j and hene a lower bound on the required values of <(`2E), spei�ally:<(`2E) :  =(`2E)EPT !2 � E2PT4 !1: (8.4)Within the range of arguments probed, the J funtions in Eq. 7.10 an be approxi-mated by the Chebyshev expansionsJij(`2E = u+ iv) =Xmn amnTm (x(u; v))Tn (y(v)) ; (8.5)where x and y are taken as: y(v) = exp��v�2 � ;x(u; v) = exp��u�2 � "1 + exp �umin(v)�2 !#�1 ; (8.6)and umin(v) should be understood as the minimum of <(`2e) in Eq. 8.4. A hundredevaluations in eah hannel of J have been used to �x the omplex oeÆients10 inEq. 8.5 for m;n = 0 : : : 9. Although this is not a very eÆient method for evaluatinga single NLO BSE integral of the form in Eq. 7.10, the �ts need only be done one fora given parameter set. Hene, there is a de�nite advantage in using them when onewishes to evaluate several suh integrals with the same model parameters.8As with the LO and NLO quark self-energies, the property follows diretly if the inter-ation form fator is a real funtion.9Although the LO J integrals ease to be apable of analyti ontinuation when <(`2E) ismore negative than �14E2PT (see Chp. 3.3) , this is avoided for external energies below EPT.10By investigating evaluations at other momenta, the errors for these two{parameter �tsare found to be at the � 1% level. Sine this is onsiderably worse than for the �ts of Eq. 8.1,it is preferable to use the single{parameter �t in evaluating other NLO diagrams.
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Chapter 8. Numerial Results | NLO 1468.4 Physial ThresholdsAbove the threshold for a physial 1! 2 meson deay, a NLO diagram of the form inFig. 7.9d generates an imaginary omponent to the meson propagator. This an bealulated by applying the Cutkosky utting rules [104℄ to the diagram. Consider forexample the sattering in the salar isosalar hannel above the two{pion threshold.At the value of the LO sigma meson mass, the imaginary part redues to=�JSS(q2 = m2�)� = m�:�(� ! ��)g2�qq ; (8.7)where the deay width is idential to that alulated from the relevant three{mesonvertex in Chp. 5.3.Some are must be taken in the evaluation of the real part of suh diagrams,owing to the singularities of the sattering matries in the integrand. The diagraman be de�ned more formally as the �! 0 limit of Eq. 7.7 with the replaementsT̂ = G11�G1J �! G11�G1J � i� : (8.8)The numerial routines sometimes attempt to evaluate the integrand lose to theposition of the singularity. Whether or not they do so, the results produed have beenfound to be stable for � <� 0:01. For the sake of safety therefore, � has been set at thissmall but non-zero value in the numerial work.8.5 Corretions to Pion PropertiesFigs. 8.8 and 8.9 show the results for the real part of the pion Bethe{Salpeter deter-minant of Eq. 7.12. At small meson energies, the LO and NLO urves are very losetogether, indiating that both the pion mass and its oupling to quarks are extremelywell represented by the LO approximation. Although the NLO ontributions in thepion hannel must anel in the hiral limit (as demonstrated in Appendix B), theresults here suggest that suh anellations must persist to a large extent at higherorders. In partiular, there is no reason to expet the NLO shift in the pion{quark8.4. Physial Thresholds



Chapter 8. Numerial Results | NLO 147oupling to be small. In onjuntion with the small value of 0, the small hange tog�qq implies that the pion deay onstant is not sensitive to NLO e�ets (see Eq.7.15).Atual determinations of the NLO shifts to m� and f� have not been made in thiswork. They are suÆiently small11 that the numerial proedures would have to beonsiderably re�ned in order to quote values with any meaningful degree of auray.The fat that the NLO orretions to the pion mass and deay onstant are smallis an enouraging point in support of the usual LO treatment of four{quark models. Italso justi�es the deision to use the model parameters �tted to the LO pion properties(Chp. 8.1) in these NLO omputations with the simple version of the model.

11not more than a few MeV. 8.5. Corretions to Pion Properties



Chapter 8. Numerial Results | NLO 148As the energy in the pion hannel inreases, the NLO ontributions do start tobeome signi�ant. Shortly before pseudo{threshold is reahed, they are suÆientlyimportant to hange the qualitative behaviour of the pion Bethe{Salpeter amplitude.Indeed they are even able to generate an unphysial zero in the real part of thedeterminant, just before EPT. This is a potentially worrying point and indiates aneed for a areful study of the model at NLO around and above EPT. It may alsobe worthwhile to examine the pion determinant in the extended version of the model.The behaviour in Fig. 8.9 is reminisent of that exhibited by a(p) in Fig. 8.2. In thatinstane, the unusual feature was eliminated by the introdution of pseudosalar{axialmixing. This mixing is ertainly important in the LO pion amplitude (ompare Fig. 5.1to Figs. 8.8 and 8.9) and might be so at NLO as well.In Fig. 8.10, a breakdown of the NLO ontributions to the pion amplitude isshown. Eah urve orresponds to a di�erent NLO integral: `a+b' represents a NLOquark self-energy insertion (the sum of Figs. 7.7a and 7.7b, given in Eq. 7.6); `'represents meson exhange between two quark lines (Fig. 7.9, given in Eq. 7.7);and `d' represents two-meson intermediate states (Fig. 7.9d, given in Eq. 7.10). Theresults demonstrate that the NLO part of the amplitude is small at low momenta onlybeause of the anellations amongst the various diagrams that are enfored by hiralsymmetry. In both analytial and in numerial work, it is therefore ruial to inludeall of the diagrams onsistently in order to obtain an aurate piture of the pion atNLO.8.6 Corretions to Sigma PropertiesThe interpretation of the sigma meson in dynamial quark models is subjet to as-sumptions about its properties whih are not probed by suh models at LO. Sine thestate is known to be strongly oupled to the two-pion hannel, the diagram of Fig. 7.9dmight well be important in model desriptions of the salar hannel. The result of thenonloal NJL model for the real part of the sattering matrix determinant is plotted8.6. Corretions to Sigma Properties



Chapter 8. Numerial Results | NLO 149in Fig. 8.11.In the ladder approximation to four{quark models, the sigma meson tends to berather light in omparison with many �� sattering analyses [89℄. Fig. 8.11 shows thatthis statement is also true at NLO. The point is emphasized by Table 8.5 whih liststhe LO and NLO sigma masses over the full range of parameter sets from Chp. 8.1.The NLO shift is quite modest and (in general) negative.m0(0) m� at LO m� at NLO200 385 404250 423 377300 454 373350 477 368400 492 365450 489 365500 478 365Table 8.5: Sigma meson masses at LO and NLO.
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Chapter 8. Numerial Results | NLO 150It should be noted that the \masses" quoted in Table 8.5 refer to the energy atwhih the real part of the sattering matrix vanishes. A ommon alternative is toonsider the omplex pole of the sattering matrix. The de�nition used here has beenseleted purely for onveniene, sine it would be more diÆult to evaluate the BSEintegrals at omplex external energies.Using a derivative expansion of the bosonized NJL model, the 1=N orretionsto the sigma mass were alulated by Pallante [45℄. In that framework, the orretionswere found to be large and negative12, prompting the author of Ref. [45℄ to speulatethat the mass of this state is not well desribed by the 1=N expansion. The workpresented here indiates that higher order terms in momentum are important and thatthese redue the magnitude of the mass shift suh that perturbation theory seems tobe reasonable.One must therefore take very seriously the view the sigma meson is intrinsiallylight in four quark models of the NJL form. This view is supported by the observationthat the results for the sigma mass at NLO are remarkably insensitive to the parameterset hosen. Even allowing the zero-momentum hiral quark mass to vary by a fatorof two, the sigma mass hanges by just 12 MeV . Thus, the light sigma is a propertyof suh models whih annot be avoided by inluding meson loops or by a suitablehoie of parameters.A breakdown of NLO ontributions to the salar hannel of the sattering matrixan be found in Fig. 8.12. The same notation is used as in Chp. 8.5 for the pionhannel. In Chp. 5.2, it was argued that the ontributions from two pion intermediatesould be important in the desription of the salar hannel and indeed suh diagramsdominate the NLO part of the salar amplitude. They at to redue the mass of thestate, as does the ontribution from t-hannel meson exhange. Their signs are thesame as those of the orresponding ontributions to the pion hannel. There are alsoontributions from NLO quark self-energy insertions, whih, in both hannels, have12One should note, however, that the preise value for the mass shift is highly sensitive tothe additional ut-o� parameter that is needed to regularize the meson loops.8.6. Corretions to Sigma Properties



Chapter 8. Numerial Results | NLO 151the opposite e�et.The disussion so far has onerned the real part of JNSS. The imaginary partis shown in Fig. 8.13. Naively, one would expet it to inrease with inreasing energysine a larger region of phase spae beomes available. In pratie, there is a veryslow inrease from the threshold energy up to a peak at � 520 MeV, following whihthe imaginary part falls o� quite quikly. Thus, the oupling of the salar hannelto two pions must beome signi�antly weaker as the energy inreases. The fat thatthe model sigma meson is light is therefore inextriably linked with the fat that it isalso broad. Interestingly, a similar behaviour of the salar to two pion oupling wasobserved in the four{quark model13 studied by E�mov et al [58℄. In ontrast, however,a reent analysis using QCD sum rules [116℄ suggested that a light salar state wouldhave to be relatively narrow.Finally, note that the results of Fig. 8.13 support a suggestion made in Chp. 5.3.The weak oupling of the the salar hannel to two pions above the sigma mass impliesthat the broad width alulated for a1 ! �� in the model is by no means inonsistentwith the experimental observation of a small ontribution to the total a1 width froma1 ! �(��)S.

13A value for the salar mass in their three{avoured approah was used as a free parameterand was hosen with the intention of interpreting the model salar resonanes as heavy,narrow states. The authors were however presented with a problem regarding the widths ofthese states whih was `resolved' by the ad ho introdution of a vetor piee to the BetheSalpeter amplitude. 8.6. Corretions to Sigma Properties
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Figure 8.6: The �gure shows the NLO ontributions to the funtion b(p) in the ex-tended model. They are plotted in GeV against p2 in GeV2. The full NLO omponentis shown on the left{hand graph, together with the parts of it that involve interme-diate pions and sigma mesons. Contributions involving spin-1 states are shown onthe right{hand graph, the supersript L denoting a longitudinal state. Note that theontributions from the f1, a0 and �? partiles are negligible and so are not shown.
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Figure 8.7: The �gure shows the dimensionless funtion a(p) from the inverse quarkpropagator of the extended model. It is plotted against p2 in GeV2. The full NLOresult is shown on the left{hand graph, together with the parts of it that ome fromdressing the quark line with pion and sigma louds. Contributions from the loudsof spin-1 states are shown on the right{hand graph, the supersript L denoting alongitudinal state. Note that the ontributions from the f1, a0 and �? partiles arenegligible and so are not shown.
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Figure 8.8: The �gure shows the determinant of the sattering matrix in the pionhannel at LO (dashed urve) and at NLO (solid urve). The parameter set used isthat with m0(0) = 300 MeV in Table 8.1.
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Chapter 8. Numerial Results | NLO 155

Figure 8.9: The �gure shows the determinant of the sattering matrix in the pionhannel at LO (dashed urve) and at NLO (solid urve). The urves are plotted forenergies up to the pseudo{threshold energy, EPT. The parameter set used is that withm0(0) = 300 MeV in Table 8.1.
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Figure 8.10: The �gure shows G1JNPP and the various ontributions to it, plotted fortimelike meson momentum up to the pseudo{threshold energy, EPT. The ontributionsare de�ned in the main text. The parameter set used is that with m0(0) = 300 MeVin Table 8.1.
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Figure 8.11: The �gure shows the real part of the determinant of the sattering matrixin the salar hannel. The dashed urve gives the LO result and the solid urve givesthe result at NLO. They are plotted against timelike meson momentum, up to thepseudo{threshold energy, EPT. The parameter set used is that with m0(0) = 300 MeVin Table 8.1.
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Figure 8.12: The �gure shows G1JNSS and the various ontributions to it, plotted fortimelike meson momentum up to the pseudo{threshold energy, EPT. The ontributionsare de�ned in the main text. The parameter set used is that with m0(0) = 300 MeVin Table 8.1.

Figure 8.13: The �gure shows the imaginary part of JSS. It is plotted from slightlyabove the two-pion threshold up to the pseudo{threshold energy, EPT. The parameterset used is that with m0(0) = 300 MeV in Table 8.1.
8.6. Corretions to Sigma Properties



Chapter 9
Conlusions
The struture of light mesons is a muh{studied subjet but one whih is not yet wellunderstood. Treatments based on the QCD Shwinger{Dyson equations provide anattrative approah to the problem, o�ering a lear link between the partiulate andomposite levels. However, they are often omputationally intensive. Ansatze mustbe made in order to make the equations tratable, but it is far from simple to testan ansatz through the resulting phenomenology. Suh alulations are failitated byusing instead a model �eld theory, suh as the NJL style of model. The work presentedhas investigated an extended version of the model proposed in Ref. [8℄, whih an beviewed as a nonloal generalization of the NJL ation. It has nonloal, four-fermioninterations, based on the separable form (Eq. 2.4) suggested by instanton{liquidstudies [51℄. Symmetry urrents onsistent with this ation have been dedued. Theresults for the urrents have been extensively tested, by means of the onstraintsimposed by eletromagneti gauge invariane and a variety of Ward identities. Themodel has also been shown to inorporate the hiral anomaly orretly. Moreover, NLOorretions have been studied. Although a partiular model has been used throughout,many of the results from the NLO analysis are likely to be qualitatively true of four{quark models in general.
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Chapter 9. Conlusions 160The interation form fators whih are used in the nonloal model (Eq. 2.7) en-sure the onvergene of all loop integrals and (over most of the range of aeptableparameters) also lead to quark on�nement. The former point is partiularly impor-tant in the study of suh models at NLO, sine it eliminates the need for a ut-o�parameter on meson loops. The latter point is relevant to the appliation of suhmodels to heavier mesons than the pion, sine it avoids a threshold for qq produtionourring at an inonveniently low energy. This feature makes the approah espeiallywell suited as the basis for an extended model, with interations that bind vetor andaxial-vetor mesons.The analyti struture of the quark propagator, with poles at omplex momenta,means that a sheme has to be spei�ed for ontinuing amplitudes to Minkowski spae.The sheme used at LO (Chp. 3.3) follows the suggestions of Lee and Wik [77℄ and ofCutkosky et al. [78℄. It leads to nonanalyti behaviour of the meson propagators abovea pseudo{threshold energy. In pratie (see Chp. 5.1), this behaviour ensures that nopoles appear in the longitudinal vetor hannels. In addition, it provides restritionson both the admissible range of model parameters and the region of appliability of themodel. No attempt has been made to examine the model beyond the pseudo{thresholdenergy at NLO. This is beause the poles in the quark propagator are shifted by NLOterms in the quark self-energy. Suh a shift is not expliit in a perturbative treatmentof the BSE, whih therefore does not allow a simple extension of the ontinuationpresription.In order to alulate the pion deay onstant, whih sets the basi sale for themodel, one needs to use onserved urrents whih are onsistent with the nonloal in-teration. Nonloal ontributions to the urrents have been determined (Chp. 2.4) a-ording to the Noether-like method of Ref. [8℄. These are analytially and numeriallyimportant to the pion deay onstant (and to many eletromagneti ouplings). Wardidentities related to the urrent onservation follow automatially and several havebeen heked analytially, inluding the Gell-Mann{Oakes{Renner relation (Chp. 4.2)



Chapter 9. Conlusions 161and the low-energy theorem for �0 !  in the hiral limit (Chp. 6.3). The latterinvolves the axial anomaly, whih has long posed a problem to the usual NJL modelwith its ut-o�s on the quark propagators. The nonloal terms in the vetor urrentof the model yield an ansatz for the photon{quark oupling (Chp. 4.3) whih di�ersfrom the Ball{Chiu ansatz, relied upon in many similar studies. In partiular, onemust inlude two-body diagrams (Chp. 6.2) where the photon is irreduibly oupledto four quarks.Various eletromagneti quantities have been alulated in the model. The deayrates determined are in fairly good agreement with the observed ones, exept for thease of a1 ! �. The eletromagneti form fator of the pion agrees well with thedata, at least below the � pole. The form fators for � ! � and ! ! �� are also inagreement with the (admittedly rather limited) data urrently available. These resultsfor eletromagneti form fators have been ompared with vetor{dominane formulaeusing on-shell ouplings as alulated from the model. Although diagrams involvingintermediate vetor mesons are only signi�ant lose to resonane, they ombine withdiagrams where the photon ouples diretly to the quarks to produe numerial resultsthat are very lose to those of VMD1. The model is thus able to illustrate how adynamial system an lead to vetor dominane in photon{meson interations.The meson masses and various strong deay rates were alulated in Chp. 5,working at tree level in terms of mesons (leading order in 1=N) and to all ordersin momentum. With the � mass used to �x the strength of the relevant four-quarkvertex, the � meson width is reasonably well desribed. The nonloal model thereforeprovides an improvement on the underestimated width obtained in the extended NJLmodel [92℄. As in the loal NJL model, a light, broad sigma meson is found. Thealulated mass of the a1 meson is somewhat lighter than the observed value. Byutting down the available phase{spae, this means that the model gives too small awidth for the deay a1 ! ��.1exept at large momenta.



Chapter 9. Conlusions 162The alulations have been developed to inlude meson{loop e�ets (1=N or-retions) sine these ould be qualitatively important. Unlike all previous analysesof these e�ets in four-quark models, the present work has expliitly evaluated therelevant integrals as funtions of momentum. These funtions are unambiguous, sineno regulator is required for the meson loops. It has been heked that the meson{loopdiagrams are onsistent with the Gell-Mann{Oakes{Renner relation (Chp. 7.5). In sodoing, it was established that (in the hiral limit) the hanges to the pion mass anddeay onstant at this improved level of approximation are ontrolled by the quantity0, the oeÆient of the tadpole diagram from the quark self-energy.The numerial results obtained at next-to-leading order on�rm the validity of anexpansion in 1=N. Both the salar and vetor omponents of the quark self-energyare inreased by � 25% by the inlusion of meson{loop diagrams, with the pion loudbeing the dominant e�et. When vetor mesons are inluded in the model, it hasbeen observed that the vetor omponent is further inreased, and that �a1 mixing isqualitatively important. The value of 0 is found to be small, so that pion propertiesare aurately represented by the leading order approximation. The sigma meson isvery strongly oupled to two-pion states and the assoiated meson{loop diagram atsto redue the mass of this state. This is partially anelled by the hanges to the quarkself-energy, but the net e�et is a redution of the � mass to � 370 MeV. One shouldnote that this value (along with the results alulated for almost all observables inthe model) has been found to be qualitatively similar for all admissible values of themodel parameters.The empirial properties of the sigma meson are a subjet of ontinuing debate.The issue was addressed on several oasions at the HADRON 97 onferene [117℄and is also disussed in reent preprints (see for example Refs. [116, 118, 119℄). Insuh disussions models of the four{quark type are often ited as theoretial studies insupport of the interpretations that favour a light sigma meson. The support o�ered,however, ould hitherto only be regarded as tentative in view of the fat that the



Chapter 9. Conlusions 163usual leading order approximation to suh models does not take aount of meson loopsinvolving two pion states. In this work, it has been demonstrated that a full alulationat meson{loop level atually produes a lighter salar resonane. It therefore appearsthat the NJL type of model does indeed favour a light and broad sigma. Of ourse, anyresolution of `the sigma problem' will only be established by further analyses of existingand of new experimental data. It may be that future work auses the notion of a light,broad sigma to be rejeted. In that ase, the results presented here would indiatethat there must be some important physis missing from the NJL type of model. Inthis ontext, it is interesting to �nd in Ref. [119℄ that a group whose analyses �nd alight sigma has stated that an assumption made in their treatment [120℄ (the form ofthe �� sattering amplitude) is similar to one that is made in NJL models.In this thesis, a four{quark model suggested in Ref. [8℄ has been explored in somedetail. With only a minimal inrease in omplexity, the model is theoretially moreattrative than the loal NJL model. It generates quark on�nement, does not requirea regulator and (through the inlusion of nonloal terms in the symmetry urrents)satis�es the hiral anomaly in very natural way. Phenomenologially, the level ofagreement with observed meson properties is satisfatory, given the simpliity of themodel. The results obtained when meson loops are inluded imply that the usualleading order approximation to this type of model is qualitatively a good one for boththe pion and its hiral partner.



Appendix A
Pion Deay Constant at NLO
A.1 CanellationsIt was noted in Chp. 7.4 that there are a number of useful anellations whih anbe made amongst the various diagrams ontributing to the NLO part of the piondeay onstant. The purpose of the present setion is to give a desription of thoseanellations, whih lead to Eq. 7.11. Although the NLO diagrams in the oupling tothe axial urrent were disussed quite generally in Chp. 7.4, this setion onsiders aversion of the model with the G1 oupling only.It is easiest to begin with the diagrams (k) and (l) (see Fig. 7.13) whih aregenerated by the NLO part of the pion vertex funtion. Their sum is learly:f (k)� + f (l)� = gN�qqg�qq f�: (A.1)One may reall the onvention by whih the unsripted f� in Eq. A.1 refers to thepion deay onstant at LO. The notation f (x)� also appears in the above equation andis used to denote the ontribution to the pion deay onstant from the NLO diagram(x) = (a) : : : (o) (see Figs. 7.11 to 7.15).Consider next the ontributions whih arise due to the tadpole diagram in theNLO quark self-energy. This is responsible for the diagrams (a), () and (g) (see
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Appendix A. Pion Deay Constant at NLO 165Figs. 7.11 and 7.12), whih make the following ontributions:f (a)� Æab = g�qqG12m2� Z d4k(2�)4Tr [S(k)S(k)℄ f 2(k)� Z d4p(2�)4Tr h5� bS(p�)5�aS(p+)i f(p+)f(p�)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i ; (A.2)
f ()� Æab = �ig�qq2m2� Z d4p(2�)4Tr h5� bS(p�)/q5�aS(p+)S(p+)i f 3(p+)f(p�)�ig�qq2m2� Z d4p(2�)4Tr h5� bS(p�)S(p�)/q5�aS(p+)i f(p+)f 3(p�); (A.3)f (g)� Æab = g�qqG12m2� Z d4k(2�)4Tr [S(k)℄ Z d4p(2�)4f(p+)f(p�)�Tr h5� bS(p�)5�aS(p+)S(p+)f 2(p+) + 5� bS(p�)S(p�)5�aS(p+)f 2(p�)i� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i : (A.4)The form fator struture in square brakets appearing in the expressions for diagrams() and (g) is harateristi of the type-III nonloal urrent struture (Eq. 2.16). It isthe type-III term G1(i5�a
1) whih produes these diagrams (and many of the othernonloal diagrams at NLO), just as it produed the LO nonloal diagram of Eq. 4.1.By applying the /q5 identity of Eq. 4.3 to the loal urrent diagram (), theontribution oming from the (m+ +m�) term on the right{hand side of Eq. 4.3 anbe partially anelled with part of the orresponding nonloal diagram, (g). As inthe orresponding anellation between LO diagrams (see Chp. 4.2), only 2m fromthe (m+ + m�) fator is retained in the sum. The other piees of Eq. 4.3 resultin ontributions with integrals somewhat similar to those of JSS(0) and JPP (q), buthaving slightly more ompliated form fator strutures.De�ning the symbol J (x)Nij to represent the ontribution to JNij from the BSEdiagram of type (x) = (a). . . (d) (see Figs. 7.7 and 7.9), one an write the sum of theA.1. Canellations



Appendix A. Pion Deay Constant at NLO 166diagrams that involve the tadpole asf (a)� + f ()� + f (g)� = ig�qqG12m2� J (a)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+ig�qq2m2� (1�G1JPP (q2)) Z d4p(2�)4Tr [S(p)S(p)℄ f 3(p)�f(p+ q) + f(p� q)�+ig�qq2m2� (1�G1JSS(0)) Z d4p(2�)4Tr [5S(p�)5S(p+)℄�f(p+)f(p�)�f 2(p+) + f 2(p�)�+g�qqmm2� �J (a)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�: (A.5)The other part of the NLO quark self-energy omes from the meson loud diagramon the right{hand side of Fig. 7.5. It indues the diagrams (b), (d) and (h) (seeFigs. 7.11 and 7.12) in the pion oupling to the axial urrent.f (b)� Æab = ig�qqG12m2� Z d4p(2�)4Tr h5� bS(p�)5�aS(p+)i f(p+)f(p�)�Xi Z d4k(2�)4 d4`(2�)4 T̂ (�i 
 
i; k � `)Tr hS(k)�iS(`)
iS(k)i f 2(k)f 2(`)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i (A.6)f (d)� Æab = g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f(p+)f(p�)�Tr h5� bS(p�)/q5�aS(p+)�iS(k+)
iS(p+)f 2(p+)f 2(k+)+5� bS(p�)�iS(k�)
iS(p�)/q5�aS(p+)f 2(p�)f 2(k�)i (A.7)
f (h)� Æab = ig�qqG12m2� Z d4k(2�)4Tr [S(k)℄Xi Z d4p(2�)4 d4`(2�)4 T̂ (�i 
 
i; p� `)�Tr h5� bS(p�)5�aS(p+)�iS(`+)
iS(p+)f 2(p+)f 2(`+)+5� bS(p�)�iS(`�)
iS(p�)5�aS(p+)f 2(p�)f 2(`�)i f(p+)f(p�)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i (A.8)A.1. Canellations



Appendix A. Pion Deay Constant at NLO 167In f (d)� , the /q5 identity of Eq. 4.3 an again be used to deompose the insertionthat omes from the loal urrent. As before, the (m++m�) term of the deompositionallows anellation with the part of f (h)� that ontains a fator of the ladder SDEintegral (Eq. 3.2).In Eq. A.6, the two piees of the nonloal form fator struture enable one tosimplify di�erent aspets of the expression. The �rst piee yields a fator of the sameintegral as appears in the de�nition of the onstant  (Eq. 7.5); the seond pieeredues the p integral to JPP (q2). The simpli�ed sum of Eqs. A.6, A.7 and A.8 isgiven below. f (b)� + f (d)� + f (h)� = r(d)�+ ig�qqG12m2� J (b)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�� g�qq2m2� (1�G1JPP (q2))Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)Tr hS(p)�iS(k)
iS(p)i�f 3(p)�f(p+ q) + f(p� q)�f 2(k)�ig�qq2m2� (1�G1JSS(0)) Z d4p(2�)4Tr [5S(p�)5S(p+)℄�f(p+)f(p�)�f 2(p+) + f 2(p�)�+g�qqmm2� �J (b)NPP with f 2(p�)f 4(p�)! f(p�)f 3(p�)�; (A.9)where part of the loal urrent ontribution, Eq. A.7, has been isolated asr(d)� Æab = �g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f(p+)f(p�)�Tr h5� bS(p�)5�a�iS(k+)
iS(p+)f 2(p+)f 2(k+)+5� bS(p�)�iS(k�)
i5�aS(p+)f 2(p�)f 2(k�)i : (A.10)It is enouraging to note that the term proportional to  in Eq. A.9 anels witha term in Eq. A.5.The other orretions to the two-quark loops of the LO diagrams are due eitherto virtual meson exhanges between the two quarks,
A.1. Canellations
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f (e)� Æab = g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f 2(k+)f 2(k�)f(p+)f(p�)�Tr h5� bS(k�)
iS(p�)/q5�aS(p+)�iS(k+)i ; (A.11)
f (i)� Æab = ig�qqG12m2� Z d4k(2�)4Tr [S(k)℄Xi Z d4p(2�)4 d4`(2�)4 T̂ (�i 
 
i; p� `)�Tr h5� bS(`�)
iS(p�)/q5�aS(p+)�iS(`+)i f 2(`+)f 2(`�)f(p+)f(p�)� hf 2(k)�f 2(p+) + f 2(p�)�� f(k)�f(k + q) + f(k � q)�f(p+)f(p�)i ; (A.12)or else to two-meson intermediate states,f (f)� Æab = �g�qq2m2� Xi;j Z d4p(2�)4 T̂ (�i 
 
i; p+)T̂ (�j 
 
j;�p�)�L(q; p+;�p�; i5� b;
i;
j)L0(q; p+;�p�; /q5�a;�i;�j); (A.13)

f (j)� Æab = �ig�qqG12m2� Z d4k(2�)4Tr [S(k)℄Xi;j Z d4p(2�)4 T̂ (�i 
 
i; p+)T̂ (�j 
 
j;�p�)�L(q; p+;�p�; i5� b;
i;
j) hf 2(k)L�(q; p+;�p�; /q5�a;�i;�j)�f(k)�f(k + q) + f(k � q)�L(q; p+;�p�; /q5�a;�i;�j)i : (A.14)To assist in writing the above expressions the L; L notation de�ned in Chp. 7.3 hasbeen slightly extended. In diagram (f) there are no form fators assoiated withthe insertion at the loal axial urrent vertex, and hene the appropriate three-quarkloop, denoted by L0, di�ers from the integrals in the de�nition of L (Eq. 7.9) by havingf(p+)f(p�) instead of f 2(p+)f 2(p�). Similarly, the symbol L� is used to stand fora loop where f 2(p+)f 2(p�) in L is replaed by f 2(p+) + f 2(p�). The /q5 identity ofEq. 4.3 leads to familiar anellations between the loal and nonloal diagrams above,yielding: A.1. Canellations
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f (e)� + f (i)� = r(e)�+ ig�qqG12m2� J ()NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+g�qqmm2� �J ()NPP with f 2(p+)f 2(p�)! f(p+)f(p�)�; (A.15)and: f (f)� + f (j)� = r(f)�+ ig�qqG12m2� J (d)NPP Z d4k(2�)4Tr [S(k)℄ f(k)�f(k + q) + f(k � q)�+g�qqmm2� �J (d)NPP withL! L0�: (A.16)The ontributions given in Eqs. A.15 and A.16 still ontain some fairly ompliatedpiees, whih originated in the S�1(p+)5 + 5S�1(p�) part of the /q5 identity. Theseare to be onsidered separately and are given by:r(e)� Æab = �g�qq2m2� Xi Z d4p(2�)4 d4k(2�)4 T̂ (�i 
 
i; p� k)f 2(k+)f 2(k�)f(p+)f(p�)�Tr h5� bS(k�)
i�S(p�)5�a + 5�aS(p+)��iS(k+)i ; (A.17)r(f)� Æab = � g�qq2m2� Z d4p(2�)4 G11�G1JPP (p+) G11�G1JSS(p�)�L(q; p+;�p�; i5� b; i5� ; 1)�(Z d4k(2�)4Tr hS(k � 12p�)� S(k + 12p�)�ai f(k � 12p�)f(k + 12p�)��f(k � 12p�)f(k + 12p� + q) + f(k � 12p� � q)f(k + 12p�)�+ Z d4k(2�)4Tr hS(k + 12p+)5� S(k � 12p+)5�ai f(k + 12p+)f(k � 12p+)��f(k + 12p+)f(k � 12p+ + q) + f(k + 12p+ � q)f(k � 12p+)�o : (A.18)Fortunately, the overall result for the NLO part of the pion deay onstant isgreatly simpli�ed one the remaining NLO diagrams, (m), (n) and (o) are inluded.The isolated ontributions, r(d)� , r(e)� and r(f)� , an then be eliminated. Consider �rstdiagram (n) of Fig. 7.15. This ontribution an be written as a sum of terms, in eahA.1. Canellations



Appendix A. Pion Deay Constant at NLO 170of whih one of the two-quark loops is given by a LO J integral whereas the other issimilar but has a di�erent ombination of form fators:f (n)� Æab = g�qqG12m2� Z d4p(2�)4 G11�G1JPP (p+) G11�G1JSS(p�)�L(q; p+;�p�; i5� b; i5� ; 1)�(JPP (p+)Æa Z d4k(2�)4Tr hS(k � 12p�)S(k + 12p�)i f(k � 12p�)f(k + 12p�)��f(k � 12p�)f(k + 12p� + q) + f(k � 12p� � q)f(k + 12p�)�+JSS(p�) Z d4k(2�)4Tr hS(k + 12p+)5� S(k � 12p+)5�ai f(k + 12p+)f(k � 12p+)��f(k + 12p+)f(k � 12p+ + q) + f(k + 12p+ � q)f(k � 12p+)�o : (A.19)Eq. A.19 is learly very similar to Eq. A.18 for r(f)� , whih arose as part of the NLOdiagram for the loal urrent with two-meson intermediates. In fat, the terms inEq. A.19 di�er from those in Eq. A.18 only by a fator of �G1J . Hene, their suman be written as a set of ontributions whih have only a single intermediate mesonpropagator: (r(f)� + f (n)� )Æab =� g�qq2m2� Z d4p(2�)4 G211�G1JSS(p�)L(q; p+;�p�; i5� b; i5�a; 1)� Z d4k(2�)4Tr hS(k � 12p�)S(k + 12p�)i f(k � 12p�)f(k + 12p�)��f(k � 12p�)f(k + 12p� + q) + f(k � 12p� � q)f(k + 12p�)�� g�qq2m2� Z d4p(2�)4 G211�G1JPP (p+)L(q; p+;�p�; i5� b; i5� ; 1)� Z d4k(2�)4Tr hS(k + 12p+)5� S(k � 12p+)5�ai f(k + 12p+)f(k � 12p+)��f(k + 12p+)f(k � 12p+ + q) + f(k + 12p+ � q)f(k � 12p+)�: (A.20)There are two diagrams of the form (o) whih appear in the alulations. Sineeah ontains a two-quark and a three-quark loop as well as an intermediate mesonpropagator, it is plausible that they may be able to e�et a anellation with on-tributions like those in Eq. A.20. The type-III nonloal urrent term G1(i5�a 
 1)A.1. Canellations



Appendix A. Pion Deay Constant at NLO 171has been responsible for all of the NLO nonloal diagrams presented thus far. It alsomakes a ontribution in this ase, as does the type-I term G1�ad(� d 
 i5� ). In anobvious notation the relevant diagrams are referred to as (oIII) and (oI).Dealing �rst with (oIII), one notes that there are always two form fators ina type-III urrent that are not path{linked, enabling one of the quark loops to bereognized as either a J or an L loop. Making suitable hoies of the integrationvariables, the piees that involve an L loop an be shown to anel with Eq. A.20.The other piees of the diagram (oIII) are(r(f)� + f (n)� + f (oIII)� )Æab = �g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)� nTr h5� bS(p�)S(k+)5�aS(p+)i f(p+)f(k+)+Tr h5� bS(p�)5�aS(k�)S(p+)i f(p�)f(k�)o�f(p+)f(p�)�f(p+)f(k+) + f(p�)f(k�)�+g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JSS(p� k)1�G1JSS(p� k)f(p+)f(p�)� nTr h5� bS(p�)5�aS(k+)S(p+)i f(p+)f(k+)+Tr h5� bS(p�)S(k�)5�aS(p+)i f(p�)f(k�)o�f(p+)f(p�)�f(p+)f(k+) + f(p�)f(k�)�: (A.21)Comparing the above equation with Eq. A.10 for r(d)� one an see the same generalstrutures appearing. Taking due aount of isospin fators, r(d)� an be ombined withEq. A.21 to produe:
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r(d)� + r(f)� + f (n)� + f (oIII)� = g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)� nTr h5S(p�)�S(k+)5 � 5S(k+)�S(p+)i f 2(p+)f 2(k+)+Tr h5S(p�)�5S(k�)� S(k�)5�S(p+)i f 2(p�)f 2(k�)o�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [5S(p�)S(k+)5S(p+) + 5S(p�)5S(k�)S(p+)℄+g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 G1JSS(p� k)1�G1JSS(p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [5S(p�)5S(k+)S(p+) + 5S(p�)S(k�)5S(p+)℄+g�qqm2� Z d4k(2�)4 Z d4p(2�)4 G11�G1JPP (p� k)f(p+)f(p�)� nTr [5S(p�)S(k+)5S(p+)℄ f 2(p+)f 2(k+)+Tr [5S(p�)5S(k�)S(p+)℄ f 2(p�)f 2(k�)o : (A.22)In Eq. A.22, the �rst term ontains piees from both Eqs. A.10 and A.21, a relativefator of �G1J in the latter ombining to anel the LO meson propagator in the sum.The seond and third terms are just the remainder of Eq. A.21 and the �nal term isthe rest of Eq. A.10. Now, apart from a fator of � G1J , the seond and third terms ofEq. A.22 are very muh reminisent in struture of r(e)� (see Eq. A.17). It is pro�tableat this point to reintrodue that ontribution. This enables the intermediate sigmapropagator in the seond term of Eq. A.22 to be anelled and alters a fator in thethird term. If one also lets k ! �k in the k� arguments of the �rst term, one hasthat:
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r(d)� + r(e)� + r(f)� + f (n)� + f (oIII)� = g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)�Tr h5S(p�) h�S(k+)f 2(p+)� S(�k+)f 2(p�)�; 5iS(p+)i f 2(k+)�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4 1 +G1JPP (p� k)1�G1JPP (p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [5S(p�)S(k+)5S(p+) + 5S(p�)5S(k�)S(p+)℄�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f 2(p+)f 2(p�)f(k+)f(k�)�Tr [5S(p�)5S(k+)S(p+) + 5S(p�)S(k�)5S(p+)℄+g�qqm2� Z d4k(2�)4 Z d4p(2�)4 G11�G1JPP (p� k)f(p+)f(p�)� nTr [5S(p�)S(k+)5S(p+)℄ f 2(p+)f 2(k+)+Tr [5S(p�)5S(k�)S(p+)℄ f 2(p�)f 2(k�)o : (A.23)The above equation remains somewhat umbersome. Moreover, one may feel a littleuneasy that it ontains pion intermediates but no salar exhanges. The situation islari�ed dramatially, however, by bringing in the diagram (oI). This features a two-quark loop that onnets an intermediate meson with one of the matrix struturesfrom the type-I nonloal urrent term G1�ad(� d 
 i5� ). For the avour trae overthis loop to be non-zero, the meson involved must be a pion. Furthermore, the type-Istruture (Eq. 2.11) ensures that the form fators assoiated with this two-quark loophave no path links, and hene the loop redues to JPP . One an write the ontributionfrom this diagram as:f (oI)� = g�qqG1m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)f 2(p+)f 2(p�)f(k+)f(k�)�Tr [5S(p�)S(k+)5S(p+) + 5S(p�)5S(k�)S(p+)℄�g�qqG1m2� Z d4k(2�)4 Z d4p(2�)4 G1JPP (p� k)1�G1JPP (p� k)f(p+)f(p�)� nTr [5S(p�)S(k+)5S(p+)℄ f 2(p+)f 2(k+)+Tr [5S(p�)5S(k�)S(p+)℄ f 2(p�)f 2(k�)o ; (A.24)A.1. Canellations



Appendix A. Pion Deay Constant at NLO 174an isospin summation having been performed. The �rst term of Eq. A.24 is of preiselythe right form to ause the 1 +G1JPP (p � k) piee ourring in Eq. A.23 to beome1 � G1JPP (p � k) when the two are added, thereby anelling the pion propagator.Furthermore, the other part of Eq. A.24 anels the other pion propagator found inEq. A.23, so that the sum has no net meson intermediates,r(d)� + r(e)� + r(f)� + f (n)� + f (oI)� + f (oIII)� = 3g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)�Tr h5S(p�)�S(k+)f 2(p+)5 + 5S(�k+)f 2(p�)�S(p+)i f 2(k+)�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f(p+)f(p�)�Tr h5S(p�)�5S(k+)f 2(p+) + S(�k+)f 2(p�)5�S(p+)i f 2(k+)�g�qqG12m2� Z d4k(2�)4 Z d4p(2�)4f 2(p+)f 2(p�)f(k+)f(k�)�Tr [5S(p�) f5; S(k+)gS(p+) + 5S(p�) fS(k�); 5gS(p+)℄ : (A.25)Shifting the k integration variable suh that the LO quark propagators are evaluatedonly at k and p�, and substituting from Eq. 3.1 for the expliit form of S(k), Eq. A.25beomesr(d)� + r(e)� + r(f)� + f (n)� + f (oI)� + f (oIII)� = g�qqG1 Z d4k(2�)4 m(k)k2 �m2(k)f 2(k)� Z d4k(2�)4Tr [5S(p�)5S(p+)℄ f(p+)f(p�)�f 2(p+) + f 2(p�)��g�qqG1JPP (q2) Z d4k(2�)4 m(k)k2 �m2(k)f(k)�f(k + q) + f(k � q)�= �14N (nonloal f� diagram at LO); (A.26)where Eq. 4.1 for the LO nonloal diagram has been realled to arrive at the punhline.There remains one more ontribution to the pion deay onstant at NLO whihhas not yet been inluded in this appendix. This is the Fok diagram, (m), as shownin Fig. 7.14. It onsists of a LO nonloal urrent diagram, with an N suppressed
A.1. Canellations



Appendix A. Pion Deay Constant at NLO 175oeÆient dedued by Fierz rearrangement (see Chp. 2.5). The only Fok ontribu-tion to f� omes from the type-III term exhange term G1(4N)�1(i5�a 
 1). Thisobservation then ompletes the anellations amongst the NLO diagrams for f�, siner(d)� + r(e)� + r(f)� + f (m)� + f (n)� + f (oI)� + f (oIII)� = 0: (A.27)Combining Eq. A.27 with others from this appendix, the full set of NLO ontributionsto the pion deay onstant an be seen to produe Eq. 7.11.A.2 Chiral ExpansionThis setion desribes the hiral expansion of the NLO part of the pion deay onstant.As in Appendix A.1 it speialises to the ase where the G1 oupling is the only onepresent in the ation. The aim is to demonstrate that the various ontributions pro-due the two O(1=N) terms on the right{hand side of Eq. 7.15, thereby establishingthe GMOR relation at NLO in the model.In Chp. 7.4, the various diagrams ontributing to f� at NLO were presented.There are several useful anellations whih operate among the diagrams, holdingto all orders in the hiral expansion. They were explained in Appendix A.1 andulminated in Eq. 7.11, the starting point for this setion.The �rst point to notie about Eq. 7.11 is that eah term is of O(1) in the hiralexpansion. Hene, in all of the integrals the hiral limit may be taken diretly, withoutmaking an expansion of the integrand. Consider �rst the term in Eq. 7.11 proportionalto . Using Eq. 4.6 for the expansion of the 1� G1JPP (q2) fator, the hiral limit ofthis term is �g�qq0m2� 0G1JSS0(0) mh  i0m20(0) + m2�Z�0! : (A.28)The other term in Eq. 7.11 whih has an expliit fator of 1�G1JPP (q2) also has anintegral very like the one in the de�nition of  (Eq. 7.5). Indeed, the only di�erene isthe presene of q in the form fator struture f(p+ q) + f(p� q) and so in the hiral
A.2. Chiral Expansion



Appendix A. Pion Deay Constant at NLO 176limit this term in Eq. 7.11 is also proportional to , being:�g�qq0m2� 0(1�G1JSS0(0)) mh  i0m20(0) + m2�Z�0! : (A.29)The sum of Eqs. A.28 and A.29 is just�g�qq0m2� 0  mh  i0m20(0) + m2�Z�0! ; (A.30)the seond term in brakets being learly identi�able as one of the O(1=N) pieessought in the ondition of Eq. 7.15. Note also that the �nal term of Eq. 7.11 givespreisely the struture of the other part of the ondition but has the wrong sign,gN�qq0g�qq0 :m0(0)g�qq0 : (A.31)Consider now the �rst term of Eq. 7.11. It an be dealt with straightforwardly,using the ladder SDE to perform the k integral and the results of Appendix B for thehiral expansion of JNPP . This yields:�2m0(0)gN�qq0Z�0 +mg�qq0m2� :h  iN0m0(0) +mg�qq0m2� :h  i0m0(0) : 20m0(0) : (A.32)The �rst term of the above equation is exatly that needed to reverse the sign ofEq. A.31 in the sum. The ontributions disussed so far are therefore:�0g�qq0 � gN�qq0g�qq0 :m0(0)g�qq0 + g�qq0m0(0) :mm2�  h  iN0 + 0m0(0)h  i0! : (A.33)It remains only to anel the last term in Eq. A.33 with the other terms of Eq. 7.11.These terms are expliitly proportional to m and ontain integrals very similar tothose in JNPP , but with di�erent ombinations of form fators. The integrals similarto J (b)NPP ; J ()NPP and J (d)NPP are not desribed here. Proedures for manipulating suhintegrals so as to simplify their sum were detailed in Appendix B and are not a�etedby the di�erent form fators appearing in the present ase. It therefore suÆes tostate the end result for the sum of these ontributions to f�, whih is:
A.2. Chiral Expansion
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mg�qq0m2�m0(0)NNf Z d4k(2�)4 d4p(2�)4 G1f 2(p)f 2(k)1�G1JSS0(p� k)� [4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄+ mg�qq0m2�m0(0)NNf Z d4k(2�)4 d4p(2�)4 3G1f 2(p)f 2(k)1�G1JPP0(p� k)� [�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄ : (A.34)If one ompares Eq. A.34 to Eq. B.13 and takes aount of the subsequent disussion,it is lear that replaing m by m + �m(p) in Eq. A.34 would make it proportionalto h  iN0. Suh a replaement an in fat be made when the �nal ontribution fromEq. 7.11 is inluded. This is the term whih is similar to J (a)NPP . By analogy with thedisussion of J (a)NPP in Appendix B, the loop whih has a modi�ed form fator strutureredues in the hiral limit to a fator1 � I6 (whih was de�ned in Eq. 4.10). Thus thisontribution from Eq. 7.11 an be shown to produe:2g�qq0m2� m0I6: (A.35)Adding the above expression to the �nal term in brakets of Eq. A.33 gives:g�qq0mm2� : 0m0(0) :h  i0m0(0) �! g�qq0mm2� : 0m0(0)  h  i0m0(0) + 2m0(0)I6!= �g�qq0m2� : 0m0(0)2I8�m(0); (A.36)where Eq. B.3 has been alled upon to introdue �m. The situation an now belari�ed by notiing that the ombination I80 is given by the same integrals as thosein Eq. A.34, apart from an additional fator of f 2(p). This is exatly what is neededfor the sum of Eqs. A.36 and A.34 to give Eq. A.34 with m ! m+�m(p). One hastherefore produed a piee proportional to h  iN0. As required, this piee anels withthe unwanted term in Eq. A.33. In summary, the hiral limit of the NLO omponent1f. a fator of � I8, whih ame from the orresponding loop in J (a)NPP .
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Appendix A. Pion Deay Constant at NLO 178of the pion deay onstant (given by the sum of Eqs. A.33, A.34 and A.35) is shownto be preisely that whih satis�es the GMOR relation,fN�0 = �0g�qq0 � gN�qq0g�qq0 :m0(0)g�qq0 : (A.37)
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Appendix B
Chiral Expansion of NLO PionAmplitude
This appendix disusses the hiral expansion of JNPP (q2), onentrating on the asewhere G1 is the only oupling onstant in the ation. As desribed in Chp. 7.5, theexpansion has two important aspets. That there is no term of O(1) is required inorder to preserve the Goldstone nature of the pion in the hiral limit. Also of interestis the oeÆient of the term of O(m) sine this is a neessary ingredient in provingthe GMOR relation at NLO.Consider �rst the ontribution J (a)NPP (q2) oming from the NLO BSE diagram oftype (a) (it is drawn in Fig. 7.7 and given by Eq. 7.6 with f 2(p) replaing �N (p)).The onstant  is given by a three-quark loop with an intermediate pion or sigmameson (see Eq. 7.5). In the former ase, as in some other NLO diagrams involvingpion states, there is an assoiated fator of three due to isospin multipliity. In therest of J (a)NPP , it is useful to note that the Dira trae in the hiral limit yields a fatorthat anels with the denominator of one of the three LO quark propagators. Theresulting integral is then proportional to I8 (de�ned in Eq. 4.10) and an therefore beanelled with a fator from the �(0) propagator, sine1�G1JSS(0) = G1(JPP0(0)� JSS(0)) = 2G1I8 +O(m): (B.1)179



Appendix B. Chiral Expansion of NLO Pion Amplitude 180Eq. B.2 gives the hiral expansion of this diagram.J (a)NPP (q2) = �NNfm0(0) Z d4k(2�)4 G11�G1JSS0(k)f 2(p� k)f 4(p)� Z d4p(2�)4 [8m0(p)(p2 � p � k) + 4(p2 +m20(p))m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄+3NNf Z d4k(2�)4 G11�G1JPP0(k)f 2(p� k)f 4(p)� Z d4p(2�)4 [8m0(p)(p2 � p � k)� 4(p2 +m20(p))m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄�NNfm0(0) Z d4k(2�)4 d4p(2�)4 G1f 4(p)f 2(k)1�G1JSS0(p� k)�(4[4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ m0(p)(m +�m(p))+2[4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄2 m0(k)(m +�m(k))+ [8(m +�m(p))(m0(p)m0(k) + p � k) + 4(m +�m(k))(p2 +m20(p))℄[p2 �m20(p)℄2[k2 �m20(k)℄ )�NNfm0(0) Z d4k(2�)4 d4p(2�)4 3G1f 4(p)f 2(k)1�G1JPP0(p� k)�(4[�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ m0(p)(m +�m(p))+2[�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄2 m0(k)(m +�m(k))+ [8(m +�m(p))(�m0(p)m0(k) + p � k)� 4(m +�m(k))(p2 +m20(p))℄[p2 �m20(p)℄2[k2 �m20(k)℄ )�mNNfm0(0) Z d4k(2�)4 d4p(2�)4 G21RSS(p� k)[1�G1JSS0(p� k)℄2� [4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄ f 4(p)f 2(k)�mNNfm0(0) Z d4k(2�)4 d4p(2�)4 3G21RPP (p� k)[1�G1JPP0(p� k)℄2� [�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄ f 4(p)f 2(k)+2 0mm0(0)3 h  i0 +O(q2) +O(m2; q4): (B.2)



Appendix B. Chiral Expansion of NLO Pion Amplitude 181In the above equation the ombinationm+�m(p) has been used to denote the O(m)term in the hiral expansion of m(p). From the ladder SDE (Eq. 3.2), one has that�m(p) = �m f 2(p)2I8  h  i0m0(0) + 2m0(0)I6! : (B.3)The other unde�ned quantities in Eq. B.2 are RSS and RPP . These are obtained fromthe hiral expansion of J ,Jij(q2) = Jij0(q2) +mRij(q2) +O(m2): (B.4)The BSE diagram of type (b) (see Fig. 7.7) ontains part of the NLO quark self-energy. It is given by substituting the appropriate part of �N (the seond term ofEq. 7.4) into Eq. 7.6. As with diagram (a), there is a useful fator from the Diratrae of J (b)NPP whih anels (in the hiral limit) one of the denominators of the LOquark propagators:
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J (b)NPP = NNf Z d4k(2�)4 G11�G1JSS0(k)f 2(p� k)f 6(p)� Z d4p(2�)4 8[p2 � p � k +m0(p)m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄+3NNf Z d4k(2�)4 G11�G1JPP0(k)f 2(p� k)f 6(p)� Z d4p(2�)4 8[p2 � p � k �m0(p)m0(p� k)℄[p2 �m20(p)℄2[(p� k)2 �m20(p� k)℄+2NNf Z d4k(2�)4 d4p(2�)4 G1f 6(p)f 2(k)1�G1JSS0(p� k)�( 8[p � k +m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄2m0(k)(m +�m(k))+ 4m0(p)(m +�m(k))[p2 �m20(p)℄2[k2 �m20(k)℄ + 24m0(p)[p � k +m0(p)m0(k)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m +�m(p))+4[m0(k)(p2 � 3m20(p))� 2p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m +�m(p)))+6NNf Z d4k(2�)4 d4p(2�)4 G1f 6(p)f 2(k)1�G1JPP0(p� k)�( 8[p � k �m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄2m0(k)(m +�m(k))� 4m0(p)(m +�m(k))[p2 �m20(p)℄2[k2 �m20(k)℄ + 24m0(p)[p � k �m0(p)m0(k)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m +�m(p))�4[m0(k)(p2 � 3m20(p)) + 2p � km0(p)℄[p2 �m20(p)℄3[k2 �m20(k)℄ (m +�m(p)))+2mNNf Z d4k(2�)4 d4p(2�)4 G21RSS(p� k)[1�G1JSS0(p� k)℄2� 4[p � k +m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄f 6(p)f 2(k)+6mNNf Z d4k(2�)4 d4p(2�)4 G21RPP (p� k)[1�G1JPP0(p� k)℄2� 4[p � k �m0(p)m0(k)℄[p2 �m20(p)℄2[k2 �m20(k)℄f 6(p)f 2(k)+O(q2) +O(m2 ; q4): (B.5)



Appendix B. Chiral Expansion of NLO Pion Amplitude 183Neither Eq. B.2 nor Eq. B.5 looks very promising. These ontributions an how-ever be ombined to advantage if one rewrites the Dira traes involved in various ofthe diagram (a) terms as follows:�4m0(k)(p2 +m20(p)) + 8m0(p)p � k = �4m0(k)(p2 �m20(p))+8m0(p)(p � k �m0(p)m0(k)): (B.6)The seond term ourring in the representation on the right{hand side has the samestruture as piees appearing in ontributions from diagram (b). Meanwhile, the �rstterm simpli�es the remaining integrals by anelling the denominator of a quark prop-agator. With the assistane of Eq. B.6, one �nds thatJ (a)NPP + J (b)NPP = NNf Z d4k(2�)4 " �G11�G1JSS0(k) + 3G11�G1JPP0(k)#� Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄ +O(q2; m): (B.7)Moving on to diagram () (Fig. 7.9 and Eq. 7.7), the Dira trae in the hirallimit takes a partiularly onvenient form for both the sigma and pion exhanges. Itfatorizes into piees whih anel the denominators from two LO quark propagators,leaving J ()NPP = �NNf Z d4k(2�)4 " G11�G1JSS0(k) + G11�G1JPP0(k)#� Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄+16NNf Z d4k(2�)4 d4p(2�)4 " �G11�G1JSS0(p� k) + G11�G1JPP0(p� k)#� m0(k)(m +�m(k))[p2 �m20(p)℄[k2 �m20(k)℄2f 4(p)f 4(k)�mNNf Z d4k(2�)4 d4p(2�)4 " G21RSS(p� k)[1�G1JSS0(p� k)℄2 + G21RPP (p� k)[1�G1JPP0(p� k)℄2#� 4f 4(p)f 4(k)[p2 �m20(p)℄[k2 �m20(k)℄ +O(q2) +O(q4; m2): (B.8)Finally, there is a diagram of type (d) to be onsidered (Fig. 7.9 and Eq. 7.10).It has an intermediate pion and sigma meson. A two sigma intermediate is forbidden



Appendix B. Chiral Expansion of NLO Pion Amplitude 184by isospin symmetry whilst a two pion state gives a vanishing Dira trae over thetriangular loops. In the hiral limit of the ��� loops, the denominator of a quarkpropagator is anelled through a fator from the trae, produing:J (d)NPP = i Z d4k(2�)4 G11�G1JSS0(k) G11�G1JPP0(k)�(8NNfm0(0) Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄)2�(1 +m G1RSS(k)1�G1JSS0(k) +m G1RPP (k)1�G1JPP0(k))+16i(NNf )2 Z d4k(2�)4 G11�G1JSS0(k) G11�G1JPP0(k)� Z d4p(2�)4 4f 4(p)f 4(p� k)[p2 �m20(p)℄[(p� k)2 �m20(p� k)℄�(Z d4`(2�)4 8m20(`)m0(`� k)(m +�m(`))f 2(`)f 2(`� k)[`2 �m20(`)℄2[(`� k)2 �m20(`� k)℄+ Z d4`(2�)4 2m0(`)(m +�m(`� k))f 2(`)f 2(`� k)[`2 �m20(`)℄[(`� k)2 �m20(`� k)℄ )+O(q2) +O(q4; m2): (B.9)Sine the diagram (d) ontribution involves two intermediate meson propagators it isnot immediately obvious how it may be ombined with the other ontributions, eahof whih has only one suh propagator. The ruial point to notie is that the integralsfrom the triangular loops in J (d)NPP are proportional in the hiral limit to the di�erenebetween LO J loops,JSS(q2)� JPP (q2) = iNNf Z d4p(2�)4 8m20(0)f 4(p)f 4(p� q)[p2 �m20(p)℄[(p� q)2 �m20(p� q)℄ +O(m):(B.10)The above equation allows one to replae the produt of salar and pseudosalar mesonpropagators in Eq. B.9 with their di�erene:J (d)NPP = im20(0) Z d4k(2�)4 " �G11�G1JSS0(k) + G11�G1JPP0(k)# (JSS0(k)� JPP0(k))+O(q2; m): (B.11)



Appendix B. Chiral Expansion of NLO Pion Amplitude 185It is now possible to hek that the Goldstone nature of the pion has been main-tained in the NLO treatment of Chp. 7. From Eqs. B.7, B.8 and B.11 it an be seenthat, as required, JNPP (0) vanishes in the hiral limit.The same statement an also been shown to hold in the extended version of themodel1. The details of the proof are not given here sine the general features of theanellation are similar to those in the above disussion:� the sum from the diagrams of types (a) and (b) may still be simpli�ed by rewrit-ing the Dira traes in J (a)NPP ;� the anellation of the denominators of two quark propagators in the diagramsof type () also works for other intermediate mesons;� the produts of two meson propagators ourring in the type (d) diagrams anbe dealt with2 using relations analogous to Eq. B.10, sineJSS(q2)� JPP (q2) = JTV V (q2)� JTAA(q2) = JLV V (q2)� JLAA(q2): (B.12)Returning to the simpler version of the model with the G1 oupling only, many ofthe simplifying properties desribed above an be exploited in the sum of ontributionsto the O(m) term of JNPP :

1In the extended model, the pion pole is determined by the zero of the full determinantof Eq. 3.13. Therefore, to omplete the proof that the pion is a Goldstone boson at NLO, itwould be neessary to establish further that JNAP0(0) = 0.2An additional point of signi�ane is that suh diagrams involving the /q5 omponentof the pion vertex give triangular loops whih are proportional to JAP in the hiral limit.
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JNPP = �NNfm20(0) Z d4k(2�)4 d4p(2�)4 G1f 2(p)f 2(k)1�G1JSS0(p� k)(m +�m(p))� [4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄�3NNfm20(0) Z d4k(2�)4 d4p(2�)4 G1f 2(p)f 2(k)1�G1JPP0(p� k)(m +�m(p))� [�4m0(k)(p2 +m20(p)) + 8p � km0(p)℄[p2 �m20(p)℄2[k2 �m20(k)℄+2 0mm0(0)3 h  i0 +O(q2) +O(q4; m2) (B.13)Realling the form of the orresponding O(m) term at LO (see Eq. 4.6) and bearingin mind that the GMOR relation inludes the quark ondensate, it beomes tempt-ing to ompare the integrals in Eq. B.13 with those in the NLO ontribution to theondensate, h  iN = �iTr Z d4p(2�)4SN(p) = iTr Z d4p(2�)4S(p)�N(p)S(p): (B.14)If one substitutes for �N (p) from Eq. 7.4 and takes the hiral limit then some straight-forward algebra is suÆient to show that the ombination of integrals in Eq. B.13 isindeed reeted in the ondensate at NLO. In total, the pion determinant at NLO isgiven by:1�G1JPP �G1JNPP = �G1m h  i0m20(0) �G1m h  iN0m20(0) �G1m h  i0m20(0) : 20m0(0)�G1 q2Z�0 +G1 q2Z�0 :2gN�qq0g�qq0 +O(q4; m2)= �G1m h  i0 + h  iN0(m0(0)� 0)2 �G1 q2(g�qq0 + gN�qq0)2 +O(q4; m2): (B.15)



Appendix C
�! 4� in E�etive Lagrangians
C.1 E�etive Chiral LagrangiansA serious pratial diÆulty with QCD is that, beause of on�nement, the degreesof freedom used in writing the QCD Lagrangian do not diretly orrespond to theobserved asymptoti states. The problem is partiularly severe at low energies wherethe fundamental degrees of freedom are far from being straightforwardly manifest inthe data. The available data in this regime provides information on the properties ofand the interations amongst the light mesons and baryons. It is therefore liable to bemuh easier to perform meaningful alulations if equipped with a theory formulatedin terms of �elds whih treat the partiles deteted as the basi degrees of freedom.In priniple at least, e�etive theories of that type should be ompletely derivablefrom QCD. Although any proedure for so doing seems a most impratial prospetat present, there remain useful restritions whih an be imposed on the andidatesfor suh theories. These follow by requiring the symmetries inherent in QCD tobe reeted at the hadroni level. Many suh restritions are onsequenes of theapproximate hiral symmetry, disussed in Chp. 1.The linear sigma model [14℄ was mentioned in Chp. 1 as a simple theory onsistentwith hiral symmetry. It inludes an expliit salar �eld, the dynamis of whih are

187



Appendix C. �! 4� in E�etive Lagrangians 188an essential feature if one wishes to onsider hiral symmetry restoration [121℄ with asimple model of that form. When working at zero temperature and density, however,the absene of an unambiguous suitable salar meson to identify diretly with the �eldmeans that one would prefer to deal with the pseudosalars only. To that end, various�eld rede�nitions an be made [13, 122℄ to produe a hirally{invariant salar �eld,the mass of whih an then be sent to in�nity. In the resultant theory, the Goldstonemodes should only have derivative interations, sine any other terms would havea loal hiral invariane and so ould be transformed away. At lowest order in thenumber of derivatives, the theory one arrives at is alled the non-linear sigma model,and has the Lagrangian: LNL�M = 14f 2�h��U��U yi; (C.1)where the notation h� � �i has been used to denote a trae in avour spae of the matrixenlosed in angled brakets. The matrix U spei�es an allowed on�guration of thepion �elds [123℄ and as suh must be an element of the vauum symmetry, SU(2)V ,transforming under hiral symmetry asU ! GlUGyr: (C.2)It an be parameterized with the exponential representation,U = exp(i� :�=f�): (C.3)When the above Lagrangian (Eq. C.1) is used at tree-level, it yields the same re-sults [122℄ as ould be obtained with the more laborious tehniques of urrent algebraand PCAC (see Chp. 1.5). Indeed, it was on that very basis that e�etive hiralLagrangians originally beame popular (as advoated in Ref. [124℄ for example).To proeed further in a systemati onstrution of an e�etive theory of pions,one appeals to the power{ounting sheme demonstrated by Weinberg [125℄. Althoughthe most general e�etive theory whih an be postulated ontains an in�nite numberof terms, eah term may be haraterised by the number of derivatives involved. A
C.1. E�etive Chiral Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 189tratable theory may therefore be obtained by trunating at some �nite order in mo-mentum. Hene, the e�etive theory an be regarded as an expansion in powers of p=�,where � is a quantity of the order of the mass of the lightest partile negleted in thee�etive treatment. Obviously it ditates the energy sale below whih the low-energytheory may sensibly be applied. The desription of the would-be Goldstone bosons inWeinberg's sheme is alled hiral perturbation theory (ChPT)[126, 127℄. At O(p4) inthe expansion there exists suÆient experimental information to �x the oeÆients ofthe terms needed. This is not the ase, however, at O(p6) [128℄ and higher where thenumber of undetermined oeÆients proliferates1. When alulations are attemptedat O(p6), a ommon presription for estimating the relevant oeÆients [129℄ is toassume eah of them to be generated solely through the exhange of the lightest res-onant state with the appropriate disrete quantum numbers. The feasibility of thismethod rests on its suessful appliation to the O(p4) oeÆients [126, 130, 131℄,the empirial values of whih are found to be dominated by the ontributions fromresonane exhange.Instead of working to progressively higher orders in momentum, an alternativeway in whih to improve low-energy e�etive theories of pions is to introdue expliit�elds whih desribe the heavier mesons. The �rst of these partiles to be enounteredare the vetor mesons � and !. Sine the oeÆients of terms appearing in any low-energy e�etive theory are dependent upon the properties of the more massive partilesomitted, the development of models whih inorporate the vetor mesons may provehelpful in improving both the spei�ation and understanding of ChPT. Unfortunately,however, the onstrution of e�etive theories that inlude resonant states is hamperedby the loss of power ounting, the organizing priniple so ruial to ChPT. In essenethe breakdown of power ounting ours beause the pions are liable to be of highmomenta in proesses where there is an on-shell resonant partile. Hene, large ordersin momentum may be required for the aurate representation of suh pions.1there are over a hundred terms of O(p6).
C.1. E�etive Chiral Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 190The loss of power ounting is reeted in the onsiderable freedom allowed inhoosing a possible interpolating �eld to desribe the vetor mesons. If one wereto rede�ne suh a �eld then the preditions of a given Lagrangian would of ourseremain unaltered. However, interations whih were ostensibly of some partiularorder in momentum may be transformed into terms of di�erent orders in the newrepresentation.The foregoing omments do not mean that a useful e�etive theory of pions andresonant partiles annot be formulated: they simply note the loss of the shemewhih determined the relative importane of eah of the in�nite number of possibleinterations. What is undoubtedly lear, however, is that there is a strong desireto �nd some other approah whih avoids the neessity of onsidering all possibleterms. A pratial attitude is to exploit the freedom in the hoie of interpolating�eld. It seems reasonable to suppose that there should exist some hoie of �eld inthe framework of whih an aurate e�etive theory2 is embodied in a fairly simpleform. In searhing for a useful theory, a natural starting point is therefore to de�nesome representations for the �elds of the resonant partiles and then to examine thephenomenology of the simplest Lagrangians in eah basis. There are four distintformulations whih are ommon in the literature:1. The hidden{gauge form of Bando et al [132℄ ;2. The massive Yang-Mills form, as suggested in Refs. [124, 133℄ ;3. The formalism developed by Coleman, Callan, Wess and Zumino (CCWZ) [134℄based on a suggestion by Weinberg [135℄ ;4. The use of anti-symmetri tensor �elds, as pioneered by Eker et al [131, 136℄.Reviews of these approahes are available in Refs. [137, 138℄. As emphasized byBirse [138℄, the approahes are believed to be equivalent [136, 138, 139℄, di�ering onlyin the representation taken for the spin-1 �elds.2whatever that might prove to be. C.1. E�etive Chiral Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 191From both pratial and phenomenologial perspetives, the simplest Lagrangiansof the massive Yang-Mills and hidden{gauge approahes are of partiular interest.Within these approahes, one an propose an e�etive Lagrangian whih has only twoundetermined parameters: the � mass and a gauge oupling. The latter an be set toreprodue the empirial �! 2� deay width, ompletely speifying a possible e�etivetheory. Furthermore, these representations are motivated on the grounds that theyan easily enapsulate phenomenologial notions suh as VMD and universality (seeChp. 1.6).In Appendix C.6, the rare deays � ! 4� are alulated with various hirale�etive models. Before doing so, the models used are briey desribed below. Sinethorough disussion of these models an be found in the ited literature, it suÆesto outline some general points about the approahes and to highlight some of theirphenomenologial aspets.C.2 Hidden{Gauge LagrangiansThe hidden{gauge and massive Yang-Mills shemes adopt a gauge style of approah,whih is learly well{suited to the notion of universality. In the hidden{gauge methodof Bando et al. [132℄, the Lagrangian of the non-linear sigma model (Eq. C.1) is rewrit-ten with the introdution of an unphysial loal symmetry, whih may be transformedaway. However, if a kineti term for the gauge �eld is also inluded, then the loalsymmetry beomes physial, generating a non-trivial extension of the model. Al-though the loal symmetry group may ontain SU(2)A [97℄, it is usual to work with avetor gauge �eld only. The simplest Lagrangian of �, � and ! mesons in the shemetherefore involves these partiles only, there being no need to inlude the a1 meson.External gauge �elds an be unambiguously introdued into the formalism byseparately gauging the global hiral group [140℄. The model an also be extended toinlude an anomalous setor [141℄. With the anomalous Ward identity being satis�edby the Wess{Zumino ation [142℄, low-energy theorems, suh as those for �0 ! C.2. Hidden{Gauge Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 192and  ! 3�, are automatially satis�ed. There are a further four possible terms3of odd intrinsi parity, with undetermined oeÆients. These have no e�et on thelow-energy theorems4 and their strengths should therefore be hosen to reprodue asatisfatory phenomenology of various other anomalous proesses.The ouplings in the minimal hidden{gauge model satisfy the relationsm2� = m2! = aeg2f 2� ; g��� = a2 eg; g�� = e�1� a2� ; g� = 2f 2�g���; (C.4)where a is a free parameter, eg is the gauge oupling onstant and g�� has been de�nedthrough the vertexh�a(q1)�b(q2)j�(q1 + q2)i = ig���ab3(q2 � �� q1 � �): (C.5)g��� is de�ned similarly in Eq. 5.1. The �nal relation of Eq. C.4 holds independently ofthe model parameters and is known as the KSRF relation [144℄ in its �rst form. It anbe derived straightforwardly as a soft pion theorem for the �! 2� deay [17℄. Withthe parameter hoie a = 2 the Lagrangian is brought into agreement with severalother phenomenologial ideas. Combining the �rst and seond relations of Eq. C.4(with a = 2) gives m2� = 2g2���f 2� ; (C.6)whih is referred to as the seond form of the KSRF relation. This version follows fromthe �rst under the assumption of the universality relation g� = m2�=g���. Universalityin the model is therefore imposed at a = 2, the value whih also produes ompletevetor dominane of the �� oupling.3Six suh terms were originally listed in Ref. [141℄ but it was soon notied [143℄ that twoof them (L3 and L5) are CP odd.4although they do ontrol the relative sizes of di�erent ontributions to suh amplitudes.

C.2. Hidden{Gauge Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 193C.3 Massive Yang-Mills LagrangiansIn the massive Yang-Mills approah [124, 133℄, the spin-1 mesons are represented asthough they were external gauge bosons of hiral symmetry5. The simplest Lagrangianwhih an be postulated in the sheme is just the gauged non-linear sigma model alongwith kineti and mass terms for the gauge �elds. Loal hiral symmetry is broken bythe mass terms. A signi�ant di�erene from the hidden{gauge formalism is thatglobal hiral symmetry demands that the a1 must be inluded as the hiral partner ofthe � meson.Expanding the matrix U (Eq. C.3) in the minimal Lagrangian of the sheme,one �nds a mixing term between the axial �eld and the gradient of the pseudosalar�eld. To remove this and diagonalize the free{�eld part of the Lagrangian, a termproportional to the pseudosalar gradient ould be subtrated from the axial �eld. Itis then neessary to resale the pseudosalar �eld6 in order to obtain the anonialnormalization of the pion kineti term. Suh a proedure onstitutes a minimal di-agonalization and leads to physial pion and a1 �elds whih have ompliated hiraltransformation properties. Other proedures might also be hosen. For example, ifthe Lagrangian is �rst onverted into its equivalent CCWZ representation, then a verysimilar proedure is followed to remove a mixing term. In that ase, however, it is on-venient to subtrat a piee from the axial �eld proportional to the multi{pion objetu� (see Appendix C.4), whih means that the transformation properties of the mixedand physial �elds are the same. Whatever the diagonalization performed, the proessindues a mass splitting between the axial and vetor �elds so that ma1 = Z�1m�,where Z is the saling fator, Z =  1� g2f 2�m2� !12 : (C.7)In the above equation, g is the gauge oupling of this sheme.5To inlude a photon �eld in suh a model it is then usual to assume VMD, adding theappropriate terms by hand.6with a orresponding fator being applied to identify the pion deay onstant.C.3. Massive Yang-Mills Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 194The diagonalization is ommonly referred to as a partial Higgs mehanism. Inthe standard Higgs mehanism the degrees of freedom of the would-be Goldstoneboson are transmuted into those required to give a mass to the gauge �eld. In themassive Yang-Mills formalism, however, the Goldstone boson is preserved beause ofthe gauge{symmetry{breaking mass term.The minimal �eld rede�nition desribed above has a side e�et of produingmore ompliated interation verties, sine additional interation terms are generatedin rewriting the gauge{invariant kineti energies of the spin-1 �elds. Where suhadditional terms ontribute to verties present in the remainder of the Lagrangianthe extra terms always ontain more powers of momentum. Nevertheless, they anhave important e�ets. For instane, the ��� oupling at the rho mass is reduedby a fator of 12(1 + Z2) as ompared to its value at zero{momentum; i.e., by � 34for a normal hoie of parameters. This means that the minimal model is unablesimultaneously to aount for the empirial � meson mass and width. To overomethe problem, it would be neessary to add new interations to the Lagrangian, suhas those proposed in Refs. [137, 145, 146℄. One possibility is the term�i �2g hD�UD�U yF ��L +D�U yD�UF ��R i; (C.8)whih would anel the diagonalization{indued part of the ��� vertex if � = 1.Extending the de�nition of the vetor �eld to inlude an isosalar omponent,representing the ! meson, there are then interations in the anomalous setor [145,147℄. Sine the spin-1 �elds are identi�ed with external gauge �elds of the hiral group,the anomalous verties are given by Bardeen's form [148℄ of the anomaly7.Comment and �� SatteringIn omparison with the simplest hidden{gauge Lagrangian, alulations with the min-imal massive Yang-Mills model are rather more involved. Not only does one have7to obtain an anomaly{free vetor urrent entails breaking global hiral symmetry in thissetor. C.3. Massive Yang-Mills Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 195to deal with the more omplex interation verties produed by diagonalization butthere may be additional ontributions to proesses from diagrams with intermediatea1 states. Note also that the higher{order ontributions to verties violate universal-ity above the lowest energies. This is ertainly no problem of priniple, but sine theuniversality hypothesis is an important aspet of the motivation for a gauge{style ofapproah, one might nevertheless be onerned about suh violations. It is thereforeeasy to see why several authors [9, 10, 149, 150℄ have found it attrative to workwith Lagrangians of the massive Yang-Mills form whih do not have an axial �eld,the soure of the unwanted ompliations. In suh models great are should be takento maintain global hiral symmetry, the guiding priniple in the onstrution of anyplausible e�etive Lagrangian. It is not valid simply to disard the a1, as in one of theLagrangians onsidered by Ref. [9℄, sine the resulting model would not then respet(for example) the low-energy theorem for �� sattering [149℄. If the a1 is to be omittedthen ounterterms [138, 149℄ are required to restore suh theorems.The authors of Refs. [149, 150℄ found suitable ounterterms suh that the VMDextension of the resulting ��! Lagrangian, when integrated over the vetor{mesondegrees of freedom, reprodues the verties of the U(1)V -gauged non-linear sigmamodel. Although their Lagrangian is therefore onsistent with low-energy theoremsinvolving pions and photons only, it is not hirally symmetri. This statement an beillustrated with �� sattering. Fig. C.1 shows the ontributing diagrams in e�etiveLagrangians of �, �, ! and a1 mesons.The amplitude for sattering a soft pion from an arbitrary hadron target shouldvanish in the hiral limit [17℄. Considering only that part of eah of the verties inFig. C.1 whih is of lowest order in the pion momentum, then the ��� vertex to beused in diagrams C.1a and C.1b is g��:� � ���. As the external pion momentumtends to zero the momentum of the intermediate pion state will tend towards that ofthe external � meson, whose transversality means that there is no ontribution fromthese diagrams in the soft pion limit. In both the hidden gauge (Appendix C.2) and
C.3. Massive Yang-Mills Lagrangians
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��������� �����������i �j�a �b(a) ������PPPPPPPPP�����������������i �j�a �b(b) �������������������i �j�a �b()

��������� ���������a1�i �j�a �b(d) ������PPPPPPPPP���������������a1�i �j�a �b(e)Figure C.1: Diagrams ontributing to �� sattering in hiral e�etive Lagrangians of�, � and a1 mesons. Single lines denote pions, double lines spin-1 mesons. The suÆxeslabel isospin states. Anomalous terms in the e�etive Lagrangian introdue diagrams(f) and (g) similar to those of (d) and (e) respetively, but with an ! meson replaingthe a1.CCWZ formalisms (Appendix C.4) any interations whih might produe a ontribu-tion from diagrams C.1 to C.1e ontain powers of the external pion momentum. Forthe same reason, diagrams C.1f and C.1g vanish in the soft pion limit with all threeformalisms. Non-zero diagrams at threshold only appear in the massive Yang-Millssheme, whih has momentum{independent ���� and ��a1 verties of 12g2Z�2(����)2and g2f�Z�2a�:���� respetively. These result in an amplitude from the ���� ontatdiagram of i g2Z2 (2ÆabÆij � ÆaiÆbj � ÆajÆbi)� � ��; (C.9)and a piee oming from diagrams with an intermediate a1 ofi g4f 2�Z4(m2� �m2a1)(2ÆabÆij � ÆaiÆbj � ÆajÆbi)� � ��: (C.10)Using the predition for the � � a1 mass splitting from the massive Yang-Mills La-grangian, these two ontributions anel, as they should. The Lagrangians proposedin Refs. [149, 150℄, however, retain a momentum{independent ���� vertex (whih is12g2(� � ��)2) without there being an a1 �eld present. This gives rise to a non-zeroC.3. Massive Yang-Mills Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 197amplitude in the soft pion limit, violating the hiral low-energy theorem. The modelof Refs. [149, 150℄ is therefore inonsistent with hiral symmetry.C.4 CCWZ LagrangiansIn the CCWZ formalism the spin-1 �elds transform homogeneously under a non-linearrealization of hiral symmetry. The following Lagrangian is written in that formalism,using the notation8 of Ref. [138℄. It gives all of the interation terms relevant for�! 4� in the models onsidered.LCCWZ = f 2�4 hu�u�i+m2�hV�V �i+m2a1hA�A�i � 12hV��V ��i � 12hA��A��i� i2g1hV��[u�; u�℄i+ i2g2hV��[V �; V �℄i+ i2g3hV��([u�; A�℄� [u�; A�℄)i+ i2g4hA��([u�; V �℄� [u�; V �℄)i+ 181h[u�; u�℄2i � 142h[u�; u�℄[V �; V �℄i+183h([u�; V�℄� [u�; V�℄)2i � 144h[u�; u�℄([u�; A�℄� [u�; A�℄)i: (C.11)Unlike the hidden{gauge and massive Yang-Mills formalisms, there is no naturalonept of a minimal Lagrangian in this framework. Eah of the above interationsis hirally symmetri and hene the oeÆients of Eq. C.11 an be set individuallyaording to the assumptions made about the dynamis. It should be pointed out,however, that there are some restritions on the oeÆients whih an be dedued bydemanding that the orresponding Hamiltonian has a lower bound [151℄. Suh on-straints an be strengthened into equalities if assumptions about resonane saturationare imposed.The simplest Lagrangian of the hidden{gauge approah orresponds to the fol-lowing hoies of the oeÆients9:g1 = 12eg ; g2 = 2eg; 1 = g21; 2 = 1; (C.12)8apart from the labelling of the oeÆients.9Note that the oeÆients in Eqs. C.12, C.13 and C.14 do not provide a omplete spei�a-tion of the respetive models. To do so would require other terms in the CCWZ Lagrangian.C.4. CCWZ Lagrangians



Appendix C. �! 4� in E�etive Lagrangians 198all other oeÆients in Eq. C.11 being zero. The hoies appropriate to to the simplestmassive Yang-Mills model are10:g1 = 12g (1� Z4); g2 = 2g; g3 = g4 = Z2;1 = g21; 2 = 1� Z4; 3 = Z4; 4 = g1g3: (C.13)If one inludes the non-minimal term of Eq. C.8 then the above oeÆients beome:g1 = 12g (1 + (� � 1)Z4); g2 = 2g; g3 = Z2(1� �); g4 = Z2;1 = 14g2 (1� Z4)(1 + (2� � 1)Z4); 2 = 1 + (� � 1)Z4; 3 = Z4;4 = 12gZ2(1� Z4)(1� �): (C.14)The strength at the ��� vertex in the CCWZ Lagrangian of Eq. C.11 is ontrolledby the value of g1. Taking � = 1 anels the piee of this vertex whih involves thediagonalization parameter, Z, and (at the KSRF value of Z2 = 12) enfores the identitybetween the gauge oupling parameter and the on-shell oupling g���.C.5 �! 4�, Motivation and BakgroundThe testing of hiral e�etive theories of pions and � mesons requires that a varietyof observables be alulated with the andidate Lagrangians. Two suh quantities arethe partial widths for the rare �0 deay modes to 2�+2�� and to 2�0�+��. Thesedeays provide a potentially useful probe of aspets of the e�etive Lagrangians. Forexample, the amplitude for the 2�0�+�� mode has a ontribution involving the ���vertex that appears in models with gauge{type ouplings of the �. The partial widthalulation might therefore enable the strength at that vertex to be tested.10Note that letting Z ! 0 in Eq. C.13 would give the same oeÆients as in Eq. C.12.Although Z ! 0 orresponds to the unrealisti situation of m� ! gf� and ma1 ! 1 thislimit does provide a basis for useful ross heks (both analyti and numeri) between thehidden{gauge and minimal massive Yang-Mills alulations.
C.5. �! 4�, Motivation and Bakground



Appendix C. �! 4� in E�etive Lagrangians 199Some reent attention has been given to these rare deays [9, 10℄, stimulated bythe prospet that they might soon be deteted in experiments at high luminosity e+e�mahines, suh as VEPP-2M [152℄ or DA�NE [153℄. The present experimental limitson the partial widths are 30 keV for the 2�+2�� mode [154℄ and 6 keV for the 2�0�+��mode [155℄. These are already stringent enough to rule out some early estimates, suhas that by Prashar [11℄11 whih was dominated by �a1 and �a2 intermediate states.In the more reent attempts of Refs. [9, 10℄ rather smaller preditions were made,all bar one of the models being onsistent with the existing limits but quite loseto them. Those results o�ered grounds for optimism sine even a modest redutionin the present limits ould have signi�ant impliations. Note, however, that all ofthese alulations of the deays did not orretly inorporate hiral symmetry. Asis demonstrated in Appendix C.6, the symmetry onstraints have a very importante�et, the partial widths obtained in hiral models being substantially narrower.In the work of Bramon, Grau and Panheri [9℄, the 2�+2�� deay mode wastreated within two of the ommon formalisms for inluding the � meson in hirale�etive Lagrangians. Using the simplest hidden{gauge Lagrangian (Appendix C.2)the authors alulated a partial width12 of 7:5�0:8 keV. In ontrast, with a simpli�edLagrangian of the massive Yang-Mills type they found 60� 7 keV, indiating that theproess ould distinguish between the models and indeed that the massive Yang-Millsone was inonsistent with experiment. The Yang-Mills Lagrangian used in Ref. [9℄oupled the � meson to the sigma model as a gauge boson of SU(2)V , being identialto that in Ref. [147℄ but without an axial �eld. As was �rst pointed out in Ref. [10℄(see also Appendix C.3) by Eidelman, Silagadze and Kuraev suh a simpli�ed modeldoes not respet hiral symmetry. Although the hidden{gauge Lagrangian used byBramon et al. is a perfetly legitimate hiral model, there was unfortunately anerror made in the evaluation of the orresponding deay amplitude. As explainedin Appendix C.6, the impat of this mistake is dramati, the partial width being11where a partial width of 172 keV was quoted for the 2�+2�� mode.12the error omes from the range of values onsidered for the gauge oupling parameter.C.5. �! 4�, Motivation and Bakground



Appendix C. �! 4� in E�etive Lagrangians 200signi�antly overestimated.Having noted that the massive Yang-Mills Lagrangian of Ref. [9℄ is not hirallysymmetri, Eidelman et al. [10℄ were motivated to revisit the alulation. They did notattempt to work with the full minimal massive Yang-Mills Lagrangian involving thea1 meson (Appendix C.3), but rather they followed the proposal of Brihaye, Pak andRossi [149℄ to introdue ounterterms to the naive �; � Lagrangian of Ref. [9℄. Withorretion terms that modi�ed the 4�, �4� and !3� verties, the authors of Ref. [10℄obtained a partial width of 16 � 1 keV for the 2�+2�� mode and of 0:6 � 0:2 keVfor the 2�0�+�� mode. However, their Lagrangian is still not hirally symmetri (seeAppendix C.3). As is desribed in Ref. [138℄, one ould onstrut a hiral Lagrangianby adding further ounterterms to the model. It is, however, pratiable to alulatethe rare �0 deays while adopting a manifestly hiral approah from the start.C.6 Deay AmplitudeWorking at tree level, the relevant diagrams for � ! 4� are shown in Fig. C.2. Theamount of available phase spae in the deays is greatly redued by the masses ofthe deay produts. A realisti alulation therefore requires a term in the e�etiveLagrangians whih aounts for the non-zero pion mass. In ChPT, expliit symmetry{breaking terms an be introdued as though there were an external salar �eld pro-portional to the mass matrix, diag (mu; md). Conserving isospin, the term requiredis f 2�4 m2�hU + U yi: (C.15)The above term is learly independent of the formalism used to desribe the spin-1�elds. It has the additional e�et of modifying the 4� vertex whih appears in dia-gram C.2b. The e�et is quantitatively signi�ant in the results, sine they are muhsmaller than those found previously [9, 10, 11℄, but it does not hange their qualitativefeatures.
C.6. Deay Amplitude
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���������HHH(a) ���������HHH(b)������ �������() ��������� �������(d)
���������������HHH���HHH��(e) ������������������(f) a1 �������������HHH(g) a1

Figure C.2: Diagrams ontributing to the �0 ! 4� deays in hiral e�etive La-grangians of �, � and a1 mesons. Single lines denote pions, double lines spin-1 mesons.Anomalous terms in the e�etive Lagrangians introdue diagrams (h) and (i) similarto those of (f) and (g) respetively, but with an ! meson replaing the a1.Consider �rst the simplest Lagrangian in the hidden{gauge formalism. It inludesfour gauge{ovariant terms in the anomalous setor with undetermined oeÆients.Three of these are relevant to the o�-shell ! deay ourring in diagrams C.2h andC.2i. The suggestion of Ref. [141℄ regarding those oeÆients is adopted here, sothat one inludes an !�� vertex but no !3� ontat term. Consisteny with variousphenomenologial notions (see Appendix C.2) requires that the parameter a of themodel be set to 2. In the numerial work this hoie is indeed made, whilst the gauge
C.6. Deay Amplitude



Appendix C. �! 4� in E�etive Lagrangians 202oupling is �xed so as to reprodue the empirial � meson mass13 through Eq. C.4.The parameters used are then:f� = 92:4MeV; m� = 139:6MeV; m� = m! = 770MeV;a = 2; eg = 5:89: (C.16)The amplitudes derived for the �0 ! 4� deays by the authors of Ref. [10℄ werestated in that paper. Although the model used in that ase did not inlude the a1meson, all of the other graphs shown in Fig. C.2 were alulated. With the simplesthidden{gauge Lagrangian the a1 is also absent, as indeed is the ���� vertex whih anenter through diagram C.2. However, for those verties relevant to �0 ! 4� whih arepresent in the simplest hidden{gauge model, the di�erenes from the orrespondingverties in the Lagrangian of Ref. [10℄ lie not in their strutures but only in their overallstrengths. Making appropriate hanges to oeÆients, the present alulation of thedeay amplitudes agrees with that of Ref. [10℄. For the deay mode �0 ! 2�+2��,expliit expressions for the amplitude were also given by Bramon et al. [9℄. A arefulomparison of these two referenes indiates a disrepany in the momentum strutureof the graph C.2b ontribution. Although the present alulation supports the versionof Eidelman et al., numerially one �nds that the error in Ref. [9℄ has only a smalle�et in pratie. Certainly, it is not suÆient to invalidate the numerial resultsquoted by Bramon et al..Having alulated the amplitudes, a �ve{dimensional integral over phase spaemust be performed to obtain the orresponding partial widths. The integrals areexpressed in terms of the Mandelstam-like variables of Kumar [156℄ and evaluatednumerially using the NAG routine D01FDF, whih maps the region of integrationonto the n-dimensional sphere and uses the method of Sag and Szekeres [81℄ to performthe integration. The auray of the integration routine an be estimated by varyingthe two parameters whih speify the mapping onto the n-sphere. In all ases it is13This proedure results in a 2� deay width of 143:4 MeV, a fration narrower than theobserved 151:1 MeV. C.6. Deay Amplitude



Appendix C. �! 4� in E�etive Lagrangians 203found that 50,000 integration points are suÆient to give the integrals to within onepart in a thousand.The results obtained with simplest hidden{gauge model are shown in the �rst lineof Table C.1, labelled HG. They are around an order of magnitude smaller than anyof the results of the other reent alulations [9, 10℄ of the deays.Model �0 ! 2�+2�� �0 ! 2�0�+��HG 0:89 0:44HGNA 0:89 0:24HGCS 0:59 0:37MMYM 0:68 0:37MYM+1 0:63 0:34MYM+2 1:03 0:39Table C.1: Deay widths for �0 ! 4� using various hiral e�etive Lagrangians. Thewidths are quoted in keV with the spei� models being de�ned in the text.It was stated in Appendix C.5 that when Bramon et al. alulated the �0 !2�+2�� width using the same hidden{gauge model as above they arrived at 7:5� 0:8keV, in sharp ontrast with the result given in Table C.1. The ruial di�erenebetween the alulations lies in the strength of the diret �4� oupling. Bramon et al.assumed that the expression for this vertex is idential to that in a massive Yang-Millsmodel, being generated by the following term in the Lagrangian:�ig f 2�2 h��(U y��U + U��U y)i = g  1� 13f 2� �2 + � � �! ��:� � ���: (C.17)In fat, the appropriate term in the hidden{gauge model should be written, in theunitary gauge, as�2iaegf 2�h��(uy��u+ u��uy)i = a2 eg  1� 112f 2� �2 + � � �! ��:� � ���; (C.18)where u is the square root of U . Although these terms both yield the same ���oupling, the �4� terms di�er by a fator of four. Hene one annot take the latteroupling to be the same as in a massive Yang-Mills model. Reduing the ontributionC.6. Deay Amplitude



Appendix C. �! 4� in E�etive Lagrangians 204of diagram C.2a by a fator of four has a large e�et on the total amplitude, explainingthe di�erene between the present result and that of Ref. [9℄.In order to examine the relative importane of the anomalous and non-anomalousproesses in the amplitude, the partial widths an be evaluated with only the non-anomalous ontributions. Doing so leads to the result for �0 ! 2�0�+�� whih islabelled HGNA in Table C.1. It an be ompared with a value of 0:24 keV whihis obtained for the partial width of this deay mode if one integrates over just theanomalous part of the amplitude. The two types of ontribution are therefore ofsimilar importane with the interferene between them being small and destrutive inharater. It is also of interest to look at the e�et of omitting the symmetry{breaking4� interation of Eq. C.15 (but retaining the physial pion mass in the propagatoret.). The results in this ase, labelled HGCS, indiate that this interation doesindeed provide a signi�ant ontribution.As a simple estimate of ontributions beyond tree level, one an allow for the�nite width of the � meson in its propagator (as in Ref. [10℄). The method is a ratherrude probe of the possible size of suh e�ets, being sensitive to the representationhosen for the model. For instane, whilst the amplitudes alulated for any proessshould be the same using either the minimal hidden{gauge Lagrangian or its CCWZequivalent, the two representations may attribute di�erent weights to the ontributionsinvolving an intermediate � meson. Notwithstanding this dislaimer, it is neverthelesssomewhat reassuring to note that the modi�ation to the � propagator produes onlya modest shift in the results.For the above alulations to be seen as reliable, an important point to hek isthat the results are fairly robust under hanges to the model parameters. Instead ofthe hoies in Eq. C.16, one might reasonably deide to take a = 2:108 and eg = 5:74 soas to simultaneously reprodue the empirial � meson mass and width14. With theseparameters the partial widths remain lose to those in Table C.1, being 0:93 keV for14The observed width implies that g��� = 6:05.
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Appendix C. �! 4� in E�etive Lagrangians 205the 2�+2�� mode and 0:42 keV for the 2�0�+�� mode.Consider now the deay amplitude in the massive Yang-Mills type of theory, be-ginning with the simplest Lagrangian of that formalism (see Appendix C.3). As isillustrated by �� sattering, in this approah hiral symmetry may require strong an-ellations among the various ontributions to an amplitude. In deriving the amplitudesthe Lagrangian is �rst rewritten in terms of the �elds de�ned by the minimal diag-onalization proedure. The additional three{ and four{point interations whih arethereby generated produe ontributions to the �! 4� amplitudes whih are di�erentin struture from any of the expressions quoted in Refs. [9, 10℄. Graphs C.2f and C.2g,featuring intermediate a1 states, also make ontributions of a form not onsidered inthe earlier referenes. Note, however, that powerful heks an be made by repeatingthe present alulations in the equivalent CCWZ representation of the model, as willbe disussed shortly.The parameters of the minimal Yang-Mills model are set analogously to those inthe simplest hidden{gauge model: that is, they are hosen to satisfy the KSRF relation(Z2 = 12) and to reprodue the empirial � meson mass (implying that g = 5:89). Asdesribed in Appendix C.3, there is a diagonalization{indued ��� interation in theminimal Yang-Mills model whih redues the �meson width to 107:6 MeV. Perseveringwith the model despite this drawbak, then the resulting partial widths for �0 ! 4�are as shown in Table C.1, labelled MMYM. They are similar in magnitude to thoseof the hidden{gauge model. As already emphasized, the alulations of Refs. [9, 10℄used Yang-Mills models that do not respet hiral symmetry. Without the ensuinganellations, they lead to partial widths that are too large by an order of magnitude.Just as with the hidden{gauge model disussed earlier, the partial widths obtainedwith the minimal massive Yang-Mills Lagrangian are found to depend only mildly onthe value taken for the gauge oupling. The non-anomalous and anomalous parts ofthe deay amplitude to 2�0�+�� are again of almost equal importane15 and interfere15Taking just the non-anomalous part gives a partial width of 0:18 keV whereas the anoma-lous piee alone gives 0:21 keV. C.6. Deay Amplitude



Appendix C. �! 4� in E�etive Lagrangians 206destrutively, albeit to a very small extent.The simple hidden{gauge and massive Yang-Mills models used above an be on-verted by a hange of variables into equivalent CCWZ Lagrangians [136, 138℄, whihshould yield the same preditions for any observable as the original representations.Repeating the �0 ! 4� alulations with these models in their CCWZ forms thereforeprovides a stringent and useful hek on the previous results. Furthermore, the CCWZformalism is a onvenient framework in whih to examine the sensitivity of these resultsto assumptions about the a1 meson. In ontrast to the massive Yang-Mills approah,the parameters desribing the a1 mass and ouplings may be hanged independently,without the need to introdue ompensating terms into the Lagrangian.The relevant non-anomalous interations in the CCWZ versions of the hidden{gauge and massive Yang-Mills models used above were given in Appendix C.4. Theanomalous setors an be similarly onverted into CCWZ form. Having done so, thesum of amplitudes for the anomalous diagrams (C.2h and C.2i) must remain unalteredby the hange of variables. For example, this is easily heked for the !�� vertex of thehidden{gauge Lagrangian whih yields !�� and !3� terms in the CCWZ language.The onversion of the anomalous setor is rather involved in the massive Yang-Millsase, however, and so for simpliity the anomalous piee of the deay amplitude is takendiretly from the original version of the minimal Yang-Mills model. Working with thesame parameter sets as above, the results presented earlier have been suessfullyveri�ed.Starting from the CCWZ Lagrangians whih are the equivalents of the modelsused above, it is then straightforward to investigate the e�ets of relaxing some ofthe assumptions imposed in those models. For instane, one ould onsider whetherthere might be any signi�ane in adjusting the masses of the ! and a1 mesons totheir empirial values [12℄, m! = 783 MeV and ma1 = 1230 MeV. Doing so, and usingthe ouplings of the minimal massive Yang-Mills model (Eq. C.13), gives the results
C.6. Deay Amplitude



Appendix C. �! 4� in E�etive Lagrangians 207labelled as MYM+1 in Table C.1. This Lagrangian orresponds to a massive Yang-Mills Lagrangian with non-minimal terms, suh as those suggested in Refs. [137, 145,146℄. The results are quite similar to those labelled MYM. This is in stark ontrastto the e�et of setting these meson masses to their empirial values in the massiveYang-Mills representation of the Lagrangian. In that ase the partial widths would be12:1 keV and 3:18 keV for the 2�+2�� and 2�0�+�� �nal states respetively. Theseare muh larger than any of the widths alulated with Lagrangians that respet hiralsymmetry and provide a lear demonstration of the need to work onsistently whenusing the massive Yang-Mills formalism.The parameter hoie of simplest massive Yang-Mills Lagrangian su�ers from thefat that it gives too small a width for � ! 2�. It is a simple matter to hange theCCWZ oeÆients to remove this de�ieny. One method is equivalent to adding thenon-minimal term of Eq. C.8 to the massive Yang-Mills Lagrangian [137, 145℄. In orderto anel the diagonalization{indued O(p3) ��� oupling in the original framework,one takes � = 1. Inlusion of this term gives the CCWZ oeÆients listed in Eq. C.14.Using those ouplings and the empirial meson masses produes the results for �! 4�whih are labelled as MYM+2 in Table C.1. The partial widths are a little larger thanthose from other Lagrangians onsidered, but are of the same order of magnitude.In the hidden{gauge and Yang-Mills Lagrangians desribed above the 3� ouplingis equal to the O(p) ��� one beause of the assumed universal oupling of the �. Usingthe CCWZ equivalents of these models, this assumption an be tested by varying the3� oupling strength, g2. The results are not fortunate. In all ases, shifts of �30% inthe oupling only alter the deay rate for �0 ! 2�0�+�� by about �1%. Sine suhshifts an easily be aommodated through moderate hanges in the other parameters,a measurement of this deay annot therefore be used as an experimental probe of the3� vertex.Sine the partial widths in all of the hirally symmetri ases have been found tobe small, it is interesting to onsider whether small symmetry{breaking ontributions
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Appendix C. �! 4� in E�etive Lagrangians 208to the � meson mass ould prove to be signi�ant. If isospin symmetry is assumed tohold then there are two suitable symmetry{breaking terms in the CCWZ Lagrangian,�hV�V �(U + U y)i; �14�hV��V ��(U + U y)i: (C.19)The seond term, involving the �eld strength, alters the � mass beause one wouldneed to resale the �eld to reover the anonial normalization of the kineti term.Allowing suh terms to ontribute up to 10 MeV of the empirial mass, one �nds thatthe � term hanges the partial widths by just �1% whereas the � term an have e�etsat the � 10% level.The results of this appendix have shown that the partial widths for �0 ! 4� aresensitive to the hoie of Lagrangian, reeiving signi�ant ontributions from anoma-lous proesses and symmetry{breaking interations. However, for all of the hirallysymmetri models onsidered, the widths are of the order of 1 keV, orresponding toross setions of the order of 5 pb. Although the proesses may be hard to observe infuture experiments, they should not be beyond the reah of DA�NE, whih is designedto have a luminosity of 5� 108 b�1s�1 [153℄.
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