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Motivation
• Numerical weather prediction (NWP) (e.g. UK Met Office 300m model) is heading towards the 

“neighbourhood” scale O(0.1-1 km)
- Similar building geometry statistics
- Accurate vertically resolved prediction of microscale processes at the neighbourhood scale? 

• Buildings affect pollution dispersion and play a large role in determining concentration near the surface
- Important since it is where we live
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• Introduce a novel model for 1D velocity and pollution concentration profiles in the urban surface 
layer (profiles represent the horizontal average of the neighbourhood)

• Test model using three different turbulence parametrisations against a high-resolution model of 
the 3D flow and dispersion (“truth data”)

Outline
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Urban Surface Layer Model (USLM)

Double averaged momentum equation -> Velocity Double averaged scalar equation -> Scalar concentration
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Turbulence Closure- three parametrisations of 𝒍𝒎, 𝒍𝒄
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Turbulence Closure- three parametrisations of 𝒍𝒎, 𝒍𝒄
USLM

Inertial sublayer: 𝑙𝑚 = 𝜅 𝑧 − 𝑑 and 
𝑆𝑐= 0.85. 

Roughness 
sublayer:

𝑙𝑚 and 𝑆𝑐 blend between canopy below and inertial sublayer 
above. Based on Harman and Finnigan, 2008 (2).

Within canopy: 1)    constant+HF08:
𝑙𝑚 = constant -> velocity has an exponential solution.
𝑆𝑐 = 0.5.
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Turbulence Closure- three parametrisations of 𝒍𝒎, 𝒍𝒄

2) Log-law:
𝑙𝑚 = 𝜅 𝑧 + 𝑧0 -> velocity has a log-law solution when height distributed drag is neglected.
𝑆𝑐= 0.5 in and 𝑆𝑐= 0.85 above.
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Turbulence Closure- three parametrisations of 𝒍𝒎, 𝒍𝒄

2) Log-law:
𝑙𝑚 = 𝜅 𝑧 + 𝑧0 -> velocity has a log-law solution when height distributed drag is neglected.
𝑆𝑐= 0.5 in and 𝑆𝑐= 0.85 above.

USLM

3) Derived from LES (“truth data”):
𝑙𝑚 and 𝑆𝑐 are derived from a high-resolution 3D dataset.
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above. Based on Harman and Finnigan, 2008 (2).
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Large Eddy Simulation (LES) – “truth data”

Q

Constant scalar emission 
over entire surface

Periodic boundary 
conditions

Constant scalar sink (=Q) at 
domain top

• High resolution simulation of the 3D flow and dispersion in a staggered array of cubes (λp=0.25)
• 00 flow and neutral atmospheric stability

LES data courtesy of Dr Negin Nazarian
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Velocity: model vs “truth”
Momentum flux = 𝑙𝑚
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Scalar Concentration: model vs “truth”
Scalar flux =

𝑙𝑚
2

𝑆𝑐

𝑑𝑈

𝑑𝑧

𝑑𝐶

𝑑𝑧



Neighbourhood-scale Urban Dispersion Modelling Using a Canopy Approach
L Blunn | O Coceal | R Plant | J Barlow | H Lean | S Bohnenstengel | N Nazarian

14

Conclusions
• Demonstrated that accurate prediction of velocity and (for the first time) scalar concentration can 

be made in the urban surface layer using a canopy approach
• -> promising for real geometries

• Improved velocity prediction with mixing length given by derived from LES compared to using a 
log-law (used in most NWP) and const+HF08 (constant 𝑙𝑚 used in current multi-layer canopy 
models) 

• Only mixing lengths derived from LES accurately predict scalar concentration

• Schmidt number varies significantly in the canopy and is crucial for accurate scalar prediction

• Future work: use LES of more building geometries to inform development of a new 𝑙𝑚, 𝑆𝑐
parametrisation.
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Thank You
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