Stochastic parameterization: Uncertainties from Convection

Bob Plant

Department of Meteorology, University of Reading

ECMWF Workshop

Representing model uncertainty and error in numerical weather and climate prediction models

22nd June 2011

Typical convective parameterization

Traditional framework

The Arakawa and Schubert (1974) picture

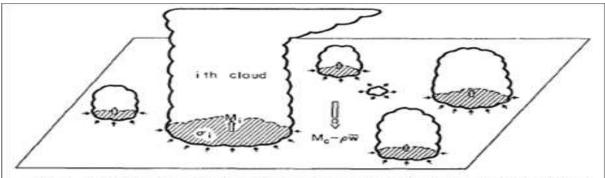


Fig. 1. A unit horizontal area at some level between cloud base and the highest cloud top. The taller clouds are shown penetrating this level and entraining environmental air. A cloud which has lost buoyancy is shown detraining cloud air into the

- Convection characterised by ensemble of non-interacting convective plumes within some area of tolerably uniform forcing
- Individual plume equations formulated in terms of mass flux, $M_i = \rho \sigma_i w_i$

Traditional framework

- An equilibrium picture: stabilization from the ensemble of plumes balances destabilization from large-scale forcing
- If plume equations are linear in mass flux then can sum over plumes and approximate ensemble with a representative "bulk" plume
- Microphysics is supposed to be crude by construction
 - and even cruder under a bulk approximation

Uncertainties from convection

- 1. structural: using the wrong equations
- 2. parameter: entrainment rate is the source of largest uncertainty in multi-parameter experiments like climateprediction.net
 - an entrainment rate is itself a parmeterization of cloud-environment interactions within the convective paremeterization and has major structurally uncertainties
- 3. an inherently uncertain process: a given "large-scale" state is consitent with many sub-grid states

The physics of fluctuations

Utterly trivial example

- Practical approach: seems desirable to introduce noise to improve spread-error realationship
- But the introduction of a stochastic component to our model equations cannot be agnostic about the physics of the fluctuations
- For example,

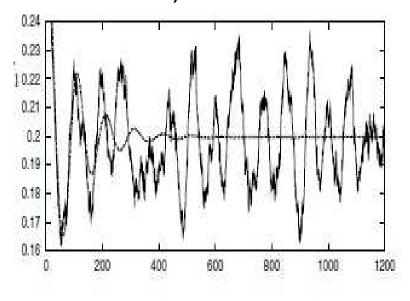
$$\frac{\partial \theta}{\partial t} + \underline{u} \cdot \underline{\nabla} \theta = P_{\theta}(X, \alpha) + \varepsilon$$

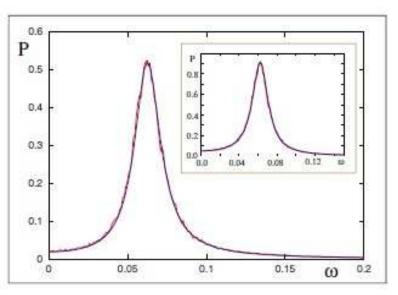
 P_{θ} is determinstic parameterization; α are parameters; X is the resolved-scale state; ϵ is noise

Change of variables

• Consider a change of variables to $\chi = e^{\theta}$

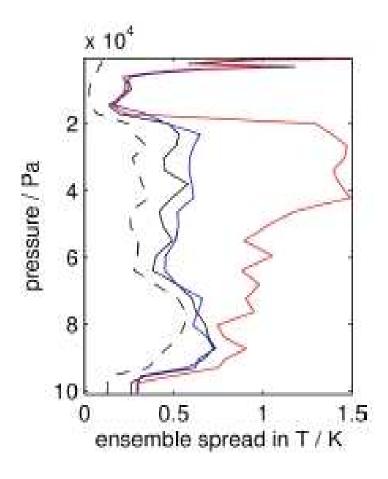
$$\frac{\partial \theta}{\partial t} + \underline{u} \cdot \underline{\nabla} \theta = P_{\theta}(\theta, \alpha) + \varepsilon$$


$$\frac{\partial \chi}{\partial t} + \underline{u} \cdot \underline{\nabla} \chi = P_{\chi}(\chi, \alpha) + \varepsilon \chi$$


- Additive noise becomes multiplicative noise
- These names are meaningless in themselves:
 - have to ask additive or multiplicative in what?
 - and with what physical justification?

Example I: amplified stochastic cycles

Predator-prey system with ~ 1000 individuals (McKane and Newman 2005)



- Accounting for discrete constituents leads to sustained oscillations with amplified internal variability
- Dramatic qualitative difference in response to internal and environmental/parameter noise

Example II: SCM mult. noise

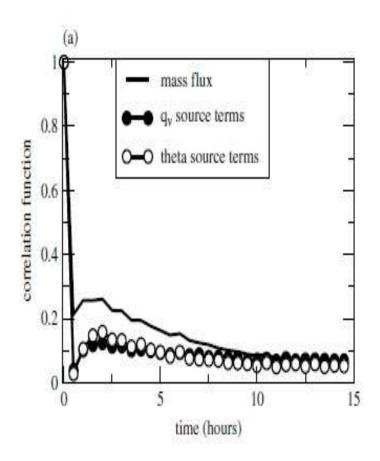
- Apply mult. noise to parameterized $\partial_t T$ and $\partial_t q$
- SCM experiment of a TOGA-COARE case
- Dotted IC uncertainty; black MN; blue MN decorrelate each scheme; red MN decorrelate T and q perturbations
- Spread larger than with quenched random noise
- $C_p \Delta T = L \Delta q$ in phase changes matters

How far have we come in considering the physics of convective fluctuations?

An earlier workshop

- ECMWF Workshop on Representation of Sub-grid Processes using Stochastic—Dynamic Models, 6-8 June 2005
- Working Group 1 Report: Issues in Convection

it is clear that a stochastic convection scheme is desirable


Issues to be addressed...

Physical and numerical noise

Artificial noise

- Stiller (2009) N48L38MetUM
- Convection schemes
 often shown artificial
 on-off behaviour
 even if subject to time-invariant
 forcing
- May need to remove artificial noise in order to see a physical source of fluctuations?

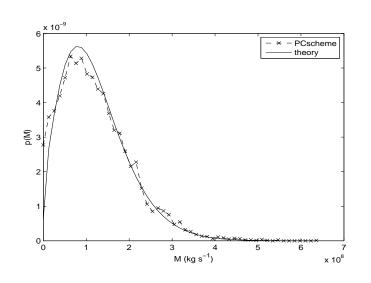
Scale-dependence of parameterization

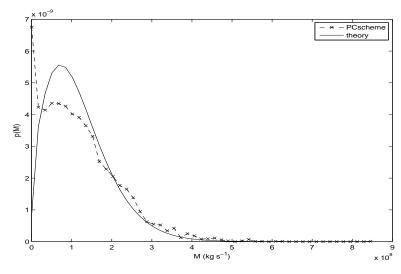
Finite cloud number

- Convective instability is released in discrete events
- The number of clouds in a GCM grid-box is not large enough to produce a steady response to a steady forcing
- In equilibrium, for non-interacting clouds:
 - pdf of mass flux of a single cloud is exponential
 - number of clouds in finite-size region is given by Poisson distribution
 Craig and Cohen 2006
- Agrees well with CRM data

Plant and Craig parameterization

Mass-flux formalism...


- 1. average in the horizontal to determine the large-scale state
- 2. evaluate properties of equilibrium statistics: $\langle M \rangle$ and $\langle m \rangle$
- 3. draw randomly from the equilibrium pdf to get number and properties of cumulus elements in the grid box
- 4. compute convective tendencies from this set of cumulus elements



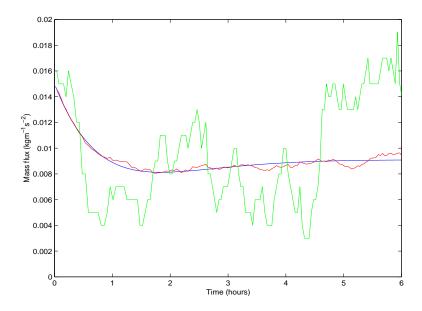
Grid scale \neq large-scale state

- Idealized RCE on 3D domain with parameterized convection, $\Delta x = 32 \text{km}$
- $\,$ Reproduce theoretical pdf of mass flux by averaging input over $\sim (160) \rm km^2$ for $\sim 1 \rm hr$
- But not if using grid-scale input

Prognostic closures

Prognostic closure

Based on convective-energy-cycle equations


$$\frac{dA_i}{dt} = F_i - \gamma_{ij}M_j \quad ; \quad \frac{dK_i}{dt} = A_iM_i - \frac{K_i}{\tau_i} \quad ; K_i = \alpha_iM_i^2$$

- Recent revival of interest (Davies et al 2008, Wagner and Graf 2010, Yano and Plant 2011)
- Can construct stochastic form of these closures for a finite-size region using cellular automata with simple birth-death processes
- Point is that CA rules are strongly constrained by demanding that the ode's are recovered in the limit of infinite system size

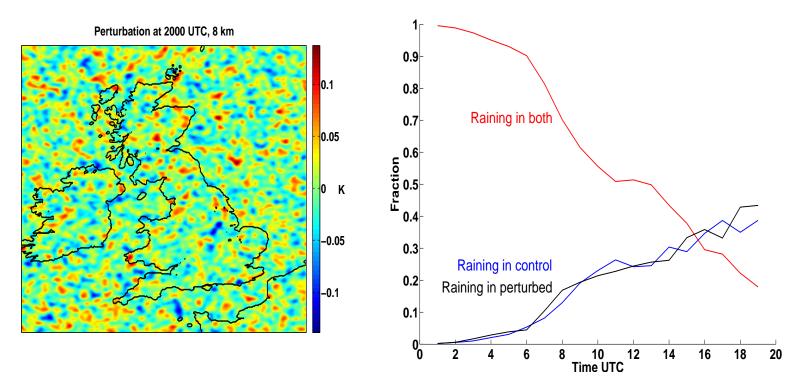
Numerical example

Timeseries of M for Pan & Randall system, constant forcing with $\langle N \rangle = 10$ at equilibrium

Blue: solution of the Pan/Randall ODEs

Green: a single realization of the stochastic CA

Red: ensemble mean of 100 realizations



Effects of sub-grid variability on initiation

Initiation

 Various demonstrations that boundary layer fluctuations can easily shift the locations of precipitating cells e.g.
 Leoncini et al (2010)

Source of ensemble spread for convective-scale NWP

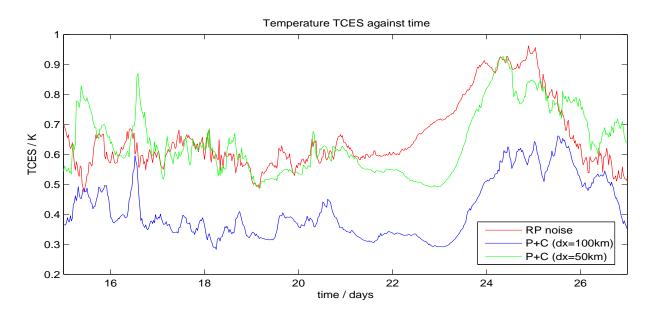
Accounting for fluctuations

- Bright and Mullen (2002) tried stochastic triggering function in Kain-Fritsch
- Recent attempts to try a closure of the form
 exp(-CIN/TKE) emphasize role of boundary layer
 fluctuations, but not done stochastically (e.g. Hohenegger
 2011)
- What is the correct coupling to the boundary-layer scheme?
- How does a closure based on boundary layer fluctuations behave in an equilbrium situation?

Propagation

Propagation

- We have difficulties with propagation and organization of convection, possibly because of lack of communication between cells
- Cellular-automata based approaches may be able to improve on this Bengtsson-Sedlar talk later...
- Grandpeix and Lafore (2010) propose simple coldpool propagation model but only applied in 1D
- Not necessarily stochastic!

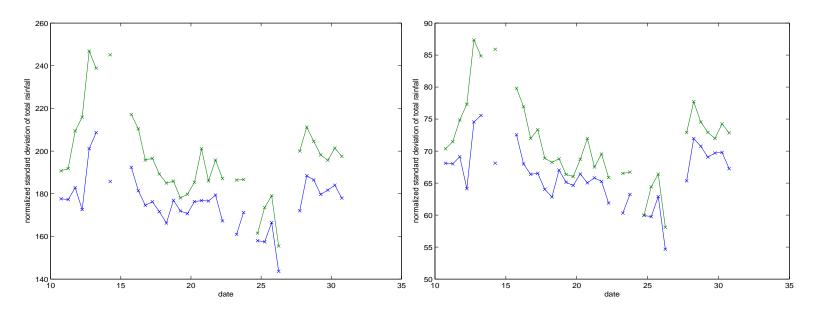


Summary

- Many uncertainties (structural, parameter, intrinsic) associated with convection
- Discrete nature of cumulus clouds seems to demand a stochastic approach
- Fluctuations increase as Δx reduces, and must depend on Δx and intensity
- We know how to account for this in equilibrium
 - \bullet But note that number fluctuations of $=2/\sqrt{N}$ implies a spectral not bulk formulation
- We could do this out-of-equilibrium
- Far from equilbrium situations need careful coupling of convective and boundary-layer schemes

Sampling uncertainty

 Spread in column-average T from Plant-Craig scheme as function of grid-box size



Similar to mult. noise or random parameters for $\Delta x = 50 \text{km}$

MOGREPS trial

• Running at $\Delta x = 24$ km in MOGREPS ensemble

Std. dev. in rainfall averaged over $(48 \mathrm{km})^2$ (left) and $(120 \mathrm{km})^2$ (right)

