3D experiments with a stochastic convective parameterisation scheme

R. J. Keane and R. S. Plant

Outline

- Introduction to the Plant-Craig stochastic convection parameterisation scheme.
- Experiments in an idealised UM setup.
- A simple ensemble case study.

Plant-Craig scheme: methodology

- Obtain the large-scale state by averaging resolved flow variables over both space and time.
- Obtain $\langle M \rangle$ from CAPE closure and define the equilibrium distribution of m (Cohen-Craig theory).
- Draw randomly from this distribution to obtain cumulus properties in each grid box.
- Compute tendencies of grid-scale variables from the cumulus properties.

PC scheme: probability distribution

Assuming a statistical equilibrium leads to an exponential distribution of mass fluxes per cloud:

$$p(m)dm = \frac{1}{\langle m \rangle} \exp\left(\frac{-m}{\langle m \rangle}\right) dm.$$

So if $m \sim r^2$ then the probability of initiating a plume of radius r in a timestep dt is

$$\frac{\langle M \rangle 2r}{\langle m \rangle \langle r^2 \rangle} \exp\left(\frac{-r^2}{\langle r^2 \rangle}\right) \mathrm{d}r \frac{\mathrm{d}t}{T}$$

PDF of total mass flux

The University of Reading

ESEARCH COUNCIL

Assuming that clouds are non-interacting, this can be combined with a Poisson distribution for cloud number,

$$p(N) = \frac{\langle N \rangle^N \mathrm{e}^{-\langle N \rangle}}{N!},$$

leading to the following distribution for total mass flux:

$$p(M) = \left(\frac{\langle N \rangle}{\langle m \rangle}\right)^{1/2} e^{-(\langle N \rangle + M/\langle m \rangle)} M^{-1/2} I_1 \left(2\sqrt{\frac{\langle N \rangle}{\langle m \rangle}} M\right)$$

3D experiments with a stochastic convective parameterisation scheme – p.5/17

PDFs of mass flux in an SCM

Plant & Craig, JAS, 2008

3D Idealised UM setup

- Radiation is represented by a uniform cooling.
- Convection, large scale precipitation and the boundary layer are parameterised.
- The domain is square, with bicyclic boundary conditions.
- The surface is flat and entirely ocean, with a constant surface temperature imposed.
- Horizontal diffusion, vertical diffusion of θ and targeted diffusion of moisture are applied.

Energy and moisture balance

Held et. al., JAS, 2007.

PDFs of mass fluxes

PDF of number of clouds

This seems to follow $p(N) = \exp(-N/\langle N \rangle)/\langle N \rangle$

onvective parameterisation scheme – p.10/17

Organisation in rainfall pattern?

AIUHAL ENVIRONMENT RESEARCH COUNCIL

3D experiments with a stochastic convective parameterisation scheme - p.11/17

Organisation in rainfall pattern? GR

Animation

3D experiments with a stochastic convective parameterisation scheme - p.12/17

Case study: CSIP IOP18

- Starts at 25th August 2005, 07:00.
- 12 km grid with 146×182 grid points.
- Diffusion as in idealised experiments.

Ensemble of 6 runs using PC scheme

3D experiments with a stochastic convective parameterisation scheme – p.14/17

•

RENVIRONMENT RESEARCH COUNCIL

NATURAL

RMS deviation from ensemble mean

 The RMS deviation of total rain is accounted for mostly by the convective rain, even though the mean value of total rainfall is accounted for mostly by the large-scale rain.

ENVIRONMENT RESEARCH COUNCIL

3D experiments with a stochastic convective parameterisation scheme - p.15/17

Comparison with Gregory-Rowntree

- The PC scheme produces 19% of its rain as convective rain, whereas the figure for the GR scheme is 67%.
- The difference in rainfall reduces as the models 'spin up'.
- The difference between the PC ensemble runs is smaller than the difference between the two schemes.

Conclusions

- The scheme yields the correct distribution of individual cloud mass flux.
- The distribution of total mass flux is not as according to non-interacting theory, suggesting that there is some organisation of cloud structure in the scheme; however, this is less the case than in the GR scheme.
- The scheme yields considerable convective variability in the simple ensemble case study. This seems to be due to variation in the locations of storms, rather than variation in their intensities.
- The scheme produces less convective rain than the GR scheme, although the convective rainfall behaviour is sensible.

