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Model filter
A numerical model of the atmosphere is based on a filter
separating the flow into resolved and unresolved parts

The purpose of parameterization is to feedback effects of
the unresolved processes on the resolved state

In general:

the feedback will depend on the nature of the filter

the feedback will not be a known deterministic
function of the resolved state

An ensemble-mean filter is deterministic

A space/time filter might be approximated by sampling
from possible physical realizations of the feedback from
some conditional pdf
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Ensemble mean parameterization
Example case of scattered showers over UK

Radar image 1.5km parameterized 1.5km explicit
(example from Adrian Lock)
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The grey zone
For phenomenon of scale l and for ∆ a filter lengthscale...

if l ≫ ∆ the phenomenon is well resolved

if l ≪ ∆ the phenomenon is fully parameterized

if l ∼ ∆ then the representation of the phenomenon is
sensitive to details of the filter

A spatially-averaged field on the scale ∆ may look
turbulent but an ensemble-averaged field on that scale
looks smooth

What do we want our high-resolution models to produce?

a more detailed picture of the ensemble-mean flow?

a particular, possible realization of the actual flow?
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Stochastic effects, reducing∆

GCMs have difficulties with organized convective
structures where relevant interactions span a range of
scales straddling ∆

talks by Khouider and Shutts

For smaller ∆ ∼ cloud spacing, then even scattered
convection becomes stochastic because few clouds ⇒
poor sampling of the full pdf of possibilities
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Range of convective states
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(Plant and Craig, 2008)
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Convection-permitting models
If ∆ ∼ convective storm size, normal practice is to switch
off deep convection parameterization

Dynamical treatment of cloud assumed better than
parameterized treatment

Dynamics will be sensitive to details of filter, inc. grid
length, numerics

Weak showers case Deep convection case
(Hanley et al 2015)
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Stochastic effects, reducing∆

Uncertainties remain in the representation of deep convection
that may be usefully addressed with stochastic approaches

Shallow convection may be in a regime where ∆ ∼ cloud
separation

talk by Seifert

Initiation of dynamically-simulated deep convective clouds
will depend on the state of the turbulent boundary layer
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Turbulence parameterization
Our turbulence parameterization is formulated as an
ensemble average

Spatial-mean boundary-layer tendencies will vary
randomly about that unless eddy size 6≪ ∆
Largest, most vigorous eddies are responsible for initiating
convective clouds and have size ∼ h ∼ cloud size ∼ ∆
⇒ at just those ∆ where we might switch convection
parameterization off, the boundary layer turbulence enters
a grey zone where large eddies are poorly sampled by
spatial averaging

We need to contemplate a stochastic representation of
the boundary layer
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Gaussian bumps
Superposition of 2D
Gaussian kernels applied
to random number for
each grid location,
σx ∼ 10 km

Applied to potential
temperature at a level
within the boundary layer

Every 30 min

Small fluctuations ∼ 0.1K

Cautious approach used in
predictability studies

Perturbation at 2000 UTC, 8 km
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(e.g. Leoncini et al 2010, 2013)
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Impact of Gaussian bumps
Number of ensemble members that are raining:

Small perturbations can easily shift the locations of
precipitating cells in some cases

(Flack et al 2017)
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Displacement of Convection
Fraction of points that are raining in both of a pair of simulations

Equilibrium convection Non-equilibrium
Equilibrium case saturates at 20% after ∼ 20 h, compared to
10% for completely random scatter through model domain
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Implications I

Testing changes to effects of other model settings needs to be
done in an ensemble context.

CDNC×2 CDNC×4

More rain 12 6
Less rain 24 30

Example of 6-member case study with enhanced cloud-doplet
number concentration
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Implications II
Need to evaluate simulations against observations with more
suitable metrics than point-to-point comparisons

e.g., spatial neighbourhood approaches that ask how much we
have to coarse-grain the precipitation data to get agreement
between two fields

(Dey et al 2016)
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Summary of Gaussian bumps

Application can be anywhere in boundary layer

Time/space correlations of modest effects only

Amplitude of buoyancy perturbations applied is most
important sensitivity

Perturbations produce earlier initiation (may be a major
motivation for their introduction)

Dynamics of convective cells largely unchanged: may be
displaced and could increase number
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BL scaling

The turbulent boundary layer under deep convective storms is
itself primarily buoyancy driven and its variability can be well
described by scaling parameters:

Length scale h

Velocity scale w∗ =
(

ghH
ρcpθ0

)1/3

Timescale t∗ = h/w∗

Temperature scale θ∗ = H
ρcpw∗

for h the depth of the layer and H the surface heat flux
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Towards stochastic parameterization

Lock in current 1.5km MetUM operational model:

adds perturbations ∼ θ∗ with uniformly distributed
random numbers

Kober and Craig (2016) in 2.8km COSMO tests:

adds perturbations ∼
√

θ′2 and Gaussian bump style
random number structure
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Limited number of large eddies

Assume key source of variability is due to finite number of
large eddies n averaged over in a given area

The large eddies are independent and so Poisson

Heating from each event warms area of ∼ h2 by amount
∼ θ∗ in time t∗
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Very shortly to be tested in MetUM (Clark et al)
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Summary
Spatial averaging 6= ensemble averaging for l ∼ ∆
If spatial average wanted, an important source of
variability arises if the parameterized phenomenon
includes important dynamical modes not much below the
filter scale

This occurs in convective parameterization context (“not
enough clouds in the grid box”)

It also occurs in convection-permitting models in respect
of the parameterized BL turbulence

Simple stochastic noise can systematically affect initiation
of deep convective clouds in such models

Schemes now being explored that can account for
turbulent variability and filter size ∆ in a natural way
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Extras: if time and interest
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Upscaling of perturbations
One-off stochastic boundary-layer perturbation after 15 h,
produces 500hPa geopential simulations synoptic scale
in 2.8 km large-domain COSMO simulation (right).

Stochastic convection scheme in 28 km model is effective
in capturing this upscale growth (centre, Plant-Craig).

Deterministic scheme has very weak response (right,
Tiedtke) as intended for an ensemble-mean
parameterization method
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Convective regime frequencies

Timescale, τc = CAPE/(dCAPE/dt due to convection)

Germany UK
(Zimmer et al 2011; Flack et al 2016)
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