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Model filter L

@ A numerical model of the atmosphere is based on a filter
separating the flow into resolved and unresolved parts

@ The purpose of parameterization is to feedback effects of
the unresolved processes on the resolved state
@ In general:
o the feedback will depend on the nature of the filter
a the feedback will not be a known deterministic
function of the resolved state
@ An ensemble-mean filter is deterministic

@ A space/time filter might be approximated by sampling
from possible physical realizations of the feedback from
some conditional pdf
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Ensemble mean parameterization'I

Example case of scattered showers over UK
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The grey zone L

e For phenomenon of scale | and for A a filter lengthscale...
a if | > A the phenomenon is well resolved
a if | < Athe phenomenon is fully parameterized

a if | ~ Athen the representation of the phenomenon is
sensitive to details of the filter

a A spatially-averaged field on the scale A may look
turbulent but an ensemble-averaged field on that scale
looks smooth

e What do we want our high-resolution models to produce?

a a more detailed picture of the ensemble-mean flow?
a a particular, possible realization of the actual flow?
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Stochastic effects, reducing\ L

@ GCMs have difficulties with organized convective
structures where relevant interactions span a range of
scales straddling A

o talks by Khouider and Shutts

e For smaller A ~ cloud spacing, then even scattered
convection becomes stochastic because few clouds =
poor sampling of the full pdf of possibilities
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Range of convective states L
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Distribution of mass fluxes
In equilibrium convection
over ocean.
over various areas.
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Convection-permitting models L

a If A ~ convective storm size, normal practice is to switch
off deep convection parameterization

@ Dynamical treatment of cloud assumed better than
parameterized treatment

@ Dynamics will be sensitive to details of filter, inc. grid
length, numerics

e ' —e— 1500m L70 - 3274 storms s —e— 1500m L70 - 1573 storms
| —=—500m L140 - 4052 storms —e— 500m L140 - 2094 storms
o— 200m L140 - 4661 storms o—200m L140 - 4359 storms |
—e— Mimrod - 3251 storms —e— Nimrad - 4756 storms
@ 1000/ : 2 1000,
= z
Z 100 Z 100
%2 5.6 10 178 31.6 %2 5.6 10 17.8 31.6
Storm effective diameter (km) Starm effective diameter (km)

(Hanley et al 2015)
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Stochastic effects, reducing\ L

Uncertainties remain in the representation of deep convection
that may be usefully addressed with stochastic approaches

e Shallow convection may be in a regime where A ~ cloud
separation

a talk by Seifert

e Initiation of dynamically-simulated deep convective clouds
will depend on the state of the turbulent boundary layer
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Turbulence parameterization L

@ Our turbulence parameterization is formulated as an
ensemble average

e Spatial-mean boundary-layer tendencies will vary
randomly about that unless eddy size & A

@ Largest, most vigorous eddies are responsible for initiating
convective clouds and have size ~ h ~ cloud size ~ A

e = at just those A where we might switch convection
parameterization off, the boundary layer turbulence enters
a grey zone where large eddies are poorly sampled by
spatial averaging

@ We need to contemplate a stochastic representation of
the boundary layer
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Gaussian bumps

Q

Superposition of 2D
Gaussian kernels applied
to random number for
each grid location,

Oy ~ 10 km

Applied to potential
temperature at a level
within the boundary layer

Every 30 min
Small fluctuations ~ 0.1K

Cautious approach used in
predictability studies

Perturhation at 2000 UTC, 8 km

(e.g. Leoncini et al 2010, 2013)
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Impact of Gaussian bumps L

Number of ensemble members that are raining:

Small perturbations can easily shift the locations of

Erecipitating cells in some cases
(Flack et al 2017)
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Displacement of Convection L

Fraction of points that are raining in both of a pair of simulations
(a) ()

Equilibrium convection  Non-equilibrium

Equilibrium case saturates at 20% after ~ 20 h, compared to
10% for completely random scatter through model domain

=
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Implications | L

Testing changes to effects of other model settings needs to be
done in an ensemble context.

CDNCx2 | CDNC x4
More rain | 12 6
Less rain | 24 30

Example of 6-member case study with enhanced cloud-doplet
number concentration

=
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Implications II L

Need to evaluate simulations against observations with more
suitable metrics than point-to-point comparisons
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e.g., spatial neighbourhood approaches that ask how much we
have to coarse-grain the precipitation data to get agreement
between two fields

=

(Dey et al 2016)
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Summary of Gaussian bumps L

@ Application can be anywhere in boundary layer
@ Time/space correlations of modest effects only

e Amplitude of buoyancy perturbations applied is most
Important sensitivity

@ Perturbations produce earlier initiation (may be a major
motivation for their introduction)

@ Dynamics of convective cells largely unchanged: may be
displaced and could increase number
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BL scaling

The turbulent boundary layer under deep convective storms is
itself primarily buoyancy driven and its variability can be well
described by scaling parameters:

Length scale h
1/3
_ __( ghH
Velocity scale Wi = (pcpeo)
Timescale te=h/w,
_ _H
Temperature scale 0, = BCoW,

for h the depth of the layer and H the surface heat flux

=
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Towards stochastic parameterizati-(!n

@ Lock in current 1.5km MetUM operational model:

o adds perturbations ~ 0, with uniformly distributed
random numbers

@ Kober and Craig (2016) in 2.8km COSMO tests:

e adds perturbations ~ V/ 62 and Gaussian bump style
random number structure
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Limited number of large eddies L

@ Assume key source of variability is due to finite number of
large eddies N averaged over in a given area

@ The large eddies are independent and so Poisson
e Heating from each event warms area of ~ h% by amount
~ 0, intime t,

90 _ AxAyAt
_ : =
ot ot h2t,

Very shortly to be tested in MetUM (Clark et al)
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Summary L

e Spatial averaging # ensemble averaging for | ~ A

e If spatial average wanted, an important source of
variability arises if the parameterized phenomenon
Includes important dynamical modes not much below the
filter scale

@ This occurs in convective parameterization context (“not
enough clouds in the grid box™)

@ It also occurs in convection-permitting models in respect
of the parameterized BL turbulence

@ Simple stochastic noise can systematically affect initiation
of deep convective clouds in such models

@ Schemes now being explored that can account for
turbulent variability and filter size A in a natural way
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Extras: If ttime and interest
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Upscaling of perturbations

@ One-off stochastic boundary-layer perturbation after 15h,
produces 500 hPa geopential simulations synoptic scale
in 2.8 km large-domain COSMO simulation (right).

= e 2 =

=

@ Stochastic convection scheme in 28 km model is effective
In capturing this upscale growth (centre, Plant-Craig).

@ Deterministic scheme has very weak response (right,
Tiedtke) as intended for an ensemble-mean

parameterization method

@ The University of Reading
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Convective regime freguencies L

Timescale, T = CAPE /(dCAPE /dt due to convection)
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