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Motivation

Implementation of a  Stochastic Convective Parameterisation
As described by Plant and Craig (2005), we are in the process of building a stochastic convection 
scheme based on the statistical theory described above. The scheme follows the mass flux 
formalism (based on Kain and Fritsch 1993 and Kain 2004), and has the following main ingredients:

• no trigger function – the presence/absence of convection in equilibrium is due to subgrid
variability, represented implicitly by the assumption of a random spatial distribution
• Cloud model – an ensemble of plumes with an exponential distribution of cloud base mass flux 
m; each plume acts as representative cloud of given m
• CAPE Closure - CAPE determined from mean sounding (space-time averaging over the scales 
defined in section 3 to remove convective variability); total mass flux scaled to remove CAPE 
over timescale proportional to forcing (see section 2)

The scheme has been implemented in the single column version of the Met Office Unified Model 
(SCM). The large averaging time interval used in the CAPE closure in the single column tests is to 
replace the spatial averaging that is not possible in this framework. The results shown here are 
based on:

• parameterizations for boundary layer transport, stratiform cloud 
• forced as in CRM experiment (fixed tropospheric cooling)
• 20 min timestep
• CAPE closure based on sounding averaged over 100 timesteps

A first impression of the behaviour of the parameterisation can be seen in the mass flux time series 
in the figure. If the column is set to represent a large horizontal area, the fluctuations about the mean 
value are small (Fig. 6a), while for a smaller area the amplitude increases as expected (Fig. 6b). It is 
instructive to contrast this behaviour with that of the original Kain-Fritsch scheme (Fig. 6c) where the 
mass flux tends to oscillate between a value above and a value below the mean, with occasional 
excursions to very large values or to zero. This “deterministic” scheme produces a large amount of 
random noise, but of the wrong distribution.

Grewe, ACP,  2004

Comparison of theory with a cloud-resolving model simulation (128x128km doubly periodic domain, 
dx=2km, 50 levels, fixed SST, uniform tropospheric cooling  of -2 K/day),  (a) histogram of log of mass 

flux of individual clouds with dashed line indicating a best fit to Eq. (1) ,and  (b) histogram of total mass 
flux in domain with solid line a best fit to Eq. (2), and dashed line the fit obtained with <m> taken from 

Panel (a) .

For convection in equilibrium with a given forcing, the mean mass flux should be well-defined. But at a 
particular time, this mean value would only be measured in an infinite domain. For a region of finite size, 
we ask what is the magnitude and distribution of the variability, and what scale must one average over 
to reduce it to a desired level?

Craig and Cohen (2005) describe a theory for convective statistics based on the Gibbs canonical ensemble. 
The key assumptions are:

1.  Large-scale constraints - mean mass flux within a region:

- mean mass flux per cloud:

2.  Scale separation - environment sufficiently uniform in time and space to average over a large number of 
clouds

3.  Weak interactions - clouds feel only mean effects of total cloud field (no organisation)
4.  Equal a priori probabilities - all locations and mass fluxes for a cloud are equally probable
A straight-forward calculation shows that the most probable distribution subject to these constraints has 

the frequency of clouds with a given mass flux following a Boltzman distribution:

(1)

Where <N> = <M>/<m> is the mean number of clouds per unit area. The total mass flux within a region is 
given by:

(2)

which has variance: (2a)

The variance is inversely proportional to the cloud number density, as expected for objects randomly 
distributed in space, but is a factor of two larger because of the variable (exponentially distributed) mass 
flux of the individual clouds. These distributions are well-reproduced in the CRM simulations, as shown 
by the figure (Cohen and Craig 2005a,b).
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A Theory for Convective Variability based on Statistical Mechanics

Possible Future Work that would benefit from collaboration in METSTROEM

• set up and integrate a simplified version of a stochastic convection scheme to test upscale effects

• diagnose information on cloud interactions from the simulations with a view to constructing an appropriate
model, this might be as simple as a virial expansion on our equation of state, but could take the form of a lattice 
model or something analogous to a collision kernel

• derive and test fluctuation-dissipation relations to probe timescales of evolution of the system (preliminary 
results are very promising)

• test the parameterisation in atmospheric models with variable resolutionAn Analogous Problem in Turbulence
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(a) (c)(b)

Time series of total convective mass flux for the stochastic parameterisation for a column of  (a) area (400 km)2, 
and  (b) area (64 km) 2, and (c) for the Kain-Fritsch scheme.

Possible Partners
This work would fit into a broad stochastic parameterisation consortium, or a more narrowly focused 
project based on application of ideas from statistical physics. The work contributes to an overall goal of 
parameterisations that can be applied consistently at any resolution, and thus are suitable for adaptive 
grid models.

Meteorology
• Stochastic parameterisation in weather forecasting and climate models.
• Practical use of adpative grid dynamical cores in models with full physics

Fluid Mechanics
• Other parameterisation problems with equilibrium constraints
• Turbulent backscatter

Mathematics
• Numerical methods for stochastic differential equations
• Asymptotic approximations to stochastic equations, central limit theorem
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Moist convective

adjustment

CAPE closure

Variability in atmospheric models often 
depends crucially on upscale energy 
transfer associated with small-scale 
processes such as cumulus convection. 
These processes are typically 
represented by highly nonlinear 
parameterisation schemes, which 
generate noise through interaction with 
model numerics. The figure at right shows 
how different tropical rainfall variability is 
in models with different 
parameterisations. It is clearly desirable 
to replace this uncontrolled noise with a 
physically based representation of the 
unresolved variability. Considerations of 
fluctuations based on equilibrium 
statistical mechanics can a provide a 
basis for a parameterisation that 
generates appropriate variability 
independent of model resolution.

Horinouchi et al. (2003)
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Wang and Peters (2005) suggest that dissipation 
elements (bounded by extrema, saddle points 
and zero gradient surfaces) in a scalar field 
advected by a turbulent flow can be modeled as 
being stochastically generated by eddy 
turnover. The requirements that the elements 
are space-filling and that the mean length scale 
for the elements is given by the scalar Taylor 
length are analogous to the two parameters 
governing the convective statistics described on 
this poster. The resulting prediction that the size 
distribution of the dissipation elements is 
exponential has been verified by direct 
numerical simulation, as shown in the figure  
(Wang and Peters 2005). 
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