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Or... a more flippant title...
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It may be hard to listen to music while stood next
to a pneumatic drill

Implementing stochastic parameterizations – p.2/27



And... the flippant answer...
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If this is happening, it may be tempting to turn up
the music but it would be better to switch off the

drill
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The model filter

Any numerical model of the atmosphere starts from a filter
separating the flow into resolved and unresolved parts

The purpose of a convection parameterization is to
feedback effects of the sub-filter convective processes
onto the filtered state

The feedback will depend on the nature of the filter (e.g.,
“scale-awareness”)
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Motivation for stochasticity
Ensemble-mean filter 6= space-time filter

An ensemble-mean filter

parameterization integrates over sub-filter states and
is deterministic

fields should be smooth at the filter scale

For a space-time filter

parameterization samples possible physical
realizations from sub-filter states and is likely
stochastic

fields may be highly variable at the filter scale

Practical benefits: e.g. improves skill of probabilistic
ensemble forecasting
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The noise we want

Approaches include:
SPPT (Buizza et al 1999) and iSPPT (Christensen et al 2017)

Random parameter selction (Bowler et al 2008)

Stochastic multi-cloud model: focuses on transitions between convective modes (Khouider

et al 2013)

Plant and Craig (2008): focuses on variations due to limited sampling of equilbrium deep

convection

Sakradzija et al (2016): an extension to shallow convection

Rochetin et al (2014) / Kober and Craig (2016) / Clark et al (2017): extensions to CBL

eddies for considerations of triggering

Dorrestijn et al (2013): statistical emulator for variability in LES of shallow convection

Shutts stochastic convective vorticity focuses on dynamical signatures of missing

organization
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The noise we want

Some of the following remarks apply to any of these
methods

Particular issues occur when the noise to be imposed is a
function of the filtered flow

i.e., when the stochasticity is does not just affect the
convection but is also determined by properties of the
convection
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The noise we don’t want
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Problems with CAPE-based clousre

A convection scheme can often trigger for one timestep,
(over)-stabilize the local column, and so then switch off

In an extreme case, the closure timescale may have little
direct impact on the time-mean mass flux

Rather it may be the triggering and intermittency (fraction
of timesteps when convection is diagnosed) that controls
this

See poster by Mike Whitall for the numerics of how this
happens in the UM
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The noise we don’t want

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50  100  150  200  250

Flu
x/m

ea
n f

lux

Timestep number

Kain−Fritsch
Equilibrium
response to a
constant forcing by
Kain-Fritsch scheme
over one day in a
SCM

Many deterministic
schemes produce
grid-scale, timestep-
level noise

Implementing stochastic parameterizations – p.11/27



Correlation between timesteps

Stiller (2009), global UM
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Issues

1. Even in the absence of anything stochastic, our models
have unwanted noise that may be upscaling to have
unwanted resolved-scale effects

2. The addition of some physically–motivated stochastic
effect may depend on the combination of noise sources

3. Unwanted noise may damage our ability to calculate
wanted noise

4. Wanted noise may damage our ability to calculate wanted
noise
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Consequences?

...variations in the perceived effectivenes of
different [stochastic] schemes... one should not
assume that small impact in one forecast system will
imply small impact in other forecast systems

(ECMWF Workshop on Model Uncertainty Proceedings, 2016,
p15)
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Implementing wanted noise

Direct implementations of stochastic effects on closures
may make less difference than expected, because of
numerical problems

To implement wanted noise, it should dominate over
unwanted noise

There are two approaches to this...

1. Turn up the volume of the wanted noise in the hope
that it drowns out the unwanted noise

2. Try to remove (reduce) the artificial, unwanted noise
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Averaging the input to the closure

For Plant-Craig, what ultimately worked was to realize that...

The output will be intentionally noisy on a limited spatial
scale

But the input should represent an averaged state

i.e., there may be local stochastic departures from
equilibrium, but an equilbrium closure should be applied
only at equilibrium scales

To exert control on the characteristics of a noisy output, one
should not be feeding in a noisy input
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Example: resolution-independence
Keane et al (2013): ie. aqua-planet 6 h rain-rate pdf is
resolution independent with consistent averaging strategy

pdf on native grid pdf on 160km grid

Also Keane and Plant (2012), Wang et al (2016)
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Illustrative runs

A 3 month SON run of global Unified Model at N216
(0.83◦×0.56◦) with GA7.0 settings

With standard UM convection scheme

With stochastic effects applied directly

With averaging of the input state supplied to the
convection scheme

With both the averaging and stochastic effects applied
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The averaging

The averaging is over the previous 2 hours (8∆t) and over
the nearest neighbours on the grid (3∆x)

There are debates in physics–dynamics coupling about
whether physics and dyamics should be evaluated on the
same grid

Lander and Hoskins (1997) “believable scales”

Recent discussions in Gross et al (2017)
arxiv:1605.06480v2
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The stochastic part

The stochasticity is a simplified form of Plant-Craig variability
inspired by Machulskaya et al (see poster)

Given the closure mass-flux 〈M〉 and the mean mass flux
flux of one cloud 〈m〉, partition it as the convolution of...

A Poisson-distributed number of elements N with
mean 〈N〉 = 〈M〉/〈m〉

An exponential distribution ∼ exp(−mi/〈m〉) for each
element

A lifetime of 45 min= 3∆t for each element

Actual M = ∑N
i=1 mi rescales 〈M〉
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Correlation between timesteps

Direct application of this
stochastic rescaling re-
duces the timestep-to-
timestep correlations be-
yond 3∆t
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Correlation between timesteps

Averaging the input
increases the
correlations

And now introducing the
stochastic rescaling
further increases the
correlations

i.e., change of sign of
stochastic impact
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Correlations on longer scales

For 3 hourly mean rain
rates, direct stochastic
application again
reduces correlation

Stochastic term again in-
creases correlation if in-
put has been averaged,
now partly offseting the
reduction due to averag-
ing
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Tropical rain rate distribution

Directly-applied
stochastic scaling
reduces extreme values
of the rain rate

If input to scheme is
averaged, extremes re-
duced, but now they
are increased by the
stochastic scaling
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Distributions on larger scales

The sense of these effects is retained after upscaling to
2.5◦ areas

For 3-hourly (or daily means) main effect obtained by
averaging, with some enhancement from stochastic
rescaling if applied alongside the averaging

Implementing stochastic parameterizations – p.25/27



Conclusions I

Convection parameterizations were originally designed to
give an ensemble-mean response

They naturally become stochastic if redesigned to give a
space-time filtered response

Many of our parameterizations exhibit unwanted,
unphysical grid-scale and timestep-level noise, probably
due to numerics issues in the physics–dynamics coupling

We do not have a clear sense of what that unwanted
noise may be doing
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Conclusions II

I have shown a cautionary example with a simple strategy
providing the convection parameterization input on a scale
3∆x,9∆t

The averaging alone has comparable effects to a
stochastic rescaling of the parameterization due to
limited sub-sampling at N216

Effects of stochasticity on simple rain rate statistics
change sign depending on whether noise is retained
or reduced in the parameterization input

Do explore stochastic methhods but do ensure that the
method as implemented matches the method as designed
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