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Advection schemes with time step restrictions are widely
used in weather and climate models. This can lead to insta-
bility in the presence of high flow speeds (relative to mesh
spacing) such as occurs in convective updrafts, regions of
mesh convergence or where the winds are unusually high.
An adaptively implicit advection scheme is proposed which
treats advection implicitly only where the Courant number
is high. Flux-correction to ensure monotonicity is adapted
to work with implicit time stepping.

A version of MPDATA (Multidimensional Positive Defi-
nite Advection Transport Algorithm) is derived with an anti-
diffusive flux to correct off-centred implicit time stepping.
The anti-diffusive flux is gradually reduced as Courant num-
bers increase above 2 in order tomaintain stability at the ex-
pense of second-order accuracy at high Courant numbers.

Results of two-dimensional advection by deformational
flow are presented on various meshes of the sphere. Sta-
bility and second-order accuracy are maintained when the
Courant number is over 100 in a small region, when strong
wind crosses the poles of a rotated latitude-longitudemesh.
Good solutions are also obtained on a skipped latitude-longitude
mesh, a cubed sphere and hexagonal meshes. Accuracy re-
verts to first-order when Courant numbers are large over a
large fraction of the domain.
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1 | INTRODUCTION

1.1 | Motivation

Time step restrictions based on advection have always posed a problem for models of the atmosphere. The Courant-
Friedrichs-Lewy (CFL) condition states that explicit Eulerian advection schemes will have time step restrictions based
on the size of the spatial discretisation increments and the flow speed. Typically this means that explicit schemes
cannot run with a Courant number greater than one or thereabouts. This is equivalent to saying that an advected
quantity cannot be moved by more than one mesh cell (or grid box) in one time step.
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CFL constraints can be particularly cruel where spatial resolution is higher than it needs to be for accuracy, such
as near the poles of a latitude-longitude mesh. An early workaround was to use polar filtering; artificially removing
oscillations near the poles where mesh lines converge (Cullen and Davies, 1991). However polar filtering led to par-
allel scaling bottlenecks and mistrust of solutions near the poles in models of the atmosphere. The UK Met Office
gained accuracy and efficiency by replacing their model employing polar filteringwith a semi-implicit , semi-Lagrangian
(SISL) model to avoid time step restrictions on a latitude-longitude mesh (Davies et al., 2005). SISL eases time step
constraints by treating acoustic and gravity waves implicitly while the advection is solved with the semi-Lagrangian
method which is stable, accurate for smooth flows and efficient with long time steps, but not conservative. The lack of
conservation is regarded as inadequate for climate modelling and is associated with spurious features such as eternal
fountains which involve a positive feedback loop that creates moisture in convectively unstable columns (Zerroukat
and Allen, 2020).

The requirement to run stablywith large Courant numbers is less severe now thatmodels of the global atmosphere
have largely moved away from latitude-longitude meshes in favour of quasi-uniformmeshes such as the cubed sphere
and icosahedral meshes (Ullrich et al., 2017). However, the problem remains severe in the vertical direction where
mesh spacing can be fine and large vertical velocities can occur when atmospheric convection is resolved. A solution
in the vertical direction is to use Lagrangian floating levels (Lin, 2004) that are conservatively mapped back to the fixed
Eulerian mesh. The Lagrangian floating levels technique is equivalent to conservative semi-Lagrangian (Harris et al.,
2011), and can be made efficient for large Courant numbers in one dimension and consequently can work on tensor
product meshes (eg. Leonard et al., 1996). Conservative, flux-form semi-Lagrangian schemes have been developed
for arbitrary meshes (eg. Miura, 2007) but only work efficiently for large Courant numbers on tensor-product grids.
Conservative semi-Lagrangian is related to the Arbitrary Lagrangian-Eulerian (ALE) method (eg. Hirt et al., 1997)
which solves equations in a Lagrangian frame and then remaps the solution back to the original mesh. However ALE
methods suffer from time step restrictions associated with avoiding mesh tangling.

Due to the difficulties in allowing long time steps while maintaining exact local conservation on arbitrary meshes,
it is worth considering implicit time stepping for advection. The aim of this paper is to present an advection scheme
with the following properties:

1. stable for large Courant numbers;
2. applicable on arbitrary meshes;
3. locally conservative to machine precision;
4. similar cost and accuracy to explicit schemes when the Courant number is below one;
5. at least first-order accurate where the Courant number is large;
6. options to be monotonic, bounded or sign preserving;
7. multi-tracer efficient;
8. good parallel scaling.

We define a bounded advection scheme as one that does not produce solution values outside specified bounds, for ex-
ample

[
0,1
]
. MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is sign preserving (positive

definite) which means solutions that start in
[
0,∞

)
stay in

[
0,∞

)
. A monotonic advection scheme does not generate

new spurious extrema or amplify existing extrema. This is desirable as it implies boundedness and also guarantees
stability.

This paper proposes the use of adaptively implicit time stepping combined withMPDATA to create a schemewith
options to bemonotonic, bounded, positive definite or just stable for all Courant numbers. Themethods for combining
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implicit and explicit and the method for achieving monotonicity should translate to other explicit advection schemes.

1.2 | Background on MPDATA

The MPDATA scheme for the solution of the advection equation was introduced by Smolarkiewicz (1983, 1984).
The basic principle of MPDATA is as follows: apply the forward in time, first-order upwind scheme based on the
physical flow velocity, followed by a corrective upwind stepwith a pseudo-velocity that is designed to compensate the
spatial and temporal truncation errors of the preceding step to at least second order. Due to the repeated application
of the upwind scheme, MPDATA provides strict sign preservation of the transported field and a small phase error.
The standard MPDATA is an explicit flux-form Eulerian scheme and stable for an advective Courant number less
than one. Various MPDATA extensions including some for entire flow solvers have been developed over the years.
Smolarkiewicz and Margolin (1998) review the schemes with a focus on structured grids.

MPDATA options of particular interest to the current paper are the infinite-gauge variant for the transport of
signed quantities (Smolarkiewicz and Clark, 1986) and the extension to enforce solution monotonicity (Smolarkiewicz
and Grabowski, 1990) by means of flux-corrected transport (FCT, Zalesak, 1979). Smolarkiewicz and Szmelter (2005)
extended MPDATA to fully unstructured meshes while retaining second-order accuracy and the other favourable
properties of the scheme. Kühnlein and Smolarkiewicz (2017) formulate the MPDATA pseudo-velocity based solely
on face-normal fluxes which facilitated integration of compressible PDEs on arbitrary unstructured meshes. While
the standard MPDATA scheme is fully multidimensional, Kühnlein et al. (2019) use a horizontal-vertical second-order
accurate Strang-split integration based on MPDATA that permits larger time steps and also enables more targeted
schemes in the different coordinate directions of the global atmospheric model.

1.3 | Background on Implicit Advection Schemes

Implicit time stepping is ubiquitous in atmospheric modelling for solving the terms of the equations of motion respon-
sible for fast waves such as gravity and acoustic waves. However, implicit time stepping has rarely been used for
advection in atmosphere and ocean modelling. Implicit time stepping for advection in the mathematics and engineer-
ing literature will be discussed first and then we will return to its uses to date in atmosphere and ocean modelling.

Implicit time stepping for advection has a severe order barrier; no implicit method exists with order greater than
one which is monotonic for all time steps (Gottlieb et al., 2001). Higher order implicit multi-stage (Runge-Kutta)
and multi-step schemes exist that are unconditionally linearly stable but if we additionally require monotonicity (no
new spurious extrema generated), then higher-order implicit methods have time step restrictions, known as radii of
monotonicity. As with spatial discretisation, high order implicit time stepping has been non-linearly combined with
first order implicit time stepping to try to break the order barrier and increase the radius of monotoncity. Yee et al.
(1985); Yee (1987) proposed implicit TVD (total variation diminishing) schemes for solving hyperbolic equations and
achieved high accuracy for large Courant numbers. However they could not find a second-order scheme that was
guaranteed both TVD and conservative for non-constant coefficient advection. May and Berger (2017) used FCT
(Zalesak, 1979) to improve temporal accuracy in implicitly solved small cells without generating new extrema.

In atmospheric modelling, implicit time stepping for advection has been used for vertical advection (Baldauf et al.,
2011) and to treat small, cut-cells stably at modest time steps (e.g. Jebens et al., 2011). Wicker and Skamarock (2020);
Li and Zhang (2022) use adaptively implicit vertical transport to treat isolated strong updrafts stably, avoiding the order
barrier by limiting order of accuracy to first (upwind) where ever implicit time stepping is used. The lack of accuracy
was not considered problematic because of the sparsity of the use of implicit advection, although Li and Zhang (2022)
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F IGURE 1 Two cells in an arbitrary mesh. xC and xN are the cell centres (centroids) of cell C and its neighbour, N,
over face f and x f is the face centre. S f is the face area vector, normal to face f with magnitude equal to the face
area. u is the velocity and xd is the departure point for face f at tn+12 (i.e. the centre of the volume swept through the
face between tn and tn+1).

describe the implicit advection as being more diffusive than explicit advection. Chen et al. (2017) compared implicit
advectionwith dimensionally split, flux-form semi-Lagrangian advection and found that the dimensionally split scheme
was more accurate and more efficient than implicit advection for all Courant numbers. However, this was not a like
for like comparison; the dimensionally split scheme was a higher-order accurate scheme, limited to tensor product
meshes and suffered from mesh imprinting errors on distorted meshes.

1.4 | Outline

The description of the adaptively implicit MPDATA in section 2 starts with an alternative formulation of the standard
explicit MPDATA on an unstructured, centroidal mesh, without co-ordinate transforms. This description is then ex-
tended to the implicit case including a description of how the explicit and implicit schemes are blended to ensure
efficiency and stable solutions, how the infinite gauge variant is used with the implicit scheme and how FCT can be
used with an implicit scheme. The description is general for one, two and three dimensions but, in this paper, does not
include the terms for divergent velocity fields. The numerical results in section 3 start in one dimension, comparing
an explicit scheme on a uniform grid with an adaptively implicit scheme on a non-uniform grid. The remainder of the
results are of deformational flow on the surface of the sphere, demonstrating convergence and monotonicity for a
wide range of Courant numbers. The adaptively implicit time stepping with first-order spatial discretisation is proved
to be bounded in Appendix A and a one-dimensional version of the adaptively implicit scheme is proved to be stable
for all Courant numbers in Appendix B.

2 | AN ADAPTIVELY IMPLICIT MPDATA

The version of explicit MPDATA and the adaptively implicit MPDATA defined here are implemented using the Open-
FOAM library (https://openfoam.org/) using standard OpenFOAM operators and linear equation solvers. The code
is available as part of the AtmosFOAM repository (https://github.com/AtmosFOAM/) compiled with OpenFOAM7.
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2.1 | Explicit MPDATA on an Arbitrary Mesh

The description of the explicit scheme is consistent with basic MPDATA principles (e.g. Smolarkiewicz and Szmelter,
2005), but introduces a novel derivation based on a flux-form semi-Lagrangian method and assuming an arbitrary,
centroidal mesh in Cartesian co-ordinates rather than using co-ordinate transforms. We will describe MPDATA for
solving the linear advection equation for advected quantity ψ with velocity field u:

∂ψ

∂ t
++ ·

(
uψ
)
= 0. (1)

This is solved using Gauss’s divergence theorem on an arbitrary mesh to go from time tn to tn+1 a time step ∆t apart:

ψ
n+1
c = ψ

n
c −

∆t
Vc f∈C

ψ
n+12
f U f , (2)

where ψc is the cell mean value of ψ in cellC, Vc is the volume of cellC, f ∈C are the faces of cellC, ψn+12
f is the value

of ψ at face f at tn+12, u f the velocity at face f and S f is the face area vector — the outward pointing vector normal to
face f with magnitude equal to the area of face f (Fig. 1). U f = u f ·S f is the volume flux over face f . In this derivation
of MPDATA, ψ f is evaluated at the departure point of the face centre at tn. The departure point, xd , is the centre of
the volume swept through the face between tn and tn+1 which is approximated by the point a distance u∆t2 upstream
of the face centre:

xd = x f −
∆t
2

u f +O
(
∆t
)2

, (3)

where x f is the face centre (see Fig. 1). The velocity, u f , is evaluated at tn+12 at the face centre. In this paper, we
consider passive advection of ψ with a prescribed non-divergent wind field. In a dynamical model, un+12

f would be
evaluated from velocities at known positions and times.

The dependent variable, ψ , is evaluated at the departure point, xd , using the upwind cell centre value of ψ , the
gradient of ψ at the face centre and the velocity divergence at the face centre (assumed zero):

ψ
n+12
f = ψ

n
d = ψ

n
up +

(
xd −xup

)
·+ψ

n−
��

��
�* 0

∆t
2

ψ
n
up+ ·u+O

(
∆s2,∆t2

)
, (4)

where ψup is the value of ψ in the cell upwind of face f , ∆s is the cell centre to cell centre distance, xup is the location
of the upwind cell centre and xdown is the location of the downwind cell centre (which will be used later). Eqns. (3) and
(4) are substituted in to (2) to give a scheme that is second-order accurate in space and time but not sign preserving,
equivalent to a Lax-Wendroff scheme:

ψ
n+1
c = ψ

n
c −

∆t
Vc f∈C

ψ
n
upU f︸              ︷︷              ︸

explicit upwind

− ∆t
Vc f∈C

(
x f−xup

)
·+ψ

nU f︸                               ︷︷                               ︸
spatial correction

+
∆t2

2Vc f∈C
u f ·

(
+ψ

n)
f U f︸                           ︷︷                           ︸

temporal correction

(5)

+ ∆t O
(
∆s2,∆t2

)
.

The explicit upwind scheme is monotone. In order for the spatial and temporal correction terms to be sign-preserving,
they arewritten as explicit upwind advection using an anti-diffusive flux,Vf = v f ·S f . The anti-diffusive flux is divergent
so new extrema are not prevented. The use of the anti-diffusive flux transforms the scheme from Lax-Wendroff to
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MPDATA and is written in two stages:

explicit upwind step: ψ
1
c = ψ

n
c −

∆t
Vc f∈C

ψ
n
upU f , (6)

explicit correction: ψ
n+1
c = ψ

1
c −

∆t
Vc f∈C

ψ
1
vupVf , (7)

where Vf = v f ·S f =
U f

ψ

{(
x f −xup

)
·+ψ− ∆t

2
u f ·

(
+ψ
)

f

}
, (8)

and where ψvup is ψ in the upwind cell where the upwind direction is defined by the sign of Vf . As ψ is always
positive, there is no ambiguity in the sign of Vf . The anti-diffusive flux, Vf , can be calculated iteratively, using first
ψ1 and subsequent iterations use the most up to date version of ψn+1 and Vf . All simulations in this paper use one
iteration per time step. Eqn (8) is a continuous version of the expression for the anti-diffusive velocity in eqn (13)
of Smolarkiewicz and Szmelter (2005). The discretisation of gradients and divergences described here are similar to
those of Smolarkiewicz and Szmelter (2005).

The first term of (8) is discretised by assuming that x f −xup = 1
2

(
xdown−xup

)
and preventing division by zero:

(
x f −xup

)
·+ψ

ψ
≈ ψdown−ψup

ψdown +ψup + ε
, (9)

which is second-order accurate only on non-skew, uniform grids. The results presented in section 3 use ε = 10−16.
The second term of (8) is discretised using a second-order, least-squares approximation for +ψ in cells:

+ψ =
f∈C

g f
(
ψN −ψc

)
, (10)

where ψN is ψ in the neighbour of cellC across face f and where g f is a vector calculated for each face of cellC based
entirely on the local mesh geometry:

g f =
(
1−w f

) |S f |
|xN −xC|2

D−1C

(
xN −xC

)
, (11)

where w f =
|S f ·xN −x f |

|S f ·xN −x f |+ |S f ·x f −xC|
(interpolation weights)

where DC =
f∈C

(
1−w f

) |S f |
|xN −xC|2

(
xN −xC

)(
xN −xC

)
.T

This is the least squares gradient implemented in the OpenFOAM library. Cell centre gradients are then linearly
interpolated onto face centres, denoted

(
+ψ
)

f . The component in the xN−xC direction is corrected using the compact
gradient:

(
+ψ
)

f ·
(
xN −xC

)
= ψN −ψc. (12)

2.1.1 | Sign Preservation

Given the definition of the Courant number on an arbitrary mesh,

c =
1

2

∆t
Vc f
|U f |, (13)
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Smolarkiewicz and Szmelter (2005) showed that explicit upwind is monotonic for non-divergent velocity fields when
c ≤ 1 and sign preserving for a divergent velocity field when c ≤ 12. The anti-diffusive velocity is divergent so the
Courant number based on the anti-diffusive velocity must be less than 12 for the explicit MPDATA to be sign preserv-
ing. Smolarkiewicz and Szmelter (2005) showed that the median-dual MPDATA discretisation of the anti-diffusive
flux satisfies this criterion for c ∈ 0,1. In order to guarantee sign preservation in this paper, we limit the anti-diffusive
flux so that

|Vf U f | ≤
1

2
. (14)

For the tests presented in section 3, the anti-diffusive fluxes satisfied (14) without limiting, but we have not (yet)
proven if this will always hold.

2.2 | Adaptively Implicit MPDATA

The adaptively implicit scheme is a generalisation of Crank-Nicolson with off-centering θ which can vary in space. θ f

is defined on faces (for conservation) so the time stepping is defined as:

ψ
n+1
c = ψ

n
c −

∆t
Vc f∈C

{(
1−θ f

)
ψ

n
f +θ f ψ

n+1
f

}
U f . (15)

This is second order in time only for θ f =
1
2 globally. We will next derive the MPDATA anti-diffusive flux that corrects

a scheme which is first-order accurate in space and off-centered by θ in time. So the first step, before the MPDATA
correction, is:

ψ
1
c = ψ

n
c −

∆t
Vc f∈C

{(
1−θ f

)
ψ

n
up +θ f ψ

1
up

}
U f . (16)

The proof that this first step gives positive, bounded and hence stable solutions for non-divergent velocity fields on
arbitrary meshes is provided in Appendix A.

To find the second-order approximation of ψn+12
f for non-divergent flow, we consider a linear combination of ψ

at the departure point at tn and ψ at the arrival point at tn+1:

ψ
n+12
f =

(
1−θ f

)
ψ

n
d +θ f ψ

n+1
a , (17)

where the locations of the departure and arrival points are shown in Fig. 2 and are given by

xd = x f −
∆t
2

u f ,

xa = x f +
∆t
2

u f .

The values of ψ at the departure and arrival points can be approximated by

ψ
n
d = ψ

n
up +

(
xd −xup

)
·+ψ,

ψ
n+1
a = ψ

n+1
up +

(
xa−xup

)
·+ψ.
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∆t u

xa

u12
fxup

xd

xd

xa∆t u
u12

f
xup

F IGURE 2 The volume that is swept through face f in one time step and the departure and arrival points, xd and
xa for small (left) and large (right) Courant numbers.
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Substituting these into (17) gives

ψ
n+12
f =

(
1−θ f

)
ψ

n
up +θ f ψ

n+1
up +

(
x f −xup

)
·+ψ

n−
(
1−2θ f

) ∆t
2

u ·+ψ, (18)

where xup is the centre of the cell upwind of face f . This correction is not stable for Courant number, c > 2 or θ > 1
2

(Appendix (B)). For stability for all c and second-order accuracy where θ ≤ 1
2 the correction step is:

ψ
n+1
c = ψ

1
c +

∆t
Vc f∈C

ψ
1
vupVf , (19)

where Vf = v f ·S f =
U f

ψ

{(
x f −xup

)
·+ψ−χ

∆t
2

u ·+ψ

}
, (20)

χ = max
(
1−2θ f , 0

)
, (21)

where spatial discretisation is as in section 2.1. Eqn. (21) gives a first-order error in time for θ > 1
2 which is only used

for large Courant numbers (> 2). It is stable on a uniform one-dimensional grid (Appendix (B)) but on an arbitrary mesh,
some smoothing is needed when θ > 0 (section 2.2.1).

Appendix (B) shows that the first (diffusive) step of the adaptively implicit MPDATA scheme, Eqn. (16), is stable
and bounded when

θ ≥max
(
1− 1

c
, 0

)
, (22)

with the Courant number for an arbitrary mesh, c, defined as in (13). Eqn. (22) can be used to set θ f based on the
values of the Courant number in the cells either side, cup and cdown with a degree of safety added to avoid reaching
the stability limits:

θ f =max
{
1− 1

cup +0.25
, 1− 1

cdown +0.25
, 0

}
. (23)

2.2.1 | Additional Smoothing for Large Courant numbers

Appendix B shows that a linearised version of the adaptively implicit MPDATA is unconditionally stable on a uniform,
one-dimensional grid. However this does not carry over onto an arbitrary mesh. Therefore Vf is smoothed where
θ > 0. First a cell centre anti-diffusive flux is reconstructed from surrounding fluxes:

vc =

(
f∈C

S f ST
f

)−1
f∈C

S f Vf , (24)

which is the standard reconstruction of vectors from fluxes implemented in OpenFOAM; f∈C S f ST
f is a tensor which

can be inverted and pre-calculated for each cell. This is a second-order accurate, least squares reconstruction which
reconstructs a uniform vector field exactly. The reconstructed velocity is then interpolated back onto faces and the
dot product taken with S f to get a smoothed flux. The smoothed flux is used for faces with θ f > 0 and for all faces of
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a cell if that cell has one face with θ f > 0:

Vf =

Vf from 20 if θ f = 0 and θ f ′ = 0 [ f ′ ∈C,N of f

vc f ·S f otherwise,
(25)

where vc f is the reconstructed velocity vc linearly interpolated from cell centres to faces. The notation [ f ′ ∈C,N of f

means for all faces f ′ which are faces of cells C and N which are the cells surrounding face f .

2.3 | Linear Equation Solver

The first-order upwind adaptively implicit advection creates a sparse, asymmetric matrix M with positive elements on
the diagonal. To create the matrix equation, (16) is re-arranged so that the vector of new ψ1 values (ψ1) is a linear
combination of old ψn values (ψn):

Mψ
1 = Nψ

n, (26)

where Mi j =

1+
∆t
Vi f∈i θ f max

{
U f ,0

}
for i = j

−∆t
Vi

θ f max
{
−U f ,0

}
where f is between cells i and j

(27)

and Ni j =

1−
∆t
Vi f∈i

(
1−θ f

)
max

{
U f ,0

}
for i = j

+ ∆t
Vi

(
1−θ f

)
max

{
−U f ,0

}
where f is between cells i and j.

(28)

Matrix N is of course not created because the R.H.S. vector entries can be evaluated directly. If the flow is non-
divergent then f∈i U f = 0which implies thatM is strictly diagonally dominant. Note thatM has no off diagonal elements
where the time stepping is explicit. M will not be diagonally dominant at row i if the volume flux into cell i in one time
step is greater than the volume flux out in that time step plus the cell volume. This situation is not likely for atmospheric
modelling as the atmosphere is low Mach number but it would require either a smaller time step or a matrix solver
suitable for non-diagonally dominant matrices.

The resulting linear equation system is solved with the standard OpenFOAM bi-conjugate gradient solver with a
diagonal incomplete LU preconditioner (DILU). Solver tolerance and iteration counts are discussed in section 3.4.

2.4 | Infinite Gauge MPDATA

The infinite gauge variant of MPDATA (a realisation of Lax-Wendroff) can be used with the adaptively implicit time
stepping exactly as it is used with standard, explicit MPDATA (Smolarkiewicz and Clark, 1986; Kühnlein and Smo-
larkiewicz, 2017). This removes the non-linearity of MPDATA and means that MPDATA is no longer sign preserving,
but monotone solutions can be achieved using FCT, as described below.

2.5 | Flux-Corrected Transport (FCT) with Implicit Time Stepping

Zalesak (1979) state that FCT can be used with implicit time stepping although we have not found examples of this in
the literature. In fact, the algorithm as described by Zalesak (1979) does not guarantee monotonicity when used with
implicit time stepping. This is because Zalesak (1979) bound the tracer at tn+1 by the diffusively transported tracer at
tn+1 and the tracer at tn at the current and upwind grid points. The tracer at tn at the current and upwind grid points are
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not a suitable bounds if the tracer can move a long distance in one time step. When using implicit time stepping and
large Courant numbers, local extrema can be advected by more than one mesh cell in one time step so local bounds
from the previous time step no longer apply. We therefore define two variants of FCT to work with implicit time
stepping. One guarantees monotonicity and the other guarantees global boundedness given user defined bounds.

The first step of FCT is to advect using a monotonic, diffusive scheme to calculate ψ1. Appendix A shows that the
first-order upwind in space, adaptively implicit in time scheme (Eqn. 16) provides this solution for arbitrary Courant
numbers. The next step is to calculate the allowable minima and maxima for each cell which we will call ψmin and ψmax.
If we seek boundedness within pre-defined bounds then ψmin and ψmax are these bounds. Otherwise ψmin and ψmax

are the local extrema of ψ1 in the current and neighbouring cells. Explicit FCT also uses ψn which widens the bounds.
Consequently, FCT for implicit, monotonic advection will be more diffusive because of the use solely of ψ1 to define
the local bounds:

for cell C ψmin = min
N∈C

{
ψ
1
N

}
where N are the face neighbours of C, (29)

for cell C ψmax = max
N∈C

{
ψ
1
N

}
where N are the face neighbours of C. (30)

We next define the maximum allowable amount that each cell can rise or fall by and use the same notation as Zalesak
(1979)

Qp = ψmax−ψ
1, (31)

Qm = ψ
1−ψmin. (32)

We next need to modify the non-monotonic MPDATA high order flux corrections (HOC). The HOC is the MPDATA
flux correction, Vf , from (25) multiplied by ψ1 at the upwind cell (upwind defined relative to Vf ):

FfHOC = ψ
1
upVf . (33)

From this we calculate the total high order flux that enters (Pp) and leaves (Pm) each cell:

Pp = −∆t
Vc f∈C

min
{

FfHOC, 0
}
, (34)

Pm =
∆t
Vc f∈C

max
{

FfHOC, 0
}
. (35)

Next we find the ratios of the allowable total fluxes to the actual high order fluxes:

Rp =

min
{
1,

Qp
Pp

}
if Pp > 0

0 otherwise
(36)

Rm =

min
{
1, Qm

Pm

}
if Pm > 0

0 otherwise.
(37)

Finally we find the coefficient to multiply FfHOC in order to achieve either a monotonic solution or a solution with the
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required bounds:

Ff =

FfHOC min
{

RpN , RmC
}

if FfHOC ≥ 0

FfHOC min
{

RpC, RmN
}

otherwise,

where
(
xN −xC

)
·S f > 0,

and cells C and N are either side of face f . Then the final update is

ψ
n+1
c = ψ

1
c −

∆t
Vc f∈C

Ff , (38)

which is monotonic if (29) and (30) are used as bounds on ψ . Alternatively, global bounds such as
[
ψmin,ψmax

]
=
[
0,1
]

can be specified.

3 | ADVECTION TEST CASES

3.1 | One-dimensional Advection

The first test of the adaptively implicit MPDATA is one dimensional with uniform velocity. Variable resolution is used
so that the Courant number varies in space and implicit time stepping is used only where resolution is coarse. The
variable resolution grids have resolution a factor of R finer in the middle of the unit length domain than the end points.
There are n cells (n+1 grid points) in the unit length and a constant ratio, r = R

2
n−2 , between successive cells in the first

half of the domain and 1
r in the second half. Therefore the resolution of cell i is:

∆xi =


1
2Rr−i 1−r

1−rR i≤ n
2 −1

1
2Rr

n
2−i 1−r

1−rR i≥ n
2 .

(39)

We use smooth initial conditions for evaluating convergencewith resolution andmixed initial conditions for inspecting
boundedness and overall quality of solution:

ψ
0
smooth =


1
2

{
1+ cosπ

(
4x−1

)}
x ∈
[
0,0.5

]
0 otherwise,

(40)

ψ
0
mixed =


1
2

{
1+ cosπ

(
4x−1

)}
x ∈
[
0,0.5

]
1 x ∈

[
0.6,0.8

]
0 otherwise.

(41)

All simulations use a velocity of u = 1 and run for one time unit so that the tracer travels one complete revolution
around the periodic domain.

Fig. 3 shows solutions starting from the mixed initial conditions using 100 time steps each of length ∆t = 0.01.
The uniform resolution has 40 cells giving a uniform Courant number of 0.4 (meaning that the time stepping is purely
explicit). The non-uniform resolution has 100 cells with R = 10 giving a Courant numbers in the range c ∈

[
0.4,4

]
so

that implicit time stepping is used where c > 0.75. As expected, the MPDATA results (top row of Fig. 3) are always
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Adaptively implicit MPDATA
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Adaptively implicit infinite gauge MPDATA
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Adaptively implicit infinite gauge MPDATA with FCT
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F IGURE 3 Advection once around a periodic domain starting from mixed initial conditions, ψ0, using 40 grid
points for the uniform resolution and 100 grid points for the resolution with a factor R = 10 between finest and
coarsest. The regions where the non-uniform resolution has a Courant number greater than 0.75 (where implicit
time stepping is used) is shaded grey.
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0.5
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Max ∆s

Infinite gauge, uniform, c = 0.4
Infinite gauge, ratio 10, c in [0.4, 4]
Standard MPDATA, uniform
Standard MPDATA, ratio 10
FCT with infinite gauge, uniform
FCT with infinite gauge, ratio 10
1st/2nd

Infinite gauge, uniform, c = 0.4
Infinite gauge, ratio 10, c in [0.4, 4]
Standard MPDATA, uniform
Standard MPDATA, ratio 10
FCT with infinite gauge, uniform
FCT with infinite gauge, ratio 10
1st/2nd

F IGURE 4 Convergence of the `2 error norm with resolution of the one-dimensional advection of the smooth
initial conditions, ψ0. The uniform resolutions use 20, 40 and 80 grid points and the non-uniform resolutions use 50,
100 and 200 grid points with ratio R = 10. Both use time steps of ∆t = 0.02, 0.01 and 0.005. Dotted lines show the
slope of first and second-order convergence.

positive for both the uniform resolution (explicit time stepping) and the non-uniform resolution (adaptively implicit).
The non-uniform resolution produces a stable overshoot above the square wave which can happen with MPDATA
without limited fluxes. The infinite gauge version (middle row of Fig. 3) produces undershoots and overshoots and the
solution is more accurate in the region of the smooth wave. Neither the uniform (explicit) or non-uniform (adaptively
implicit) results appear more accurate than the other although more grid points are used for the variable resolution.
The infinite gauge results using FCT (bottom row of Fig. 3) are bounded, demonstrating the correct application of the
flux corrections applied to adaptively implicit time stepping. The uniform (explicit) or non-uniform (adaptively implicit)
results appear similar.

Convergence with resolution for all schemes on uniform and non-uniformmeshes starting from the smooth initial
conditions is shown in Fig. 4. The time step is scaled with the resolution so that the uniform meshes retain c = 0.4

at all resolutions and the non-uniform meshes retain c ∈
[
0.4,4

]
. The standard and infinite-gauge MPDATA with and

without FCT give second-order convergence. Even though the non-uniform grid means that the Courant number
reaches 4 at the centre of the domain, the convergence remains strong.

3.2 | Spherical Meshes

Advection test cases using adaptively implicit MPDATA calculated using various meshes are presented. There is no
clearly optimal mesh of the sphere for atmospheric modelling (example meshes in Fig. 5). Numerical methods need
to be designed to allow for one or more of the following features of meshes of the sphere:

1. Latitude-longitude meshes are orthogonal and have uniform resolution following co-ordinate lines but they have
severe convergence of mesh lines towards two poles so numerical methods are needed that can cope with very
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Skipped latitude-longitude Gnomonic cubed-sphere Hexagaonal icosahedron
48×24, 818 cells 15×15×6 = 1,350 cells 642 cells

F IGURE 5 Some common meshes of the sphere viewed from above a point at a latitude of 45o.

large Courant numbers. We use a latitude-longitude mesh with a cell at each pole (Fig. 5).
2. Hexagonal and triangular meshes of the sphere are quasi-uniform but they cannot be all three of:

a. orthogonal (mesh lines and cell centre to cell centre lines cross at right angles)
b. centroidal (cell centres are at cell centroids)
c. non-skew (cell centre to cell centre lines bisect mesh lines)
meaning that special numerical treatment is needed in order to achieve second-order accuracy.

3. Quasi-uniform versions of the cubed-sphere are non-orthogonal with large distortions (skewness) at cube edges
and corners so numerical methods are needed that maintain accuracy at these distortions. The cubed-sphere in
Fig. 5 uses the Gnomonic projection (Rančić et al., 1996).

4. Skipped latitude-longitude meshes have factor of two reductions in resolution in the longitudinal direction at a
few latitudes to prevent the mesh lines converging. At latitudes where the resolution reduces, the meshes can be
treated as non-conforming so that two quadrilateral cells are connected to one edge of the adjacent quadrilateral
cell, or conforming with two quadrilaterals connected to adjacent, aligned edges of a distorted pentagon. The
implementation described here treats them as conforming.

All of the meshes were decomposed into four domains for parallel processing with MPI.

3.3 | Deformational Flow

Lauritzen et al. (2012) describe deformational flow test cases to demonstrate a number of numerical properties of
an advection scheme including order of convergence and monotonicity. We are using the non-divergent wind field
which deforms and translates the initial conditions so that the final solution (t = T = 5) should be identical to the initial
conditions (t = 0). The wind is defined by a stream function, Ψ, based on latitude, φ , longitude, λ , time, t and the radius
of the sphere, R = 1:

Ψ
(
λ ,φ , t

)
=
10R
T

sin2
(

λ − 2πt
T

)
cos2 φ cos

πt
T
− 2πR

T
sinφ . (42)
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Mesh type Nominal N. cells ∆s ∆t Figure

Latitude-longitude 120×60 7,080 3.0o 0.02 7c, 8b

240×120 28,800 1.5o 0.01 6, 7, 8

480×240 114,720 0.75o 0.005 7c, 8b,9

Skipped latitude- 48×24 864 7.5o 5

120×60 5,310 3.0o 0.02 7c, 8b

longitude 240×120 21,750 1.5o 0.01 6, 7, 8

480×240 88,470 0.75o 0.005 7c, 8b,9

Cubed-sphere 15×15×6 1,350 6.4o 5

30×30×6 5,400 3.2o 0.02 7c, 8b

60×60×6 21,600 1.6o 0.01 6, 7, 8

120×120×6 86,400 0.8o 0.005 7c, 8b,9

Hexagonal- HR4 642 9.5o 5

HR6 10,242 2.4o 0.02 7c, 8b

icosahedral HR7 40,962 1.2o 0.01 6, 7, 8

HR8 163,842 0.6o 0.005 7c, 8b,9

TABLE 1 Resolutions and time steps for deformational advection. ∆s is a typical cell centre to cell centre
distance in degrees latitude.

3.3.1 | Gaussian Hills

The Gaussian hills initial conditions are smooth and so can be used to measure the numerical order of convergence.
The initial conditions of the tracer, ψ0, are given in terms of the three dimensional position vector, x, in Cartesian
co-ordinates:

ψ0

(
x
)

= 0.95
[
exp
{
−5
(
x−x1

)2}
+ exp

{
−5
(
x−x2

)2}]
, (43)

where xi =
(
Rcosφi cosλi, Rcosφi sinλi, Rsinφi

)
, (44)(

λ1,φ1
)

=
(
5π6, 0

)
(45)(

λ2,φ2
)

=
(
7π6, 0

)
. (46)

The tracer concentrations at t = 2.5 are shown in Fig. 6 calculated on five different meshes of the sphere and for a 30o

rotated version of the latitude-longitude mesh, all at a similar resolution. These use the standard adaptively implicit
MPDATA without FCT.

Simulations using all the meshes in Fig. 6 use a time step of 0.01 (500 time steps in total) giving a Courant number
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of around 2 so that the simulations would be unstable if a purely explicit scheme were used. Results on the rotated
latitude-longitude mesh with a time step of 0.05 are also shown, leading to a maximum Courant number of around
10. Courant numbers at t = 0 are contoured in Fig. 6. Spatial resolutions and time steps are shown in table 1.

The flow goes to zero at the north and south poles so the convergence of meridians of the un-rotated latitude-
longitude mesh does not lead to large Courant numbers. However when the mesh is rotated by 30o, high winds cross
the poles of themesh so themaximumCourant number goes up to 70 (the contours in Fig. 6 show the Courant number
at t = 0). These large Courant numbers do not lead to instability, a lack of sign-preservation or visible artefacts in the
solution. The largest Courant numbers are removed on the rotated, skipped latitude longitude mesh although Courant
numbers above 2 are present at t = 0, just poleward of the change in longitudinal resolution. On the cubed-sphere,
the Courant number is largest near the cube corners due to mesh distortions and smaller cells. Some mesh imprinting
is visible along the cube edges although this does not lead to a lack of sign-preservation. The hexagonal icosahedral
meshes are themost uniformmeshes of the sphere and so there are no sharp spikes in the Courant number. The results
from the hexagonal mesh appear accurate but note that this mesh has higher resolution than the other meshes. The
solutions using a larger time step on a full latitude longitude mesh have severely degraded accuracy with the Courant
number being large over most of the domain and so very little of the high order MPDATA correction can be applied.

MPDATA is, by design, sign-preserving but not monotonic. The adaptively implicit MPDATA retains this feature
on all of themeshes tested and displayed in Fig. 6. Theminimum andmaximum tracer values for all time steps for each
of the meshes in Fig. 6 are shown at the top of Fig. 7. All of the minima remain positive and very close to zero. The
maxima decrease due to numerical diffusion but they do not decrease monotonically, as expected using the standard
MPDATA.

The maximum and mean Courant number for each time step for each of the meshes in Fig. 6 are shown in the
middle row of Fig. 7. The maximum Courant number for all meshes is greater than one using the time step of 0.01 and
is minimum at the middle of the simulation (t = 2.5). The maximum Courant number for the rotated latitude-longitude
mesh reaches 70 and is always much larger than one which does not appear to significantly reduce the accuracy. The
mean Courant numbers (dashed) are below or close to one throughout which helps to maintain accuracy apart from
for the simulation with a larger time step.

The convergence of the `2 error norm with resolution is shown in the bottom row of Fig. 7. The mesh resolutions
and time steps for these simulations are given in table 1. The resolution to time step ratio is kept constant along
each line. Included in this graph are simulations using half the time step and five times the time step for the latitude-
longitudemesh (giving maximumCourant number around one and around ten) in order show the impact of varying the
mean Courant number. Reducing the time step to get c < 1 means that the standard explicit MPDATA is used almost
everywhere. This increases the error slightly, which can be expected given the smooth flow. When the Courant
number is close to 2, θ is close to 1

2 and the temporal error correction is small. This implies that using second-order
adaptively implicit time stepping is more accurate than using first-order time stepping with a correction. However the
adaptively implicit time stepping requires a matrix inversion and so is more expensive. The simulation with c ≤ 10 is
much less accurate because the temporal correction is not applied for c≥ 2. However the simulation is still stable and
sign preserving.

The convergence with resolution in Fig. 7 is around first-order at coarse resolution and approaches second-order
at higher resolution, as expected for a second-order schemes (the asymptotic convergence is second order). The errors
in Fig. 7 are similar to the second-order schemes presented in Lauritzen et al. (2014).

Better accuracy at the expense of sign-preservation can be achieved with the infinite gauge variant of MPDATA (a
realisation of Lax-Wendroff) which works for the adaptively implicit version in the same way as the standardMPDATA
(Smolarkiewicz and Clark, 1986). The maximum and minimum values of the tracer for infinite gauge simulations with
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F IGURE 6 Deformational flow on the sphere. The colours show the tracer at t = 1.5 (piece-wise constant in each
cell). The grey contours show the Courant number at t = 0 from 0.8 to 1.8 every 0.2 and the black contours are from
2 to 50 every 1.
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Maximum and minimum tracer values for all time steps
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F IGURE 7 Diagnostics of the results for the deformational flow of the Gaussian hills with standard adaptively
implicit MPDATA without FCT. Top and middle are diagnostics of the simulations shown in Fig. 6. Bottom includes
other resolutions. Mesh and time step details in table 1.
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F IGURE 8 Diagnostics of the results for the deformational flow of the Gaussian hills with adaptively implicit
infinite gauge MPDATA without FCT. Other settings the same as Fig. 7.

the same resolution as those shown in Fig. 6 are shown in Fig. 8. In comparison to the standard MPDATA simulations
(Fig. 7) the infinite gauge results have a smaller reduction in the maximum (because the results are more accurate and
hence less diffusive) but the minima is less than zero (spurious undershoots are generated). `2 errors with resolution
are shown at the bottom of Fig. 8. The mesh spacing and times steps are the same as in Fig. 7 and are shown in table
1 . The order of convergence is higher and the `2 errors lower than standard MPDATA results (Fig. 7).
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3.3.2 | Slotted Cylinders

Deformational advection of slotted cylinders tests the implementation of limiters. Lauritzen et al. (2012) recommend
the same deformational velocity field as for the Gaussian hills with initial tracers defined by:

ψ0

(
λ ,φ

)
=



1 if ri ≤ r and |λ −λi| ≥ r
6R for i = 1,2

1 if r1 ≤ r and |λ −λ1|< r
6R and φ −φ1 <− 5

12
r
R

1 if r2 ≤ r and |λ −λ2|< r
6R and φ −φ2 >

5
12

r
R ,

0.1 otherwise

(47)

where x =
(
Rcosφ cosλ , Rcosφ sinλ , Rsinφ

)
(48)

r = R2, ri = |x−xi| (49)(
λ1,φ1

)
=

(
5π6, 0

)
(50)(

λ2,φ2
)

=
(
7π6, 0

)
. (51)

The tracer fields at the end of the simulations (t = T = 5) are shown in Fig. 9 for all meshes at the highest resolution
used and at time steps giving Courant numbers of around 2 (see table 1). This uses the adaptively implicit infinite
gauge MPDATA with FCT (limited to ensure monotonicity). Fig. 9 shows that the bounds of the initial conditions
are maintained and no new extrema are generated, even on the rotated latitude-longitude mesh where the Courant
number reaches 140. The skipped latitude-longitude mesh has sharp jumps in the Courant number (shown at t = 5)
which do not cause artefacts in the solution. This is, to our knowledge, the first monotonic and conservative solution
of the advection equation using such a large Courant number.

A simulation using the much larger time step which give a maximum Courant number of 10 on the unrotated
latitude-longitude mesh is also shown in Fig. 9. Monotonicity is preserved but the solution loses accuracy at this
globally large Courant number as the MPDATA correction cannot be applied in full for c > 2.

3.4 | Solver Performance

Solver performance is reported for a selection of simulations using full latitude-longitude meshes as the large inho-
mogeneity of cell size and large range of Courant numbers could lead to an ill conditioned matrix and poor solver
performance (Tumolo and Bonaventura, 2015). These are compared with solver performance on the highest reso-
lution hexagonal mesh. Each time step consists of one implicit solve using the standard OpenFOAM bi-conjugate
gradient solver with a diagonal-based incomplete LU preconditioner. The solver tolerance is

Vc|y−Ax|
Vc
(
|y|− |Ax|

) , (52)

for matrix equation Ax = y where the sum is over all cells of the mesh and Vc is the cell volume. A tolerance of 10−6

is used for all simulations. The first guess of the solver is the state at the previous time step so the initial residual is
small for small time steps.

The number of iterations of the solver per time step is shown in Fig. 10 for various resolutions and various time
steps both rotated and unrotated on the latitude-longitudemesh and on the hexagonalmesh. The number of iterations
is smallest around time 2.5 when the wind speed is lowest and so the Courant number is smallest. For simulations
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F IGURE 9 Deformational flow on the sphere after 5 time units. The colours show the piecewise uniform value
of the tracer value in each cell. The grey contours show the Courant number from 0.8 to 1.8 every 0.2 and the black
contours are from 2 to 50 every 1.
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F IGURE 10 Number of solver iterations per time step for simulations on full latitude-longitude meshes and the
highest resolution hexagonal mesh.

with the maximum Courant number less than 0.75 in the middle of the simulations, the number of solver iterations
drops to zero because the simulation is purely explicit. The simulations represented by black and grey lines have a
maximum Courant number of 2 and so the number of iterations is small throughout the simulation. The simulations
where the maximum Courant number reaches 10 (in blue) use more iterations but for the latitude-longitude mesh, the
number of iterations increases slower than linearly with Courant number, which is necessary for efficiency. However
the hexagonal mesh with a maximum Courant number of 10 uses more than 5 times as many solver iterations as with
a maximum Courant number of 2. This could be because the matrix solver is unsuitable for the reduced sparsity of
the hexagonal mesh. The hexagonal mesh has nearly uniform global resolution and so the Courant number is high
globally. This setup also leads to low accuracy, demonstrating the futility using implicit methods to achieve large time
steps if the Courant number is high everywhere.

The rotated latitude-longitude meshes have very high maximum Courant numbers but only in limited regions.
The residual is a volume average over the whole mesh so the higher errors near the mesh poles do not prevent global
convergence but are still being solved accurately enough to prevent instability around the pole. Therefore the rotated
mesh simulations do not have high iteration counts for any of the resolutions tested and the accuracy is high. It
should be noted that implicit solutions in limited regions will lead to load balancing problems. Therefore if it is known
in advance that some regions are more likely to need implicit solves, then smaller domains could be used there.

It should also be noted that higher spatial resolution has little influence on the number of iterations per time step
for all mesh types and Courant numbers, which is encouraging.

4 | SUMMARY AND CONCLUSIONS

This paper has shown howMPDATA can be extended for adaptively implicit time-stepping, enabling Courant numbers
much larger than one. Two dimensional deformational flow advection test cases on the sphere show that solutions
are accurate with Courant numbers above one over a large fraction of the domain and accurate with local Courant
number spikes over 100, such as happen over the pole of a latitude-longitude mesh. There are a number of novel
aspects to the paper and the advection scheme presented:

1. An adaptively implicit version of finite-volume MPDATA which is stable for arbitrary Courant numbers and on
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arbitrary meshes.
2. Transport over the poles of a latitude-longitude mesh at high wind speed without reductions in accuracy or in-

creased cost.
3. Monotonicity for all Courant numbers by adapting FCT (Zalesak, 1979) for implicit time stepping.
4. Accuracy of the adaptively implicit scheme for modest Courant numbers (up to two) and first-order accuracy as

Courant numbers grow beyond 2.
5. A proof that the adaptively implicit time stepping, in combination with first-order upwind spatial discretisation, is

bounded.
6. A demonstration of the advection scheme on a variety of meshes of the sphere.
7. A first look at solver performance which shows that iteration count increases slower than linearly with Courant

number, implying that computational speed can be gained from larger time steps (the exception to this is on the
hexagonal mesh).

This paper goes further than recent papers presenting advection schemes that are adaptively implicit in the vertical
only (Wicker and Skamarock, 2020; Li and Zhang, 2022), not only in the use of implicit time stepping in two dimensions
but also improved accuracy while using implicit time stepping and a proof that the mix of implicit and explicit does
not destroy boundedness.

The introduction described multi-tracer efficiency as an essential property of an advection scheme. Using implicit
time-stepping, a separate solver for each tracer would be necessary, which initially sounds prohibitive. However, much
of the cost of an implicit solve is in preconditioning, which would be shared over all tracers which use the same wind
field.

Next steps entail three-dimensional solutions and incorporation into a full dynamical core with implicit time step-
ping for advection in all equations.
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A | BOUNDEDNESS OF THE FIRST-ORDER UPWIND ADAPTIVELY IMPLICIT
SCHEME

The first-order upwind, adaptively implicit scheme can be written:

ψ
n+1
c = ψ

n
c +

∆t
Vc i∈in

(
1−θi

)
Uiψ

n
i +

∆t
Vc i∈in

θiUiψ
n+1
i (53)

− ∆t
Vc o∈out

(
1−θo

)
Uoψ

n
c −

∆t
Vc o∈out

θoUoψ
n+1
c ,

for cell C with faces i and o. Faces “i ∈ in” have flow into cell C whereas faces “o ∈ out” have flow out. Off centering
values are denoted θi and θo at the different face types. Ui ≥ 0 and Uo > 0 are the inward and outward fluxes. ψi are
the values of ψ in cells through the i faces. The θi,o are defined on faces for conservation. This makes the boundedness
of the scheme less straightforward. Eqn. (53) can be re-arranged to give:

ψ
n+1
c = γψ

n
c +

i∈in
αiψ

n
i +

i∈in
βiψ

n+1
i , (54)

where

αi =
∆t
Vc

(
1−θi

)
Ui

1+ ∆t
Vc o∈out

θoUo
for each i

βi =

∆t
V j

θiUi

1+ ∆t
Vc o∈out

θoUo
for each i

γ =
1− ∆t

Vc o∈out

(
1−θo

)
Uo

1+ ∆t
Vc o∈out

θoUo
.
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The quantities αi, βi and γ are all positive as long as the θ0 are chosen to give

∆t
Vc o∈out

(
1−θo

)
Uo ≤ 1, (55)

which can be accomplished by setting

θ f ≥ 1−
1

∆t
Vc o∈out

Uo
, (56)

for the cells either side of face f . Hence all ψ are positive at the next time step. If, in addition the flow is discretely
non-divergent then:

i∈in
Ui =

o∈out
Uo, (57)

which implies

i∈in
αi +

i∈in
βi + γ = 1, (58)

so from Eqn. (54) ψn+1
c is a convex combination of ψn

c , ψn
i and ψn+1

i . This in fact proves that the scheme is globally
bounded. This can be shown by contradiction; if we assume that ψn+1

c is the global maximum at tn+1 and it is greater
than ψn

j for all cells j in the mesh then (54) and (58) cannot both hold for cell C. It is necessary for this scheme to be
bounded as it is used as the bounded scheme for the FCT (section (2.5)).

B | STABILITY ANALYSIS OF THE SECOND-ORDER ADAPTIVELY IMPLICIT
SCHEME

MPDATA is a non-linear scheme but the infinite gauge version is linear and so von-Neumman stability analysis can
be applied. In one dimension, for constant velocity, u > 0, constant ∆x, constant θ and constant Courant number
c = u∆t∆x, the one-dimensional adaptively implicit scheme is

ψ
n+1
j = ψ

n
j − c

(
1−θ

)(
ψ

n
j −ψ

n
j−1
)
− cθ

(
ψ

n+1
j −ψ

n+1
j−1

)
(59)

− c
2

(
1−χc

)(
ψ

n
j+1−2ψ

n
j +ψ

n
j−1
)
,

where ψ j is ψ at position x = j∆x. We showed in section (2.2) that χ = 1− 2θ gives second-order accuracy. From
Appendix (A) we can see that we need θ ≥ 1−1c for stability of the first-order upwind part (the first two terms of Eqn.
(59)). In order to revert to the explicit version for c≤ 1 and to transition smoothly to the implicit version we use

θ =

0 c≤ 1

1− 1
c c > 1,

(60)
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F IGURE 11 Comparison of the stability limits, the second-order requirement and the value of χ used for the
MPDATA correction.

and analyse (59) separately for these two cases. Considering a Fourier mode with wavenumber k, the amplification
factor, A, of (59) is

A =
1− c

(
χc−θ

)(
1− cosk∆x

)
− ic

(
1−θ

)
sink∆x

1+ cθ
(
1− cosk∆x

)
+ icθ sink∆x

. (61)

For θ = 0 and χ = 1 we recover the usual Lax-Wendroff stability constraints of c ∈
[
−1,1

]
. For c ≥ 1 and θ = 1− 1

c

it can be shown that stability requires χ ∈
[
0, 2c−1

c2

]
. The stability range for χ is compared with the second-order

requirement for χ in Fig. (11). For behaviour as close as possible to second-order for the maximum range of Courant
numbers and for stability we use:

χ =max
(
1−2θ , 0

)
. (62)

This gives an unconditionally stable scheme with second-order accuracy for c≤ 2.


