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Motivation: More Resolution where we really need it

Precipitation rate on 2 November 2008




But fine scale detail is ubiquitous
NEODAAS GOES East 075.0W 2 Nov 2008 18:00hours Channel: 1 (Visible)




NICAM uses a hexagonal icosahedral mesh at fixed resolutions down to 3.5km on the
Earth Simulator and captures features of tropical cloud clusters:

(see work of Masaki Satoh et al, JAMSTEC)

NICAM at 3.5km GMS/GOES-9 at Apr. 6, 2004, 00OUTC

e But these “Grand Challenge” experiments are too expensive for operations

e And 3.5km is still not really fine enough to resolve convection



Adaptive Meshes have a long history in Atmospheric Science
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Some More Recent Work in the Field:

e Ldauter et al 2007: Barotropic model
45°

30°

e St-Cyr et al 2008: A Comparison of Two Shallow-Water Models ...
Spectral Element on Cubed Sphere Finite Volume on lat-lon
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Challenges

Adaptive Meshing of: — Deep convection
— Tropical cyclones
— Orography
— Fronts
Unstructured or block-structured mesh adaptation

Efficiency and accuracy

Adaptation criteria and adaptation frequency
Mesh to mesh mapping

Ever more parallelisable algorithms

Physical parametrisations for adaptive meshes

Data assimilation



AtmosFOAM: Shallow water solver for any mesh (see weller and Weller, 2008)

Written using open source package OpenFOAM www . opencfd.co.uk

————Treesurface
Shallow water 22U + Ve (hU®U) = —Q x hU — ghV(h + hg) Y.
equatlons % 4+ v (hU) —0
(SWEs):

Co-located finite volume on polyhedra: Ve hUdV = Z &
Volumetric mean gradients and v faces

divergences converted to sums of mass g
fluxes over faces using Gauss’ VhdV = Z h¢S

14 faces
theorem:

¢ as well as h and AU evolved from old time step using SWEs to avoid computational mode

Matrices constructed to solve each component of momentum and continuity equations implicitly
using linear differencing == very sparse diagonally dominant matrices — easy to solve in
parallel

Explicit corrections — bi-quadratic or bi-cubic differencing
— non-linear advection

— Coriolis
No diffusion or filtering



Shallow Water Flow over a Mountain
(Test case of Williamson et al, 1992)

Height change in 15 days (m)
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Root mean square errors after 15 days. Relative to T213 Spectral reference solution.
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Barotropically Unstable Jet Test Case (Test case of Galewsky et al 2004)
Initially geostrophically balanced mid-latitude jet with very small unbalanced height perturbation

Initial vorticity (s~ 1

T
-0.00012 —8e—-05 —4e-05 0 4e-05 8e—05 0.00012

Initial height perturbation (m)
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Adaptive Meshing of a Barotropically Unstable Jet

e Fixed hexagonal icosahedral mesh e Adapt based on vorticity gradient
e 40,962 cells, dx ~ 100km e Mesh adapts every 3 hours (18 time steps)

e Relative vorticity (s ') e 8,162 cells after 6 days
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Predict mesh density requirement using coarse mesh solution

e Starting from adapted mesh solution (at time 5.5 days)

e Map velocity and height onto coarse mesh and calculate vorticity on coarse mesh | (2,562 cells)

¢ at day 5.5 on refined mesh & on coarse mesh after interpolation of A and U
5 days, 12 hours 5 days, 12 hours

S —0.00012 —8e—05 —4e—05 0 4e—05 Be—05 0.00012



Predict mesh density requirement using coarse mesh solution

e Solve SWEs on coarse mesh with initial conditions of h and U interpolated from adapted mesh
e Advect the unresolved vorticity as a tracer within this solution

e Run for 12 hours (8 time steps), 6t = 90 mins, dx ~ 480km

& solved on coarse mesh |€+ — &.| interpolated onto coarse mesh and advected

—0.00012 —8e—3 —4e—05 e—03 0.00012



Predict mesh density requirement using coarse mesh solution

These are combined to form a new “required resolution” field
A new mesh in generated to satisfy the new “required resolution” field
h and U are interpolated from the old to new adapted meshes

AtmosFOAM run for a further 12 hours (72 time steps with 10 min time step)

¢ at 5.5 days on old mesh
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Predict mesh density requirement using coarse mesh solution

These are combined to form a new “required resolution” field
A new mesh in generated to satisfy the new “required resolution” field
h and U are interpolated from the old to new adapted meshes

AtmosFOAM run for a further 12 hours (72 time steps with 10 min time step)

5 days, 12 hours

¢ at 5.5 days on new mesh




Predict mesh density requirement using coarse mesh solution

These are combined to form a new “required resolution” field
A new mesh in generated to satisfy the new “required resolution” field
h and U are interpolated from the old to new adapted meshes

AtmosFOAM run for a further 12 hours (72 time steps with 10 min time step)

¢ at 6 days on old mesh
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Summary

Local refinement of orography
Can be cost effective even without the effect of small scale diabatic processes
But gradual refinement might reduce truncation errors

Unstructured or block-structured mesh adaptation?
Meshes of polygons have accuracy advantages

— No directional bias (eg. no alignment of flow with grid)
— Gradual refinement possible
— No pole or cube corner problems

Adaptation criteria and adaptation frequency
Predicting mesh density for infrequent adaptation allows a more flexible compromise between
efficiency, balance and conservation under adaptation

Future Work

More work on long range prediction of mesh density requirements

— eg. where will mesh density be required to resolve convection over the next few hours

Conservative mapping

Gradual anisotropic refinement of polygons
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Predict mesh density requirement using coarse mesh solution

These are combined to form a new “required resolution” field
A new mesh in generated to satisfy the new “required resolution” field
h and U are interpolated from the old to new adapted meshes

AtmosFOAM run for a further 12 hours (72 time steps with 10 min time step)

9 days, 12 hours

¢ at 9.5 days on old mesh
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Predict mesh density requirement using coarse mesh solution

These are combined to form a new “required resolution” field
A new mesh in generated to satisfy the new “required resolution” field
h and U are interpolated from the old to new adapted meshes

AtmosFOAM run for a further 12 hours (72 time steps with 10 min time step)

9 days, 12 hours

¢ at 9.5 days on old mesh




Predict mesh density requirement using coarse mesh solution

These are combined to form a new “required resolution” field
A new mesh in generated to satisfy the new “required resolution” field
h and U are interpolated from the old to new adapted meshes

AtmosFOAM run for a further 12 hours (72 time steps with 10 min time step)

10 days

¢ at 10 days on old mesh




1000s of cells

Number of cells used during the run
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Mechanical Energy Conservation Errors

Williamson et al (1992) test case 5: flow over a mid-latitude mountain after 15 days.

Grid and Space | Normalised
resolution order Energy
AtmosFOAM 2 —5.1x107°
208km lat-lon
Spectral (Jakob et al., 1993) T63 4.6x107°
AtmosFOAM 2 1.0x107°
250km cubed sphere
Spectral element (Thomas and Loft, 2002) 8 ~ 107°
AtmosFOAM 2 —1.7x107°
250km hexagons
PV (Thuburn, 1996) 1-3 1x107°
AtmosFOAM _ 2 —9.4%107°
120km triangles
ICON (Bonaventura and Ringler, 2005) 1-2 —1074
AtmosFOAM 2 2.8x 1077
156km cubed sphere
Multi-moment finite volume 4 —4x107°
(Chen and Xiao, 2008)
Discontinuous Galerkin 180km k=6 5.5x107°

(Lauter et al., 2008)

e Which mesh structure 1s most accurate
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How best to achieve local refinement on the sphere

e Reduced AREEEA e Equal angle
lat-lon A cubed sphere
[ 1] 111
|
e 2:1 refinement e 2:1 refinement

Hexagonal Triangular
icosahedral icosahedral
Voronoi Delaunay
refinement refinement
Triangulation Triangulation
of varying of varying
springs springs
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Barotropically Unstable Jet (Test case of Galewsky et al 2004)

l Referencel solution (Reduced 576 x 1152 lat-lon)

| 144 x 288 lat-lon rotated 30°
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