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ABSTRACT
An important experimental result, as yet poorly understood, is that mechanical

stirring can significantly enhance the strength of horizontal convection. A contentious
issue is whether this necessarily implies that the mechanical stirring replaces the buoy-
ancy forcing as the main source of energy driving the observed overturning circulation,
as has been suggested for the Atlantic meridional overturning circulation (AMOC).
In this paper, rigorous energetics considerations and idealised numerical experiments
reveal that the rate at which the surface buoyancy forcing supplies energy to the fluid,
as measured by the production rate of available potential energy G(APE), does not
solely depend upon the buoyancy forcing, as is often implicitly assumed, but also
upon the vertical stratification, such that the deeper the thermocline depth, the larger
G(APE). This suggests that mechanical stirring enhances horizontal convection be-
cause it causes more energy to be extracted from the buoyancy forcing. It does so
by enhancing turbulent mixing, which allows surface heating to reach greater depths,
which increases the thermocline depth and hence G(APE). This paper therefore pro-
poses a new hypothesis, namely that mechanically-stirred horizontal convection and
the AMOC are best described as mechanically-controlled heat engines.

1 Introduction

Characterising and quantifying the relative importance
of the mechanical and thermodynamical forcing in driv-
ing and stirring the oceans has been a much debated is-
sue in oceanography for over a century now. Historically,
oceanographers have tended to assume that the large-scale
ocean circulation could be regarded as the sum of an appar-
ently independent wind-driven and buoyancy-driven com-
ponent despite the highly nonlinear character of the sys-
tem. Thus, the wind-driven component is usually identified
with the horizontal vertically-averaged circulation (as de-
scribed by Ekman and Sverdrup theories for instance), while
the buoyancy-driven component is usually identified with
the zonally-averaged circulation taking place in the latitu-
dinal/meridional vertical plane. Thermodynamics somehow
legitimates this separation, since the entropy and buoyancy
of the fluid parcels can only be significantly affected by dia-
batic effects due to the surface buoyancy forcing and internal
molecular diffusive processes.

In the classical view, e.g., Colin de Verdière (1993),
the two key physical processes controlling the buoyancy-
driven circulation, often called the Thermohaline Circula-
tion (THC), are high-latitude cooling and vertical (diapyc-
nal) mixing. In this view, cooling provides the destabilising
mechanism setting up the Atlantic meridional overturning
circulation (AMOC) into motion, while the turbulent diapy-
cnal mixing serves to transfer the surface equatorial heating
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down to the abyss to avoid the oceans filling up with cold
and dense waters. The key role played by turbulent diapyc-
nal mixing, however, raises the question of whether it makes
physical sense to regard the AMOC as being entirely decou-
pled from the mechanical forcing. Indeed, such a view seems
to require that all of the turbulent diapycnal mixing be sus-
tained only by the mechanical stirring due to the buoyancy
forcing. In the oceans, however, dissociating the effects of the
mechanical forcing (wind, tides) and thermodynamic forcing
(heat and freshwater fluxes) in sustaining the observed tur-
bulent diapycnal mixing rates seems impossible. On this ba-
sis, it would appear that the AMOC must be at least partly
controlled mechanically, calling for a overhaul of the classical
view to take the role of mechanical forcing into account. The
above observations, first made by Munk and Wunsch (1998)
(MW98 thereafter), prompted a renewal of interest in ocean
energetics, and generated many new research questions not
previously considered, such as:

• In absence of mechanical forcing, could the buoyancy
forcing support an overturning circulation and turbulent di-
apycnal mixing of the observed strength on its own?

• Is the power input of mechanical energy due to the
wind, tides, and buoyancy forcing sufficient to sustain the
observed rate of stirring and diapycnal mixing in the oceans?

Subsequently to MW98, the main idea that developed
is that the buoyancy forcing is very inefficient at produc-
ing mechanical energy when applied at the top of a strati-
fied fluid, as first suggested by Sandström (1908) (recently
translated from the German by Kuhlbrodt (2008)), so that
it could sustain only a very weak AMOC and low turbulent
diapycnal mixing rates on its own. As a result, it has be-
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come widely agreed that it is the mechanical forcing, such
as the winds and tides, rather than the surface buoyancy
fluxes, that are the main supplier of the energy required to
drive and sustain the AMOC against dissipation, in sharp
contrast with the classical held view, e.g., see the review
by Kuhlbrodt et al. (2007). Interestingly, these ideas ap-
pear to be confirmed by the recent laboratory experiments
of mechanically-stirred horizontal convection by Whitehead
and Wang (2008), which show that horizontal convection
can increase dramatically when acted upon by the lateral
motions of a stirrer.

Although the importance of the mechanical forcing as
a control mechanism of the AMOC appears to be now well
established, it still remains difficult to understand how the
energy supplied by the winds and tides in the oceans, or by
the stirrer in Whitehead and Wang (2008)’s experiments,
can eventually end up as the highly organised form of large-
scale kinetic energy characterising the AMOC. Indeed, it
seems clear that in order to sustain turbulent diapycnal mix-
ing, the mechanical stirring must be a source of turbulent
kinetic energy and available potential energy at small scales.
Supporting the AMOC, on the other hand, clearly requires
producing kinetic energy at the basin scale. Therefore, if
one is to accept the idea that it is the mechanical forcing,
rather than the buoyancy forcing, that is the direct supplier
of the large-scale kinetic energy of the AMOC, then clearly
a physical mechanism is required to convert the highly dis-
organised form of small-scale turbulent kinetic energy into
highly organised large-scale kinetic energy. In other words,
some form of inverse energy cascade appears to be required.
So far, however, inverse energy cascades have only been dis-
cussed in the context of two-dimensional or QG stratified
turbulence, mostly in relation with horizontal motion. We
are not aware that the possibility of an inverse energy cas-
cade in the vertical plane has ever been discussed before.

With little, if any, convincing evidence for an inverse
energy cascade in the vertical plane, can we account for the
existence of a mechanical control of the AMOC without the
mechanical forcing having to be the main supplier of the
AMOC large-scale kinetic energy? The purpose of this pa-
per is to explore an alternative idea that has not received
any attention so far, namely that the buoyancy forcing be
the main driver of the AMOC, as in the classical view, but
with the new twist that the mechanical forcing controls the
mechanical energy production due to the buoyancy forcing.
The advantage of this idea is that it resolves the above scale
problem, since the spatial scales associated with the buoy-
ancy forcing match those assumed to pertain to the AMOC.
In the proposed new view, the results of Whitehead and
Wang (2008) would then be explained by the lateral action
of the stirrer increasing the power input due to the buoy-
ancy forcing. In seeking support for such an idea, the main
difficulty is probably to convince the reader that the cur-
rent widespread idea that surface buoyancy fluxes cannot
produce a significant amount of mechanical energy when
applied at the top of a stratified fluid is wrong and without
theoretical basis. Indeed, accepting the possibility that the
work done by the surface buoyancy fluxes can be large in
the oceans or in laboratory experiments of horizontal con-
vection is crucial to accepting the ideas developed in the
present paper. The purpose of this paper is to examine the
theoretical basis for each of the two ideas, and demonstrate

that only the latter appears to be consistent with first prin-
ciples. To that end, Section 2 offers a preliminary review and
discussion of the relevant issues. Section 3 reviews the theo-
retical basis in more details, based on the recent papers by
Tailleux (2009a) and Tailleux (2009b). Section 4 offers nu-
merical illustrations of the previous theory, in the context of
mechanically stirred horizontal convection. Finally, Section
5 offers a summary and discussion of the results.

2 Review and discussion of relevant issues

2.1 MW98 constraint on the sources of stirring

The first important issue relates to MW98 derivation
of a constraint on the power input of mechanical energy
required to stir and mix the oceans at the observed rates.
In summary, MW98’s argument is that turbulent mixing
must replenish the background gravitational potential en-
ergy (GPEr) at the same rate (Wr,forcing) at which high-
latitude cooling depletes it. According to classical turbu-
lence theory (for a Boussinesq fluid with a linear equation
of state), the rate of GPEr increase due to turbulent mixing
is equal to the rate of available mechanical stirring energy
G(KE) times the “mixing efficiency” parameter γmixing

1,
e.g., Osborn (1980). Thus, equating γmixingG(KE) with
Wr,forcing yields the following constraint on the rate of me-
chanical energy input G(KE):

G(KE) =
Wr,forcing

γmixing

. (1)

Estimating Wr,forcing = O(0.4 TW) from an observational
estimate of the rate of deep water formation, and using the
canonical value γmixing ≈ 0.2 of Osborn (1980), MW98 con-
cluded that G(KE) ≈ 2TW were needed to sustain turbu-
lent diapycnal mixing in the oceans. Since the wind is known
to contribute for about O(1 TW), about O(1TW) needs to
be attributed to other sources of stirring . The most nat-
ural candidate is the buoyancy forcing, which Oort et al.
(1994) estimated to contribute for G(APE) = 1.2 ±0.7TW,
where G(APE) is the production rate of available potential
energy by surface buoyancy fluxes. MW98 argued, however,
that Sandström (1908)’s “theorem” precludes G(APE) to
be large, and that only the work rate done by the tides can
realistically close the energy budget. According to MW98,
the buoyancy forcing alone could not produce an overturn-
ing circulation and turbulent diapycnal mixing rates such as
those observed in the oceans on its own because of Sand-
ström (1908)’s “theorem”.

1 Oakey (1982) shows that γmixing can be expressed as
γmixing = εP /εK , i.e., as the ratio of the local rate of avail-
able potential energy dissipation by turbulent molecular diffu-
sion over the local rate of turbulent kinetic energy dissipation by
molecular viscosity. This definition makes it clear that the “mix-
ing efficiency” γmixing , despite what its name suggests, is not
necessarily bound to be lower than unity. On the other hand, the
parameter Rf = γmixing/(1 + γmixing) is always comprised be-
tween 0 and 1, so that many authors favour reserving the term
“mixing efficiency’ to Rf rather than γmixing , e.g., Peltier and
Caulfield ( 2003). Rf is the so-called flux Richardson number.

c© 0000 Tellus, 000, 000–000



MECHANICALLY-STIRRED BUOYANCY-DRIVEN CIRCULATIONS 3

MW98’s rather controversial and somewhat provocative
stance succeeded in generating a considerable renewed inter-
est in the issues of ocean energetics, tidal mixing, and driv-
ing mechanisms of the AMOC, which had until then been
regarded as rather well understood. The interested reader
may consult Huang (1999), Wunsch and Ferrari (2004), Ny-
cander et al. (2007) and Kuhlbrodt et al. (2007) for a survey
of the most recent developments. The main questions raised
by Munk and Wunsch (1998)’s study, which seem to have
attracted the most attention so far, can be summarised as
follows:

(i) Does Sandström (1908)’s “theorem” really imply that
G(APE) should be negligibly small in the oceans? Alterna-
tively, is it true that Sandström (1908)’s “theorem” implies
that the buoyancy fluxes can produce only negligible work
rate when applied to the top of a stratified fluid?

(ii) How accurate is the value Wr,forcing = 0(0.4 TW) es-
timated by Munk and Wunsch (1998)? Does it overestimate
or underestimate Wr,forcing?

(iii) What is the nature of the so-called mixing efficiency
γmixing parameter? What is its physical origin? Should we
accept the canonical value γmixing ≈ 0.2 widely assumed by
oceanographers?

(iv) How do the nonlinearities of the equation of state
affect Munk and Wunsch (1998)’s conclusions regarding the
energy sources for mechanical stirring?

2.2 The work rate done by surface buoyancy fluxes

One of MW98’s most controversial assertion is perhaps
that the power input of mechanical energy due to the surface
buoyancy forcing, denoted by Wbuoyancy henceforth, must be
negligible because of Sandström (1908)’s “theorem”. So far,
it seems fair to say that this issue is still the subject of con-
siderable debate among oceanographers. To a large extent,
the current controversy owes its origin to the current lack of
agreement on how Wbuoyancy should be defined and quanti-
fied 2. The situation is somewhat peculiar, though, because
until recently, MW98 and a majority of earlier studies all
appeared to agree that Wbuoyancy should be measured by
the APE production rate G(APE), as is commonly done
in the atmospheric case following the pioneering work of
Lorenz (1955). Given that there exist known expressions
for G(APE), it is in principle rather straightforward us-
ing observations to assess its magnitude, as done by Oort
et al. (1994), even if large error bars arise in doing so. Why
Sandström (1908)’s “theorem”, which is merely an attempt
at empirically rationalising a number of laboratory experi-
ments that others have failed to reproduce, e.g., Coman et
al. (2006), and for which a sound theoretical basis is lacking,
should imply that G(APE) cannot be large in the oceans is
rather mysterious.

To add to the confusion, a dramatic paradigm shift was
surreptitiously introduced over the past decade by a number
of authors who started to advocate that Wbuoyancy should
rather be measured by the following quantity:

2 We note that Sandström (1908) does not provide any indication
on how to compute Wbuoyancy.

B =

∫

V

κgz∇2ρ dV = κg [〈ρ〉bottom − 〈ρ〉top] (2)

e.g., Paparella and Young ( 2002); Wang and Huang
(2005), which physically represents the work of expan-
sion/contraction due to the molecular diffusive heat-
ing/cooling in the Boussinesq approximation, where
〈ρ〉bottom and 〈ρ〉top denote the bottom and surface inte-
grated density respectively, with g the acceleration of grav-
ity, z the vertical coordinate, and κ the molecular diffusion.
From the viewpoint of APE theory, it can be shown that the
above quantity B is related to G(APE) by the formula:

B = G(APE) − D(APE), (3)

e.g., Tailleux (2009a), where D(APE) denotes the APE
dissipation rate due to molecular diffusion. For typical
oceanic values, Wang and Huang (2005) show that B =
O(15 GW), which is smaller by several orders of magnitude
than G(APE) = O(1.2 ± 0.7 TW) estimated by Oort et
al. (1994). Obviously, regarding B rather than G(APE) as
the definition of Wbuoyancy represents a dramatic paradigm
shift, which does not appear to have encountered much re-
sistance so far, so much that it is B that is implicitly used
as the definition of Wbuoyancy in the reviews by Wunsch and
Ferrari (2004) and Kuhlbrodt et al. (2007), which do not
even cite Oort et al. (1994)’s estimate for G(APE). Ap-
parently, regarding B as the definition of Wbuoyancy owes
much of its success to being conveniently small and vanish-
ing in the limit of vanishing molecular diffusion, in apparent
agreement with a widespread interpretation of Sandström
(1908)’s “theorem”.

Physically, B represents the work done by all buoyancy
fluxes. The latter not only include the surface buoyancy
fluxes, but the interior buoyancy fluxes due to turbulent
molecular diffusion as well. Therefore, identifying B with
Wbuoyancy is no more justified than identifying the work rate
done by the velocity against the stress tensor S, viz.,

v · ∇ · S =

∫

S

us · τdS

︸ ︷︷ ︸

G(KE)

−

∫

V

ρεdV

︸ ︷︷ ︸

D(KE)

, (4)

as the work rate done by the wind Wwind, where ε is the
viscous dissipation rate. As for B, the quantity v · ∇ · S in-
cludes the work done by the surface wind stress as well as
the work done against interior turbulent molecular viscous
forces. The fact that both B and v ·∇S incorporate internal
irreversible processes opposing the power input due to the
buoyancy or wind forcing clearly speaks against using the
latter as a definition of Wbuoyancy and Wwind respectively.
Moreover, we note that in the same way that Wwind ex-
plicitly depends upon the wind forcing, so should Wbuoyancy

explicitly depend upon the surface buoyancy forcing. The
latter property is satisfied by G(APE), but obviously not by
B. Making the distinction between G(APE) and B is cru-
cial, because Paparella and Young ( 2002)’s “anti-turbulence
theorem” shows that while the difference between G(APE)
and D(APE) must always be very small for Boussinesq hori-
zontal convection (see Eqs. (2) and (3)), there is no such con-
straint precluding G(APE) from being potentially large, as
further discussed below.

What is then the appropriate value of G(APE) in the
oceans? In support of MW98, it seems fair to say that a
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known shortcoming of Oort et al. (1994)’s methodology is its
reliance on the so-called Lorenz approximation, which usu-
ally overestimates APE (and plausibly G(APE) as well),
as discussed by Huang (1998). But can Lorenz’s approxi-
mation be so bad as to completely invalidate Oort et al.
(1994)’s G(APE) estimate? To resolve this issue, a deeper
look at exact expressions of G(APE) is needed. This was
done by Tailleux (2009a), who used both simple scaling ar-
guments and an indirect method to suggest that G(APE) =
O(0.4 − 0.5 TW) is a plausible estimate for typical oceanic
values, which coincides with Oort et al. (1994)’s lower bound
for G(APE). The indirect method relies on the possibility
to establish from first principles the following result:

G(APE) ≈ Wr,forcing, (5)

which physically states that the production rate of APE is
approximately equal to the rate at which GPEr decreases
as the result of high-latitude cooling (with a strict equal-
ity for a Boussinesq fluid with a linear equation of state),
see Tailleux (2009a). This result, which has been overlooked
so far, is important, because it shows that for consistency,
Wr,forcing and G(APE) must be assumed to be similar
numbers. In contrast, MW98 assumed G(APE) ≈ 0 but
Wr,forcing ≈ 0.4 TW. Of course, as for any observational
estimate, especially in the oceans, the accuracy of MW98’s
estimate for Wr,focing could itself be debated, as done by
some authors, see Hughes and Griffiths ( 2006) and the
review by Kuhlbrodt et al. (2007), but this is beyond the
scope of this paper. The important point, for the present
purposes, is that G(APE) and Wr,forcing should always be
similar numbers, plausibly O(0.4 − 0.5 TW) in the oceans,
even though it would be worthwhile to re-assess these num-
bers more carefully from the most recent observations, using
exact expressions for G(APE) rather than Lorenz’s approx-
imation.

2.3 Alternative views on MW98’s energy constraint

An important consequence of Eq. (5) is to allow for a
rewriting of MW98’s energy constraint Eq. (1) as follows:

G(APE)

G(KE)
≈ γmixing . (6)

This result is important for understanding how Wbuoyancy

should enter MW98’s constraint. Indeed, the issue has re-
mained unclear so far owing to MW98 discarding Wbuoyancy

and G(APE) on the basis of Sandstrom’s “theorem”. Based
on the existing literature, it would seem that the most nat-
ural approach to extend MW98’s constraint to account for a
nonzero value of Wbuoyancy = G(APE) would be by simply
adding G(APE) to G(KE) in Eq. (1), which would lead to:

[G(APE) + G(KE)] = γmixingWr,forcing. (7)

However, Eq. (6) above shows that this would be incorrect.
In fact, it turns out that MW98’s neglect of G(APE) led to
the correct result, not so much because G(APE) is actually
negligible, as discussed above, but rather because adding
G(APE) to G(KE) would somehow amount to the double
counting of the effects of cooling. This conclusion is sur-
prising and far from intuitive, as realizing that Eq. (7) is
erroneous requires recognising that the same physics sets
the values of both Wr,forcing and G(APE). Specifically, the

cooling, while lowering the centre of gravity of the back-
ground stratification at the rate Wr,forcing, also liberates a
similar amount of energy at the rate G(APE) that is avail-
able for reversible conversion into kinetic energy and hence
available for stirring as well.

The fact that it is MW98’s Eq. (1) that is correct, rather
than the more intuitive Eq. (7), seems to conflict with the
classical interpretation of Eq. (1) as a constraint on the
power input of mechanical energy given the observed rate
of deep water formation. Before addressing the latter issue,
it is useful to discuss how Eq. (1) should be generalised to
account for a nonlinear equation of state. Indeed, note that
Eq. (1) implicitly assumes a Boussinesq ocean with a linear
equation of state. Tailleux (2009a) addressed this question
by introducing the parameter ξ defined by:

ξ =
Wr,turbulent

D(APE)
(8)

where Wr,turbulent is the rate of change of the background
GPEr and D(APE) is the APE dissipation rate due to tur-
bulent molecular diffusion, integrated over the domain con-
sidered. As shown previously by Winters et al. (1995), ξ = 1
for a Boussinesq fluid with a linear equation of state. For wa-
ter or seawater, however, one may show that −∞ < ξ < 1,
as discussed in Tailleux (2009a) and Tailleux (2009b). The
precise value of ξ depends on the characteristics of the strati-
fication, and cannot be determined without a full analysis of
the problem at hand. In particular, estimating the relevant
value of ξ for the oceanic case remains to be done. Hints as to
what parameters control ξ are discussed in Tailleux (2009b).
Assuming that ξ has been determined in some way, Tailleux
(2009a) shows that it modifies Eq. (1) as follows:

G(KE) =
1 + (1 − ξ)γmixing

ξγmixing

G(APE)

=
1 − ξRf

ξRf

G(APE). (9)

where Rf = γmixing/(1 + γmixing) is a globally-defined flux
Richardson number. MW98’s Eq. (1) is recovered in the
limiting case ξ = 1, and by using the above result that
G(APE) ≈ Wr,forcing. Note that a nonlinear equation of
state increases the requirement on G(KE) for a given value
of G(APE) and γmixing, which is consistent with the find-
ings of Gnanadesikan et al. ( 2005).

An interesting consequence of the above extension and
generalisation of MW98’s results is to question whether Eq.
(9) (and hence Eq. (1)) can be legitimately interpreted as
a constraint on the amount of G(KE) required to sustain
diapycnal mixing in the oceans, as proposed by MW98.
Indeed, MW98’s interpretation seems to assume implicitly
that both G(APE) and γmixing are fixed in some sense. But
Eq. (9) can be rewritten equivalently either as:

G(APE) =
ξγmixing

1 + (1 − ξ)γmixing

G(KE), (10)

or as:

ξRf =
G(APE)

G(KE) + G(APE)
, (11)

which one may want to regard either as a constraint on
G(APE) or on the parameter ξRf . For instance, in the lat-
ter case, one could estimate the right-hand side of Eq. (11)
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from the plausible observational values G(KE) ≈ 1TW and
G(APE) ≈ 0.5 TW, yielding:

ξRf ≈
0.5

1.5
≈ 0.3,

and ask whether this value for ξRf , which physically rep-
resents the relative fraction of the total mechanical energy
input due to the buoyancy forcing, can be ruled out from
what is known empirically about ξ and Rf (or γmixing).
Regarding γmixing , although a majority of studies tends to
assume γmixing ≈ 0.2, it is important to note that the value
of γmixing is actually highly dependent upon the mixing pro-
cess considered. Thus, while γmixing appears to be indeed
close to γmixing ≈ 0.2 for mechanically-driven turbulent
mixing (as in shear flow instability for instance), buoyancy-
driven turbulent mixing is generally found to be more effi-
cient, with values as high as Rf = 0.5 (γmixing = 1) being
reported by Dalziel et al. (2008) in the context of Rayleigh-
Taylor instability, see Tailleux (2009a) for a discussion about
this point.

2.4 On the nature of mixing efficiency

A few comments on γmixing are in order, owing to the
importance of this parameter for the whole issue of ocean
energetics. The way such a parameter appears in Tailleux
(2009a)’s theory is as the ratio:

γmixing =
D(APE)

D(KE)
, (12)

where D(APE) and D(KE) are the global APE and KE
dissipation rates,

D(APE) =

∫

V

ρεP dV, D(KE) =

∫

V

ρεK dV (13)

with ǫP and ǫK being the local dissipation rates of APE
and KE due to molecular diffusive and viscous processes
respectively. In other words, the parameter γmixing enter-
ing all above formula is a globally-defined bulk value. This
value is therefore possibly different from the quantity ac-
tually measured in field campaigns or in laboratory experi-
ments, which by contrast is locally-defined over a consider-
ably smaller geographical region by γlocal

mixing = εP /εK , e.g.,
Oakey (1982). Note here that the concept of local APE dis-
sipation requires the concept of APE density, see Holliday
and McIntyre (1981) or Roullet and Klein (2009) for a clar-
ification about this idea. The link between the bulk value
of γmixing and its geographically variable local counterpart
γlocal

mixing(x) can be clarified if one writes:

γmixing =
D(APE)

D(KE)
=

∫

V
ρεP dV

∫

V
ρεK dV

=

∫

V
γlocal

mixingρεK dV
∫

V
ρεK dV

=

∑

i
γ

(i)
mixing

∫

Vi
ρεKdV

∑

i

∫

Vi
ρεK dV

=
∑

i

Wi γi
mixing , (14)

where the latter equation was obtained by decomposing the
total ocean into subdomains Vi over which γlocal

mixing(x) is ap-
proximately constant, the weights Wi being defined by:

Wi =

∫

Vi
ρεK dV

∫

V
ρεK dV

=

∫

Vi
ρεK dV

D(KE)
. (15)

This result, therefore, shows that the bulk value γmixing

used in the above formula (and in MW98’s paper) actually
represents a weighted average of the geographically vari-
able γlocal

mixing , the subdomains Vi with the largest turbu-
lent kinetic energy dissipation rates having the most weight.
Therefore, even if γlocal

mixing = 0.2 over 90% of the oceans
say (with a weight W = 0.9), having γlocal

mixing = 2 over
the remaining 10% (with a weight W = 0.1) could be po-
tentially sufficient to yield γmixing ≈ 0.38. Note that be-
cause such a value of γmixing is nearly twice as large as
the commonly used one, it would nearly halve the require-
ment on the energy constraint derived by MW98, thereby
eliminating the apparent shortfall in mechanical energy that
prompted so much interest in tidal mixing over the past
decade. This point is important, because it establishes that
the bulk value of γmixing relevant to the oceans cannot be
known accurately without sufficient knowledge of the places
where γloacl

mixing ≫ 0.2. An important outcome of this paper
is to provide numerical empirical evidence suggesting that
γloca

mixing > 1 are possible in convectively unstable regions.

2.5 Structure of the wind and buoyancy forcings

As said above, interpreting Eq. (9) as an energy con-
straint on the mechanical sources of stirring is debatable.
To shed light on this issue, some important points about
the nature and structure of G(KE) and G(APE) that have
been so far overlooked need to be raised. First, recall that
the work rate done by the surface wind stress τ is usually
expressed as follows:

G(KE) =

∫

S

τ · usdS, (16)

where us is the ocean surface velocity. Note that G(KE) ap-
pears as a correlation between the external forcing (the wind
stress) and a parameter depending upon the ocean circula-
tion (the surface velocity); in other words, a key property of
G(KE) is that it is not a function of the forcing alone, but of
the solution of the problem as well. This point is important,
because it makes it possible for the buoyancy forcing to ex-
ert some control on the wind-driven circulation through its
effect on the surface velocity. To assess the importance of
such an effect, one could for instance compute G(KE) for a
purely wind-driven homogeneous ocean model, and compare
it with that obtained for a wind-and buoyancy-driven ocean
model, which is beyond the scope of this paper. For the
present purposes, we shall take as our working assumption
that G(KE) is primarily determined by the wind forcing,
which a majority of oceanographers would probably agree is
a reasonable assumption.

The work rate done by surface buoyancy fluxes, on the
other hand, was shown by Tailleux (2009a) to be given by the
following expression (for a compressible thermally-stratified
fluid):

G(APE) =

∫

S

T − Tr

T
QsurfdS, (17)

where T is the surface temperature of the fluid parcels, and
Tr the temperature the surface parcels would have if dis-
placed adiabatically to their level in Lorenz (1955)’s ref-
erence state, while Qsurf is the diabatic rate of heating
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cooling/heating due to the surface heat fluxes. A useful ap-
proximation to Eq. (17) can be obtained by expanding T
as a Taylor series around the surface pressure Pa, i.e., T ≈
Tr +Γr(Pa−Pr)+O((Pa−Pr)

2), where Γr = αrTr/(ρrCpr)
is the adiabatic lapse rate, leading to:

G(APE) ≈ −

∫

S

αr(Pr − Pa)

ρrCpr

QsurfdS

≈

∫

S

αrgzr

Cpr

QsurfdS, (18)

by using the approximation Pr −Pa ≈ −ρ0gzr. The last ex-
pression in Eq. (18) is actually that derived by Winters et al.
(1995) in the context of the Boussinesq approximation, with
αr and Cpr constant (the suffix r indicates that the variables
have to be estimated in Lorenz (1955)’s reference state). Like
G(KE), G(APE) is a correlation between a term linked to
the external forcing (the surface heating/cooling rate) and a
parameter depending on the particular state of the system,
namely (T − Tr)/T ≈ αr(Pa − Pr)/(ρrCpr) ≈ αrgzr/Cpr.
Eqs. (17) and (18) make it possible, therefore, for the
wind (and tides) to control the buoyancy-driven circulation
through their effects on the stratification. Eq. (18) can be
written as follows:

G(APE) ≈
αg

Cp

(hcool
r − hheat

r )Qheating (19)

where hcool
r and hheat

r are appropriate values for the refer-
ence depths associated with the net cooling Qcooling and
net heating Qheating respectively, with Qcooling = Qheating

in steady state conditions. Specifically, hheat
r and Qheating

are defined by:

hheat
r =

∫

S+
|zr|QsurfdS

∫

S+
QsurfdS

, (20)

Qheating =

∫

S+

QsurfdS, (21)

assuming α and Cp constant, where S+ represents the frac-
tion of the surface restricted to positive values of Qsurf ,
with a symmetric definition for hcool

r and Qcooling. Phys-
ically, hheat

r is likely small, as heating in the oceans oc-
curs primarily over the warmest (and hence lightest) tem-
peratures, while hcool

r is a direct measure of the ther-
mocline depth. Plausible oceanic values α = 10−4K−1,
Cp = 4.103 J.K−1.kg−1, g = 10 m.s−2, Qheating = 2PW =
2.1015 W, hcool

r − hheat
r = 103 m yields G(APE) = 0.5 TW,

suggesting that G(APE) is comparable with the work rate
done by the wind, consistent with the findings of Oort et
al. (1994). Eqs. (18) and (19) show that the wind and tides
can control the amount of energy extracted from the buoy-
ancy forcing by controlling the thermocline depth. Interest-
ingly, this behaviour appears to be consistent with the re-
cent laboratory experiments by Whitehead and Wang (2008)
showing the strength of horizontal convection to be signifi-
cantly enhanced by the lateral action of a stirring rod (see
Hughes and Griffiths ( 2008) for a review on horizontal con-
vection). Indeed, the authors find that the enhanced over-
turning strength corresponds to a deepening of the stratifica-
tion, which suggests that the stirring rod causes an increase
in G(APE), thereby allowing more energy to be extracted
from the buoyancy forcing, resulting in a stronger buoyancy-
driven circulation.

3 Theoretical results about the effects of

mechanical stirring on the work rate done by

surface buoyancy fluxes

3.1 Summary of Tailleux (2009)’s theory

The following seeks to summarise and review the key
elements of the theoretical framework describing the ener-
getics of thermodynamically and mechanically forced turbu-
lent stratified fluids recently developed by Tailleux (2009a),
building upon the previous works by Winters et al. (1995)
and Lorenz (1955). This framework is based on the the
decomposition of the total energy into five distinct en-
ergy reservoirs, namely: 1) volume-integrated kinetic en-
ergy (KE); 2) volume integrated available potential en-
ergy (APE); 3) volume integrated background gravita-
tional potential energy (GPEr); 4) volume integrated ex-
ergy IEexergy (a subcomponent of internal energy IE asso-
ciated with the reference vertical temperature gradient); 5)
volume integrated dead internal energy IE0 (a subcompo-
nent of internal energy IE associated with the equivalent
thermodynamic equilibrium temperature of the system), for
which the evolution equations are expressed by:

dKE

dt
= −C(KE, APE) + G(KE) − D(KE), (22)

dAPE

dt
= C(KE, APE) + G(APE) − D(APE), (23)

dGPEr

dt
= Wr,turbulent + Wr,laminar

︸ ︷︷ ︸

Wr,mixing

−Wr,forcing, (24)

dIE0

dt
= (1−Υ0)Q̇net +D(APE)+D(KE)−G(APE),(25)

dIEexergy

dt
= Υ0Q̇net − [Wr,turbulent + Wlaminar]

︸ ︷︷ ︸

Wr,mixing

, (26)

such that:

TE = KE + APE + GPEr + IE0 + IEexergy

represents the total energy of the fluid. The precise defi-
nitions of all energy reservoirs and energy conversion terms
are given below. Note that the above evolution equations are
exact, but for the neglect of very small terms, see Tailleux
(2009a) for justification. Moreover, it is also important to
note that the above evolution equations do not rely on any
form of Reynolds decomposition and associated closure as-
sumption, unlike most current treatment of ocean energetics.

The total kinetic energy is defined by:

KE =

∫

V

ρ
v2

2
dV ;

the available potential energy is defined by:

APE =

∫

V

ρ [gz + I(Σ, υ)] dV

︸ ︷︷ ︸

PE

−

∫

V

ρ [gzr + I(Σ, υr)] dV

︸ ︷︷ ︸

PEr

defined as in Lorenz (1955) as the difference between the
potential energy PE (the sum of the gravitational potential
energy GPE and internal energy IE) of the actual state
minus the background potential energy PEr of the refer-
ence state, i.e., the PE of the state of minimum potential
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MECHANICALLY-STIRRED BUOYANCY-DRIVEN CIRCULATIONS 7

energy achievable in an adiabatic rearrangement of the fluid
parcels (subscript r), where g is gravity, ρ is density, z is
the vertical coordinate pointing upward, and I the specific
internal energy, viewed as a function of specific entropy Σ
and specific volume υ; the gravitational potential energy of
the background reference state is defined by:

GPEr =

∫

V

ρgzr dV,

where zr = zr(x, t) represents the vertical position of the
fluid parcels in their reference state; the dead part of internal
energy is defined by:

IE0 =

∫

V

ρ0I(T0, P0)dV

defined as the internal energy of the isothermal state of tem-
perature T0 having the same potential energy as the back-
ground reference state, i.e., such that

PE0 = PEr,

where the specific internal energy I is best regarded here as
a function of temperature and pressure; the exergy part of
internal energy is defined by

IEexergy = IEr − IE0,

where IEr is the internal energy of Lorenz (1955)’s refer-
ence state. Physically, the separation of internal energy into
its dead and exergy parts is motivated by the need to dis-
tinguish between processes primarily affecting the equiva-
lent thermodynamic temperature T0 rather than the verti-
cal variations of the reference temperature profile T ′

r(z, t) =
Tr(z, t)− T0. For instance, Tailleux (2009a) argues that the
diffusive dissipation of APE at the rate D(APE) primarily
affects T0, whereas the GPEr variations due to turbulent
molecular diffusion occurring at the rate Wr,mixing primar-
ily affects T ′

r(z, t).
The total energy is TE = KE + GPE + IE, where

GPE = AGPE + GPEr, and IE = AIE + IEr = AIE +
IEexergy+IE0. The total energy satisfies the evolution equa-
tion:

dTE

dt
= G(KE) + Q̇net (27)

obtained by summing (22)-(26). In a steady state, we see
that Qnet = −G(KE), i.e., there must be some net cooling
in order to balance the energy budget.

In Eqs (22-23), the term C(KE, APE) represents the
reversible conversion between KE and APE. Its explicit ex-
pression is given by:

C(KE, APE) =

∫

V

ρ
(

gw − P
Dυ

Dt

)

dV (28)

where P is the pressure, w is the vertical velocity, υ = 1/ρ is
the specific volume. This expression reduces, in the Boussi-
nesq approximation, to the more familiar expression:

C(KE, APE) =

∫

V

ρgw dV (29)

which is often referred to as the “buoyancy flux”.
The terms G(KE) in Eq. (22), G(APE) in Eq. (23),

Q̇net in Eqs (25) and (26), and Wr,forcing in Eq. (24) repre-
sent forcing terms, in the sense that these terms involve the

external forcing (i.e., the surface stress τ or surface heat flux
Qsurf) explicitly. The explicit expressions for these terms is
given by:

G(KE) =

∫

S

us · τ dS, (30)

G(APE) =

∫

S

(
T − Tr

T

)

QsurfdS, (31)

Q̇net =

∫

S

Qsurf dS, (32)

Wr,forcing = −

∫

S

αrP
′

r

ρrCpr

QsurfdS. (33)

Note that in the case of the APE equation (23), G(APE)
can be regarded both as a forcing term as well as a con-
version between dead internal energy IE0 and APE. Here
appears the connection with the classical thermodynamic
theory of heat engines, in the sense that G(APE) appears
as a surface integral of the product of a thermodynamic effi-
ciency like coefficient (i.e., (T−Tr)/T ) times the surface heat
flux Qsurf . From that viewpoint, the production of avail-
able potential energy explicitly appears as the conversion of
internal energy into mechanical energy, which is precisely
what heat engines do. As discussed in Section 2, a Taylor
series expansion of the surface temperature T in Eq. (31)
shows that at leading order (T − Tr)/T ≈ −αrP

′

r/(ρrCpr),
and hence that G(APE) ≈ Wr,forcing. Nevertheless, the
fact that in reality G(APE) and Wr,forcing are never ex-
actly equal motivates the introduction of the parameter
ξ2 = Wr,forcing/G(APE) = O(1) to capture the difference.
As discussed in the introduction, the differences between
G(APE) and Wr,forcing vanish in the Boussinesq approxi-
mation, in which case:

G(APE) = Wr,forcing =

∫

S

αgzr

Cp

QsurfdS. (34)

The above equations suggest that a thermodynamic effi-
ciency appropriate for the ocean should be based on the
parameter

Υ =
αP

ρCp

(35)

for suitably chosen values of of α, P , ρ and Cp. Note that
among these four quantities, only P can vary significantly.
The parameter Υ0 is defined by

Υ0 =

∫

V0
α0P

′

0dV0
∫

V0
ρ0Cp0dV0

(36)

where all the quantities with subscripts 0 refer to quantities
defined for the equivalent isothermal thermodynamic equi-
librium state of temperature T0 defined above.

The quantities whose magnitude increase due to to tur-
bulence are D(KE), Wr,mixing and D(APE), whose explicit
expressions are given by:

D(KE) =

∫

V

ρεKdV, (37)

Wr,mixing = −

∫

V

κρCp∇T · ∇

(
αrP

′

r

ρrCpr

)

dV, (38)
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D(APE) =

∫

V

κρCp∇T · ∇
(

T − Tr

T

)

dV, (39)

where P ′

r = Pr−Pa, with Pa the atmospheric pressure. As is
well known, D(KE) represents the dissipation rate of kinetic
energy into internal energy. The nature of D(APE) and
Wr,mixing , however, was only clarified by Tailleux (2009a),
who showed that Wr,mixing represented the conversion rate
between IEexergy and GPEr, while D(APE) represent
the dissipation of APE into IE0. The intensification of
Wr,mixing is best evidenced by looking at its form in the
case of a Boussinesq fluid with a linear equation of state for
which one has:

Wr,mixing =

∫

V

κ‖∇zr‖
2αg

∂Tr

∂zr

dV

=

∫

V

κ‖∇zr‖
2ρ0N

2
r dV =

∫

V

(KT + κ)ρ0N
2
r dV, (40)

where KT is the turbulent effective diffusivity defined by
Winters et al. (1995). It is customary to write Wr,mixing =
Wr,laminar + Wr,turbulent as the sum of a laminar and tur-
bulent (or non-laminar) contributions,

Wr,laminar =

∫

V

καg
∂Tr

∂z
dV = κg [〈ρr〉bottom − 〈ρr〉top] (41)

Wr,turbulent =

∫

V

κ
[
‖∇zr‖

2 − 1
]
αg

∂Tr

∂zr

dV (42)

where 〈.〉 denotes a horizontal integral, with top and bot-
tom referring to the surface integral estimated at the top
and bottom of the domain respectively. For simplicity, only
horizontal surfaces are considered, i.e., topographic effects
are not considered here. Eq (42) shows that Wr,turbulent will
differ from zero as soon as the isopycnal surfaces depart from
their reference position, and hence even in quasi-laminar sit-
uations, such as the particular cases considered in this paper.

The two terms D(APE) and Wr,turbulent are generally
found to be strongly correlated. This correlation was dis-
cussed empirically in Tailleux (2009b), who characterised
the correlation in terms of the following ratio:

ξ =
Wr,turbulent

D(APE)
(43)

which is generally such that −∞ < ξ < 1 for water or
seawater. It is shown that the case of a Boussinesq fluid
corresponds to the idealised limit ξ −→ 1. The fact that
Wr,turbulent and D(APE) coincide for a Boussinesq fluid
with a linear equation of state was first established by Win-
ters et al. (1995). Fig. (1) schematically illustrates the en-
ergetics of a mechanically and thermodynamically forced
stratified fluids associated with the above equations. For
all practical purposes, G(APE) and G(KE) represent the
work rate done by the buoyancy and mechanical forcing
respectively, whereas D(APE) and D(KE) represent the
two terms dissipating the “available” mechanical energy
ME = APE + KE.

3.2 Coupling between G(APE) and G(KE)

A central point of this paper is to emphasise the fact
that G(APE) depends sensitively upon the oceanic strat-
ification, making it possible for the mechanical forcing to

control the value of G(APE) by modulating the thermo-
cline depth via its control on turbulent diapycnal mixing.
This dependence of G(APE) on the mechanical forcing is re-
flected by the possibility to link G(APE) to the mechanical
power input G(KE) due to the wind and tides, as previously
seen with the rewriting of MW98’s energy constraint as Eq.
(6). The following shows how to derive this result from first
principles, using Tailleux (2009a)’s framework summarised
above. To that end, we first construct the mechanical energy
balance by summing the steady-state version of the KE and
APE equations, which yields:

G(APE) + G(KE) = D(APE) + D(KE). (44)

Now, by combining this equation with the definition of the
globally-defined flux Richardson number

Rf =
γmixing

1 + γmixing

=
D(APE)

D(APE) + D(KE)
, (45)

one may write:

D(APE) = Rf [G(APE) + G(KE)]. (46)

Next, we turn to the steady-state GPEr balance, viz.,

Wr,turbulent + Wr,laminar = Wr,forcing. (47)

As mentioned above, Wr,forcing ≈ G(APE) to a very good
approximation. To be mathematically rigorous, it is possible
to introduce a parameter ξ2 = Wr,forcing/G(APE) ≈ 1.
Using the definition of ξ = Wr,turbulent/D(APE) above,
allows one to rewrite the GPEr budget as follows:

ξD(APE) + Wr,laminar = ξ2G(APE). (48)

Combining this result with Eq. (46) yields:

G(APE) =
ξRf

ξ2 − ξRf

G(KE) +
Wr,laminar

ξ2 − ξRf

. (49)

Eq. (49) is one of the most important results of this paper,
as it represents one way to demonstrate the interconnec-
tion between the mechanical and thermodynamical power
input in the most general settings. Note that Eq. (9) is an
exact result, valid whenever steady-state conditions can be
assumed. A useful limit is the case of the widely used Boussi-
nesq model for which ξ = ξ2 = 1, in which case Eq. (49)
simplifies to:

G(APE) =
Rf

1 − Rf

G(KE) +
Wr,laminar

1 − Rf

= γmixingG(KE) + (1 + γmixing)Wr,laminar. (50)

Eq. (49) shows that in absence of mechanical forcing, the
work rate done by the surface buoyancy fluxes is given by:

G(APE) =
Wr,laminar

ξ2 − ξRf

(51)

or, for a Boussinesq fluid:

G(APE) =
Wr,laminar

1 − Rf

= (1 + γmixing)Wr,laminar. (52)

The latter two results are interesting, because they do not
rule out the possibility for G(APE) to be large, provided
that the parameters ξ2 − ξRf or 1 − Rf can become small
enough. The problem, however, is that the latter conditions
can be met only if Rf can become close to unity, or equiv-
alently if γmixing ≫ 1 (for a Boussinesq fluid), which is
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much larger than the widely and commonly used canonical
value γmixing ≈ 0.2. On the other hand, we are not aware
that γmixing has ever been measured in the context of hor-
izontal convection, leaving the question open. To settle the
issue, therefore, one needs to establish whether or not val-
ues of γmixing ≫ 1 are possible in this context. Proving that
γmixing can never be much larger than unity would be suffi-
cient to definitively establish that the buoyancy power input
can never be large for horizontal convection, which would
support Sandström (1908)’s view. On the other hand, show-
ing that γmixing can indeed be much larger than unity would
establish, in contrast, that Sandström (1908)’s “theorem” is
invalid, and hence that buoyancy forcing in the context of
horizontal convection can support both a strong overturn-
ing circulation and turbulent diapycnal mixing rates. The
idealised numerical experiments presented below seek to get
insight into this issue, by showing for the first time evidence
of values for γmixing ≫ 1.

Perhaps the most important feature of Eq. (49) is
to reveal that horizontal convection becomes mechanically
controlled when the mechanical power input is such that
ξRfG(KE) ≫ Wr,laminar, which is possible even for rela-
tively low values of γmixing — a very important point. This
theoretical result suggests therefore that G(APE) can be
dramatically enhanced by the presence of mechanical stir-
ring, provided that the latter provides positive work to the
system (i.e., such that G(KE) > 0). Negative work, on the
other hand, should reduce the strength of the buoyancy-
driven circulation. The numerical examples studied next
seek to illustrate these different ideas.

4 Numerical experiments

The physical implications of Eqs. (49) and (50) are ex-
plored in the following by means of numerical experiments
of horizontal convection affected or not by the effects of me-
chanical stirring.

4.1 Model description

The idealised configuration considered here is similar
to that used in many previous studies, e.g., Beardley and
Festa ( 1972); Paparella and Young ( 2002). The effect of
mechanical stirring is modelled here as a forcing term in
the vorticity equation. This is different from Beardley and
Festa ( 1972) who considered the effects of a stress applied
to the external boundaries. A stress condition is not used
in the present study, in order to control the spatial extent
over which the mechanical stirring is acting. This is found
necessary to avoid the buoyancy-driven cell to be completely
overcome by the mechanically-driven cell, as is the case in
Beardley and Festa ( 1972). The numerical implementation
of such a model was initially that described by Marchal
(2007), which is based on a grid with collated temperature
and streamfunction points. Despite the use of Arakawa ja-
cobians, however, it was found that the method did not con-
serve the mean temperature, resulting in a spurious net heat
flux even in steady-state conditions. For this reason, the code
was slightly modified to use a staggered grid instead, with
temperature points being at the centre of the grid boxes.

Such an approach was found to ensure the conservation of
the mean temperature and its variance.

The equations solved by the numerical model are the
Boussinesq equations for a fluid with a linear equation of
state:

∂ω

∂t
= J(Ψ, ω) − gα

∂T

∂x
+ ν∇2ω + F (x, z, t) (53)

∂T

∂t
= J(Ψ, T ) + κ∇2T, (54)

where ω = ∇2Ψ is the vorticity, T is the temperature,
J(a, b) = ∂a/∂x∂b/∂z − ∂a/∂z∂b/∂x is the Jacobian op-
erator, g is the acceleration due to gravity, α is the thermal
expansion coefficient assumed to be constant, ν is the kine-
matic viscosity, κ is the thermal diffusivity, and F is a term
aimed at modelling the effect of mechanical stirring that is
further described below.

Following Marchal (2007), the above system is made
dimensionless as follows: t = (L2/κ)t∗, (x, z) = L(x∗, z∗),
ω = (κ/L2)ω∗, T = ∆TT∗, and Ψ = κΨ∗, where the starred
quantities are the dimensionless ones. The dimensionless
forms of the above equations become, after dropping the
stars for clarity:

∂ω

∂t
= J(Ψ, ω) + Pr

(

−Ra
∂T

∂x
+ ∇2ω

)

+ F ∗, (55)

∂T

∂t
= J(Ψ, T ) + ∇2T, (56)

where Ra = gα∆TL3/(νκ) is the Rayleigh number, and
Pr = ν/κ is the Prandtl number. In the numerical exper-
iments described here, we used Pr = 10 and Ra = 105.
For comparison, note that typical oceanic values are Ra =
O(1020), e.g., Paparella and Young ( 2002).

As in Paparella and Young ( 2002), the fluid is forced by
a time-independent surface temperature boundary condition
varying linearly in x. All experiments were performed at 4
different numerical resolutions in a 2-D square geometry,
50 × 50, 100 × 100, 150 × 150, and 200 × 200 in order to
verify the robustness of our results to the model resolution.
At equilibrium, the forcing term in the vorticity equation is
associated with the work rate:

G(KE) =

∫ ∫

V

FΨdxdz (57)

which can be in principle either positive or negative. In this
paper, the mechanical forcing takes the following analytical
form:

F (x, z, t) = I sin2 ((3z + 2)π) sin2 (2πx), (58)

with I taking on different values detailed in the next para-
graph. The shape of the forcing is illustrated in Fig. 2.

4.2 Experiments

Four idealised experiments were considered:

(i) Purely buoyancy-driven (i.e., I = 0, no mechanical
forcing);

(ii) “Direct” Mechanical forcing (I = 30);
(iii) Weak “indirect” mechanical forcing (I = −30);
(iv) Strong “indirect” mechanical forcing (I = −90).
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By definition, the purely-buoyancy driven case develops
a thermally-direct circulation. This is the reference “control”
case to be compared with the mechanically-stirred ones. The
purpose of Experiment (ii) seeks to investigate the effect of
“direct” mechanical forcing on horizontal convection, i.e.,
which corresponds to the case where the mechanical forcing
tends to enhance the buoyancy-driven cell. As the mechan-
ical and thermodynamic forcings act in the same way, this
case is always associated with G(KE) > 0. Accordingly, Eq.
(50) suggests that this should increase G(APE) and hence
the strength of the buoyancy-driven cell, with a correspond-
ing increase in KE, APE, Ψ and D(APE) over the purely
buoyancy-driven case.

In contrast, experiments (iii) and (iv) seek to explore
the effect of “indirect” mechanical forcing, i.e., which cor-
responds to the case where the mechanical forcing tends to
oppose the thermal forcing. The case (iii) is designed so that
the mechanical forcing is too weak to reverse the sense of the
buoyancy-driven cell, in which case it always opposes the
buoyancy-driven cell, and hence results in G(KE) < 0. Ac-
cording to Eq. (50), a decrease in all quantities KE, APE,
Ψ, D(APE), and G(APE) is expected in that case. In case
(iv), the mechanical forcing becomes strong enough to cre-
ate an “indirect” cell flowing in the sense opposite to the
buoyancy-driven cell, for which G(KE) > 0. According to
Eq. (50), this should result in the increase of all the above
quantities.

4.3 Results

The results are synthesised in Figs. 3 and 4, which illus-
trate the streamfunction and temperature associated with
the 4 different experiments (resolution 150 × 150). Fig. 5
illustrates the forcing and dissipation quantities G(KE),
G(APE), D(APE) and D(KE) for the 4 experiments and
model resolutions used. Tables 1, 2, 3, 4 and 5 respectively
list the results for Ψmax, the maximum strength of the
buoyancy-driven overturning cell, KE, APE, γmixing and
Hmax, the maximum value of the heat transport, for the 4
experiments and model resolutions used. Most of the quan-
tities are rather straightforward to diagnose from the model
outputs. The only real difficulty lies in the estimation of
APE, D(APE) and G(APE). To that end, one first needs
to compute the reference state, which is easily achieved by
sorting the temperature profile at each time step. The differ-
ence in GPE between the actual and sorted states yields the
APE. The above sorting method yields a permutation which
can then be used to sort the diabatic heating term due to
molecular diffusion. Separating the contributions due to the
surface fluxes from that due to the internal heating yields
the terms G(APE) and D(APE). The procedure used is
close to that described in Winters et al. (1995) and several
other recent studies.

As expected, all plots in Fig. 3 show a well-marked
thermally-direct cell in all cases. Fig. 3(b) shows that the
buoyancy-driven overturning cell is greatly strengthened by
the addition of direct mechanical forcing. This can be ex-
plained by both the observed increase in G(APE) (Fig. 5,
panel (b)), as well as by the direct effect of the mechani-
cal forcing as a source of vorticity of the same sign as the
thermal forcing. In such a case, therefore, the mechanical
forcing is able to act both directly as a source of vorticity of

the right sign, and indirectly by increasing diapycnal mixing
and hence G(APE). Fig. 4 (b) shows that the increase in
G(APE) is associated with the dense plumes penetrating
deeper in that case.

Fig. (3) (c) shows that the weak indirect mechani-
cal forcing results in a decrease of the buoyancy-driven
overturning cell, which is expected from the theory when
G(KE) < 0, and which is shown by the weaker values of
Ψmax, KE, and APE given in Tables 1, 2, and 3. The weak-
ening of the overturning cell results from the decrease in
G(APE), despite an apparent increase in the thermocline
depth seen in Fig. 4. Note, however, that the increase in
thermocline depth is expected to increase G(APE) only in
absence of changes in the surface heat fluxes. Whether the
latter occur can be determined from the value of the max-
imum heat transport Hmax listed in Table 5. Here, we see
that the increase in thermocline depth is simultaneously as-
sociated with a significant reduction in the heat transport
over the purely buoyancy-driven case, as seen in Table 5.

Fig. (3) (d) shows that when the indirect mechanical
forcing becomes strong enough to generate an indirect cell,
so that G(KE) > 0, the buoyancy-driven overturning cell is
also increased. In that case, there is no ambiguity that the
thermally-direct cells increase as the result of the increase in
G(APE), since the mechanical forcing is a source of opposite
vorticity to that induced by the thermal forcing.

The resolution is found to have a varying impact de-
pending on the quantity and type of experiment considered.
For instance, Table 1 shows that Ψmax increases slightly
with increasing resolution in the purely buoyancy-driven
case (a) and weak indirect mechanical forcing case (c),
whereas the opposite occurs for the direct mechanical forc-
ing (c). No systematic effect occurs in the strong indirect
mechanical forcing case (d). In general, however, it is diffi-
cult to detect any systematic effect of the resolution on the
results, which overall appear to be similar independently of
the resolution. The main exception is the dissipations ra-
tio or mixing efficiency γmixing = D(APE)/D(KE), which
appears to be systematically increasing with the model res-
olution regardless of the types of experiment, as seen in Ta-
ble 4. Apart from this, γmixing varies significantly across
the different experiments. The most important result is the
finding of values as high as γmixing = 2.42 in the purely
buoyancy-driven case, achieved at the highest model resolu-
tion 200×200 considered. Importantly, the mixing efficiency
appears to be always reduced over its value in the purely
buoyancy-driven case. The strongest reduction is found in
the strong indirect mechanical forcing (d), for which the
mixing efficiency reduces to γmixing ≈ 0.4, which is only
twice as large as the canonical value γmixing = 0.2. The
main point here is to show that the value γmixing = 1 ob-
tained in the context of buoyancy-driven turbulent mixing
resulting from Rayleigh-Taylor instability by Dalziel et al.
(2008) is not the maximum possible value for γmixing .

Another interesting issue concerns the effect of mechan-
ical stirring on the maximum heat transport, which was also
raised in MW98’s study. Table 5 shows that the maximum
heat transport is enhanced in the two cases where the me-
chanical forcing acts as a net energy supply to the fluid,
i.e. (b,d), whenever G(KE) > 0, irrespective of whether
the mechanical forcing is direct or indirect. The strongest
effect, however, appears to occur for the direct mechanical
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forcing case (b). The weak indirect mechanical forcing case
(c), on the other hand, yields a maximum heat transport
that is weaker than in the purely buoyancy-driven case. In
the actual oceans, the wind forcing drives surface Ekman
cells that tend either to reinforce or oppose the large-scale
thermally direct cell in the Atlantic ocean responsible for the
Atlantic heat transport. Overall, however, they are expected
to act as a net energy supply to the oceans. The above re-
sults suggest, therefore, that the wind may contribute in
the oceans, possibly significantly, to enhance the poleward
heat transport over the purely buoyancy-driven case. From
the above results, we can see that it is difficult to deter-
mine whether the wind stress in the Atlantic Ocean mainly
forces the AMOC directly by acting as a source of vortic-
ity in the meridional/vertical plane of the same sign as the
buoyancy forcing, as in (b), or whether it is acting indirectly
by controlling the turbulent diapycnal mixing and the ther-
mocline depth, as in (d). The importance of the case (c) for
the oceanic case is unclear, but may be important region-
ally whenever the surface wind stress opposes surface ocean
currents.

5 Discussion and conclusions

Over the past decade, a widespread recurrent argu-
ment has been that buoyancy fluxes, because they are pri-
marily acting at the ocean surface, are too inefficient to
contribute significantly to the mechanical energy produc-
tion in the oceans. The only theoretical basis supporting
this idea, however, appears to rely either on the contro-
versial Sandström (1908)’s “theorem”, or more recently, on
Wang and Huang (2005)’s definition of Wbuoyancy, which
takes its roots in the “anti-turbulence theorem” of Paparella
and Young ( 2002). These two approaches, however, appear
to be incompatible with that proposed by Lorenz (1955)
APE theory, which established more than fifty years ago
that Wbuoyancy should be measured by the APE produc-
tion rate G(APE), for which explicit and rigorous defini-
tions are available both for Boussinesq and non-Boussinesq
fluids, regardless of whether the equation of state is linear
or nonlinear. Importantly, G(APE) provides a definition of
Wbuoyancy in which the buoyancy forcing appears explicitly,
which is not the case of Wang and Huang (2005)’s quan-
tity; as to Sandström (1908)’s paper, it does not offer any
explicit formula for Wbuoyancy. Assessing the importance of
the mechanical energy production due to surface buoyancy
fluxes, therefore, simply amounts to estimating plausible val-
ues for G(APE), by all available theoretical and observa-
tional means. If one accepts that G(APE) is the relevant
measure of Wbuoyancy, then one is inevitably led to the con-
clusion that surface buoyancy fluxes must significantly con-
tribute to the mechanical energy production in the oceans,
similarly as the winds and tides. The main new subtlety
here, however, is to point out that G(APE) is not deter-
mined by the surface buoyancy fluxes alone, but is also a
strong function of the ocean stratification. This is crucial,
because this allows for G(APE) to be strongly controlled by
the winds and tides. Such an approach establishes, among
other things, that Sandström (1908)’s “theorem” cannot be
used to make any meaningful predictions about G(APE).

If anything, it is APE theory that should serve to evaluate
Sandström (1908)’s “theorem”, not the reverse.

Physically, the theoretical mechanism discussed in this
paper is as follows. The work done by the stirrer causes an
increase in turbulent kinetic energy and available potential
energy, which in turn causes an increase in turbulent molecu-
lar diffusion, thereby increasing the downward rate of trans-
fer of buoyancy from the surface. This causes a deepening
of the thermocline, as is clearly evident in Whitehead and
Wang (2008)’s results, which in turn allows the dense plumes
to reach deeper, thereby increasing G(APE). This results in
more power being extracted from surface buoyancy fluxes,
resulting in a stronger buoyancy-driven overturning circu-
lation. An important advantage of the present mechanism
is that it does not require an inverse energy cascade, which
seems the only way by which the energy supplied by the
stirrer could directly end up enhancing the strength of the
large-scale overturning circulation. Moreover, the present
mechanism is also attractive, for it offers a natural way to
account for two important empirical results, namely the sen-
sitivity of the numerically simulated AMOC to the turbulent
diffusivity Kv, e.g., Colin de Verdière (1993) and southern
winds at the latitude of Drake passage (the so-called Drake
passage effect) first pointed out by Toggweiler and Samuels
(1995). In the latter case, this is because the southern winds
drive a northward Ekman transport that constantly brings
dense waters over lighter waters, causing static instability
and intense stirring. This idea finds support in the numer-
ical experiments by Vallis (2000), in which the simulated
ocean stratification becomes much shallower if the ACC is
suppressed. This is only possible if the presence of the ACC
results in considerably more mixing of ocean waters.

The interdependency of the power input by the mechan-
ical and thermodynamical forcings is further illustrated by
the formula G(APE) ≈ γmixingG(KE) relating G(APE)
and G(KE) via the bulk mixing efficiency γmixing . This for-
mula, which is simply a rewriting of MW98 energy constraint
(1) accounting for the result Wr,forcing ≈ G(APE), unam-
biguously demonstrates the control exerted by the mechan-
ical forcing and turbulent diapycnal mixing on G(APE).
Whether such a formula can be interpreted as a constraint
on G(KE), as suggested by MW98, is however not entirely
clear because this implicitly assumes that both G(APE)
and γmixing can be regarded as known and fixed parame-
ters. But this fails to be supported by the present results,
which by contrast suggest that both G(APE) and γmixing

are strongly sensitive to the particular settings considered.
In fact, our impression is that of all three quantities G(KE),
G(APE), and γmixing , it is G(APE) that is likely to be
the less fixed and most variable in the oceans, a postulate
that can in principle be investigated more systematically by
means of numerical experiments with coupled climate mod-
els. As a result, the correct interpretation of the above for-
mula, whose generalisations include Eqs. (49) and (50) seems
to be that there is a two-way control of the mechanical forc-
ing on the buoyancy-driven circulation and vice-versa. In
this paper, horizontal convection is found to be systemati-
cally stronger whenever the mechanical forcing acts as a net
energy source for the fluid, i.e., when G(KE) > 0. Interest-
ingly, this behaviour seems to be also present in numerical
ocean general circulation models. For instance, De Boer et
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al. (2008) found no overturning circulation in a coarse reso-
lution OGCM when the wind forcing is suppressed.

The present theoretical framework is also useful to shed
light on the much debated issue of whether surface buoyancy
forcing alone can support a strong overturning circulation
and high rates of turbulent diapycnal mixing. In this re-
gard, the empirical evidence is not really conclusive, e.g.,
see Hughes and Griffiths ( 2008). From a theoretical view-
point, the problem amounts to establishing whether horizon-
tal convection can give rise to large value of G(APE). From
the present results, Eqs. (50) and (47) show that in absence
of mechanical forcing, the APE production and dissipation
rates G(APE) and D(APE) are given by:

G(APE) = (1 + γmixing)Wr,laminar

= (1 + γmixing)κg
(
ρbottom − ρtop

)
, (59)

D(APE) = γmixingWr,laminar. (60)

Because Wr,laminar is by construction a “laminar” rate,
“small” by definition, the above formula shows that
G(APE) and D(APE) can only be large if the bulk mixing
efficiency γmixing can reach values far exceeding unity. At
first sight, this appears problematic, because as far as we are
aware, the highest value of mixing efficiency ever reported is
γmixing = 1 in the context of buoyancy-driven mixing associ-
ated with Rayleigh-Taylor instability by Dalziel et al. (2008).
Tailleux (2009a) suggested, however, that there is funda-
mentally no reason why γmixing could not be larger than
unity, provided that APE dissipation can be made larger
than KE dissipation (Recall here that according to Oakey
(1982), γmixing is simply the ratio of the APE dissipation
rate over the KE dissipation rate.) In this paper, we show
that this is precisely what happens for horizontal convec-
tion, with the particular numerical experiments considered
here illustrating that values 2 < γmixing < 3 are possible.
In fact, the preliminary results of an ongoing investigation
suggest that the mixing efficiency can further increase as the
Rayleigh number is increased. On the basis of these results,
we speculate that γmixing can possibly become very large in
regions of deep water formation for instance. This point is
important with respect to deriving an upper bound for the
bulk mixing efficiency γmixing in the oceans. Note that hav-
ing γmixing = 0.2 in 98% of the oceans, with γmixing = 10
in only 2% of the oceans, would be sufficient to significantly
alter the bulk value

γmixing = 0.98 × 0.2 + 0.02 × 10 = 0.396

which is nearly twice as large as the canonical value that
is currently widely used. The present study demonstrates,
therefore, that in order to fully understand ocean energet-
ics, it is crucial to better understand how large γmixing can
be, and whether such large values can occur over significant
areas in the oceans.

We believe that the present results are exciting, be-
cause they suggest a way to reconcile the different the-
ories for the driving mechanisms of the AMOC. So far,
there has been a tendency to offer a dichotomy between ap-
parently mutually-exclusive theories based on either purely
mechanically-driven theories, with deep water formation
acting as a control mechanism, or as purely buoyancy-driven.
Purely mechanically-driven theories are exemplified by the
papers by Gnanadesikan (1999) or Kuhlbrodt et al. (2007).

On the other hand, the theory of multiple equilibria of the
thermohaline circulation tends to rely on the buoyancy-
driven view of the THC. How to incorporate the mechan-
ical control on the multiple equilibria theory was recently
discussed by Johnson et al. (2007) and Nof et al. (2007).
Multiple equilibria have usually been investigated in mod-
els with fixed turbulent eddy diffusivity. The present study,
however, suggests that γmixing may be possibly quite differ-
ent for each equilibria, which could affect these results, an
issue for future research.
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Table 1. Values of Ψmax, maximum of stream function for the
thermally direct cell

50 × 50 100 × 100 150 × 150 200 × 200

(a) 6.95 7.09 7.14 7.16
(b) 11.11 11.02 10.80 10.89
(c) 6.51 6.61 6.67 6.68
(d) 11.10 11.30 11.20 11.30

Table 2. Values of KE, kinetic energy

50 × 50 100 × 100 150 × 150 200 × 200

(a) 120.8 129.8 132.9 134.4
(b) 397.5 410.3 396.7 403.1
(c) 106.7 112.6 115.2 115.8
(d) 955.2 903.8 836.5 838.8

Table 3. Values of APE, available potential energy

50 × 50 100 × 100 150 × 150 200 × 200

(a) 3.83103 3.96103 4.00103 4.02103

(b) 5.36103 5.54103 5.51103 5.55103

(c) 5.03103 5.13103 5.12103 5.14103

(d) 1.07104 1.10104 1.08104 1.08104

Table 4. Values of γmixing , mixing efficiency

50 × 50 100 × 100 150 × 150 200 × 200

(a) 1.95 2.14 2.28 2.42
(b) 1.31 1.42 1.51 1.57
(c) 1.62 1.87 2.05 2.20
(d) 0.31 0.38 0.42 0.44

Table 5. Values of Hmax, maximum of heat transport

50 × 50 100 × 100 150 × 150 200 × 200

(a) 1.031 1.092 1.117 1.129
(b) 1.678 1.645 1.678 1.699
(c) 0.810 0.858 0.877 0.879
(d) 1.318 1.394 1.412 1.422
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Figure captions

Figure 1 Schematic diagram of the energy conver-
sions taking place in a mechanically and thermodynamically
forced turbulent thermally-stratified fluid corresponding to
Eqs. (22-26) previously derived by Tailleux (2009).

Figure 2 shape of the forcing applied in case (d)

Figure 3 Streamfunction for the different experiments:
(a) No mechanical forcing; (b) ”Direct” mechanical forcing;
(c) Weak ”indirect” mechanical forcing; (d) Strong ”indi-
rect” mechanical forcing.

Figure 4 Temperature field for the different experi-
ments: (a) No mechanical forcing; (b) ”Direct” mechanical
forcing; (c) Weak ”indirect” mechanical forcing; (d) Strong
”indirect” mechanical forcing.

Figure 5 Values of G(KE), G(APE), D(KE) and
D(APE) for the different experiments, at resolution 50×50,
100 × 100, 150 × 150 and 200 × 200
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Figure 1. Schematic diagram of the energy conversions taking place in a mechanically and thermodynamically forced turbulent thermally-
stratified fluid corresponding to Eqs. (22-26) previously derived by Tailleux (2009).
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Figure 2. shape of the forcing applied in case (d)
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Figure 3. Streamfunction for the different experiments: (a) No mechanical forcing; (b) ”Direct” mechanical forcing; (c) Weak ”indirect”
mechanical forcing; (d) Strong ”indirect” mechanical forcing.
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Figure 4. Temperature field for the different experiments: (a) No mechanical forcing; (b) ”Direct” mechanical forcing; (c) Weak ”indirect”
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