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Entropy versus APE production:

On the buoyancy power input in the oceans energy cycle

R. Tailleux1

This letter argues that the current controversy about
whether Wbuoyancy, the power input due to the surface buoy-
ancy fluxes, is large or small in the oceans stems from two
distinct and incompatible views on how Wbuoyancy relates
to the volume-integrated work of expansion/contraction B.
The current prevailing view is that Wbuoyancy should be
identified with the net value of B, which current theories
estimate to be small. The alternative view, defended here,
is that only the positive part of B, i.e., the one convert-
ing internal energy into mechanical energy, should enter the
definition of Wbuoyancy, since the negative part of B is asso-
ciated with the non-viscous dissipation of mechanical energy.
Two indirect methods suggest that by contrast, the positive
part of B is potentially large.

1. Introduction

For over a century now, oceanographers have debated
about whether Wbuoyancy, the power input due to surface
buoyancy fluxes, is negligibly small or large and comparable
to the mechanical power input due to the wind and tides?
Part of the difficulty in addressing the issue is that while sur-
face buoyancy fluxes give rise to buoyancy forces, they do
not themselves exert any force on the fluid, and hence tech-
nically produce neither work nor power on their own. This
difficulty is compounded by the fact that mechanical energy
created by diabatic effects must ultimately result from a con-
version from internal energy (IE) mediated by compressible
effects via the work of expansion/contraction:

B =

∫

V

P
Dυ

Dt
dm, (1)

as discussed by Welander [1991] for instance, where P is the
pressure, υ = 1/ρ is the specific volume, ρ is the density, and
dm = ρdV is the mass of an elementary fluid parcel. How-
ever, because low Mach number fluids such as seawater are
generally regarded as nearly incompressible, they are nearly
almost tackled by means of the Boussinesq approximation,
rarely if ever in the context of the fully compressible Navier-
Stokes equations, so that no rigorous exact results currently
exist that could give us insights into the actual value of B
in the oceans.

Lorenz [1955]’s available potential energy (APE) theory
has long been the accepted framework to understand how
diabatic effects drive motions, by suggesting that they do so
by making a certain fraction of the total potential energy
(i.e., the sum of gravitational potential and internal ener-
gies) available for conversion into kinetic energy, as recently
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discussed by Hughes et al. [2009] and Tailleux [2009]. In the
APE theory, therefore, the concept of buoyancy power input
Wbuoyancy is naturally identified with the production rate of
available potential energy G(APE), which physically repre-
sents the amount of potential energy being released per unit
time that is in principle convertible into KE. In the oceans,
Oort et al. [1994] estimated G(APE) = 1.2 ± 0.7 TW, and
concluded that Wbuoyancy was comparable to the power in-
put by the mechanical forcing.

Over the past ten years or so, however, APE theory was
challenged by Munk and Wunsch [1998] and others on ac-
count of its apparent conflict with a popular interpretation
of Sandström [1908]’s “theorem” (see Kuhlbrodt [2008] for a
translation), according to which Wbuoyancy can only be sig-
nificant if heating occurs on average at higher pressure than
cooling, whereas in the oceans, heating and cooling are ap-
plied at approximately constant pressure. Sandström [1908]
failed to recognize, however, that molecular diffusion, possi-
bly enhanced by turbulence 1, always induces an additional
internal heating and cooling mode such that the net (ex-
ternal+internal) heating always occurs on average at higher
pressure that the net cooling regardless of the particular
vertical arrangement of the external sources of heating and
cooling, as illustrated by Marchal [2005]. More useful is Pa-
parella and Young [2002]’s anti-turbulence theorem, which
for the first time provided a rigorous quantitative constraint
linking the net work of expansion contraction Bbq with the
overall viscous dissipation D(KE) in the idealized context
of a Boussinesq ocean with a linear equation of state, sug-
gesting that D(KE) would be several orders of magnitude
smaller than observed if the buoyancy forcing acted alone.
Subsequently, Wang and Huang [2005] suggested that Bbq

should be regarded as the relevant definition of Wbuoyancy,
which they estimated, using typical oceanic values, to be
Bbq = O(15 GW).

The smallness of Bbq , in contrast to Oort et al. [1994]’s
“too-large” value of G(APE), was arguably more in agree-
ment with the prevailing idea at the time that Wbuoyancy

should be small because of Sandstrom’s “effect”. This
undoubtedly significantly contributed to the rapid and
widespread acceptance of Bbq as the relevant definition of
Wbuoyancy, as indicated by the fact that the most recent re-
views of ocean energetics by Wunsch and Ferrari [2004] and
Kuhlbrodt et al. [2007] cite Paparella and Young [2002] and
Wang and Huang [2005]’s studies, but elude any discussion
of Oort et al. [1994]’s views on the oceanic energy cycle. So
far, however, it is hard to understand why we should disre-
gard APE theory as the relevant framework to discuss the
energetics of buoyancy forcing in the oceans, especially given
that APE theory remains the dominant paradigm for under-
standing the energetics of the global atmospheric circulation.
Why APE theory should work for the atmosphere but not for
the oceans deserves clarification if we are to make progress.
In this letter, our aim is to clarify the conceptual differ-
ences between APE theory and Wang and Huang [2005]’s
approach, in order to help identifying which approach ap-
pears to be more suited to quantify Wbuoyancy. To that end,
we develop a number of physical arguments rooted in a first
principles analysis of the fully compressible Navier-Stokes
equations, while also trying to link the issue to the classical
thermodynamic theory of heat engines, which has been the
main approach to quantify how much power can be created
by hot and cold sources in the literature.
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2. Theory of the Oceanic Energy Cycle

2.1. Forcing Versus Dissipation

In order to understand the nature of the buoyancy forcing
in the oceans, it is first necessary to recall some basic ideas
about forcing and dissipation. This is done here in the con-
text of the fully compressible Navier-Stokes equations for a
binary fluid, which is widely accepted as the relevant theo-
retical framework to describe the oceanic circulation, viz.,

ρ
Dv

Dt
+ 2Ω × (ρv) = −∇P − ρ∇Φ + ∇ · S (2)

Dρ

Dt
+ ρ∇ · v = 0 (3)

ρ
DS

Dt
= −∇ · (ρFS) (4)

ρ
Dη

Dt
= −∇ · (ρFη) + ρη̇irr +

ρεK

T
, (5)

where v = (u, v, w) is the three-dimensional velocity field,
ρ is density, P is pressure, T is temperature, S is salin-
ity, Ω is Earth’s rotation vector, Φ is the geopotential, S
is the deviatoric stress tensor, FS is the molecular diffusive
salt flux, η is the specific entropy, εK is the viscous rate
of kinetic energy dissipation, Fη is the molecular flux of
entropy accomplished by all irreversible molecular diffusive
processes, η̇irr is the local rate of irreversible entropy pro-
duction due to irreversible molecular diffusive fluxes. These
equations are usually closed by an equation of state for the
specific internal energy e = e(η, S, υ), expressed in terms of
specific entropy η, salinity S, and specific volume υ, whose
partial derivatives define the temperature, pressure, and rel-
ative chemical potential as follows: T = T (η, S, υ) = ∂e/∂η,
P = P (η, S, υ) = −∂e/∂υ, and µ = µ(η, S, υ) = ∂e/∂S.

Since the central issue about Wbuoyancy revolves on under-
standing how internal energy created by the surface buoy-
ancy forcing is converted into mechanical energy, we form
two separate evolution equations for the mechanical energy
v2/2 + Φ and specific internal energy as follows:

ρ
D

Dt

(
v2

2
+ Φ

)

+ ∇ · (Pv) = ρP
Dυ

Dt
+ v · ∇ · S, (6)

ρ
De

Dt
= −∇ · (ρFq) − ρP

Dυ

Dt
+ ρεK , (7)

where the diffusive “heat” flux Fq is shown by Tailleux
[2010] to be related to the diffusive fluxes of entropy and
salt, as well as to the irreversible entropy production, by
the following relations:

Fη =
Fq − µFS

T
, η̇irr = Fq · ∇

1

T
− FS · ∇

µ

T
, (8)

the precise forms of Fq, FS and Fη being left unspecified
as unimportant for our argument. Upon integration over
the whole ocean volume, the mechanical energy equation
becomes:

d

dt

∫

V

ρ

(
v2

2
+ Φ

)

dV

= −Pa
dVol

dt
+

∫

V

P
Dυ

Dt
dm +

∫

V

v · ∇ · S dV (9)

This result shows that mechanical energy changes as the
result of: 1) the work of the atmospheric pressure Pa

against volume changes (Vol is the ocean volume); 2) con-
version with/from internal energy via the work of expan-
sion/contraction, 3) the work done against the stress ten-
sor. As is well known, integrating the latter over the whole
ocean volume allows one to rewrite the overall work against

the stress tensor as the difference between the work done by
the wind stress on the ocean surface velocity minus the total
viscous dissipation as follows:

∫

V

v · ∇S dV =

∫

S

vS · τ dS

︸ ︷︷ ︸

G(KE)

−

∫

V

ρεK dV

︸ ︷︷ ︸

D(KE)

(10)

where G(KE) is in general positive, whereas D(KE) is
always positive definite. Physically, the work of expan-
sion/contraction is related to the heat engine behavior of
the oceans, but note here that the cases PDυ/Dt > 0 and
PDυ/Dt < 0 are physically fundamentally different, given
that only in the first case is internal energy converted into
mechanical energy and hence acting as a heat engine, since
the opposite conversion implies a non-viscous dissipation of
mechanical energy. To formalize this distinction, we define
ẇ = PDυ/Dt to simplify notations, and write:

B =

∫

V

ẇ + |ẇ|

2
dm

︸ ︷︷ ︸

B+

−

∫

V

|ẇ| − ẇ

2
dm

︸ ︷︷ ︸

B−

, (11)

where |.| denotes the absolute value of a quantity, so that B+

and B− are both positive by construction. Assuming now
a (statistically) steady-state, Eqs. (10) and (11) suggest to
write the mechanical energy balance under the form:

G(KE) + B+

︸ ︷︷ ︸

forcing

= B− + D(KE)
︸ ︷︷ ︸

dissipation

, (12)

where the overbar denotes a long term temporal average, as-
suming for simplicity that only the wind contributes to the
mechanical forcing 2. (The work done by the atmospheric
pressure vanishes on average if atmospheric pressure is con-
stant). The corresponding energy diagram is illustrated in
Fig. 1. Physically, such a decomposition suggests to regard
B+ as part of the forcing, since it acts as a net source of
mechanical energy, and B− as a form of non-viscous dis-
sipation, since it acts as a net sink of mechanical energy.
The central question here is whether such a decomposition
implies that B+ should be identified with Wbuoyancy? The
answer is not straightforward, however, because it is not im-
mediately apparent that B+ should necessarily be linked to

+ GPE
KE

IE

G(KE)

B+

D(KE) + B−

Dissipation

Qin Qout

Figure 1. Simple schematics of the energetics of a wind
and buoyancy forced ocean. The positive part of B acts
as a forcing, whereas the negative part contributes to the
non-viscous dissipation of the fluid.
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the surface buoyancy forcing. Clarifying this link is what we
try to do next.

2.2. Linking B to the thermodynamic forcing and

irreversible molecular processes

In trying to understand how to link B+ with the surface
buoyancy forcing, it is useful first to recall how in classical
thermodynamics, the first and second laws of thermodynam-
ics are generally combined to yield an explicit expression
for the work produced by a heat engine functioning between
two heat sources in presence of irreversibilities (see Ambaum
[2010] or Lucarini [2009] for particular examples). Thus, for
a closed cycle, the energy and entropy balances are:

W = Qin − Qout (13)

Qin

Tin

−
Qout

Tout

+ ∆Σirr = 0, (14)

which can be manipulated to yield:

W =
Tin − Tout

Tin

Qin − Tout∆Σirr. (15)

This famous result, known as the Gouy-Stoudola theorem
(see Ambaum [2010]), states that the work produced by a
heat engine functioning between a hot and cold source can be
written down as the difference between the optimal Carnot
work (1−Tout/Tin)Qin minus the “lost work” due to the irre-
versible entropy production ∆Σirr arising from irreversible
processes taking place in the system. This result is interest-
ing, for it naturally casts the thermodynamic work in the
production/destruction form given by Eq. (11). The fol-
lowing seeks to derive a Guouy-Stoudola theorem for the
oceanic case. First, the total energy budget yields:

Qin − Qout + G(KE) = 0, (16)

where Qin and Qout represent respectively the positive and
negative contribution to the IE input due to the molecular
diffusive flux Fq through the ocean surface. Physically, Eq.
(16) states that the sum of thermal and mechanical energy
must balance each other in a steady-state. As the mechan-
ical energy input is positive, it follows that there must be
a net IE loss (cooling) to compensate for the net IE gain
due to the Joule heating resulting from the ultimate viscous
dissipation of the wind and buoyancy power input. Next,
the volume-integrated internal energy budget yields:

0 = Qin − Qout + D(KE)
︸ ︷︷ ︸

δQ

− B
︸︷︷︸

δW

. (17)

This is of the classical form de = δQ − δW , where the
heat transfer is associated with the air-sea interaction terms
Qin/Qout and Joule heating term D(KE), whereas the work
transfer is due to the work of expansion/contraction B. Fi-
nally, the global entropy budget yields:

0 =
Qin

Tin

−
Qout

Tout

+ Σ̇µ +
D(KE)

Tε

+ Σ̇irr, (18)

where Tin and Tout represent averaged surface temperatures
weighted by the regions of net heat gain and loss respec-
tively, Tε a dissipation temperature (see Lucarini [2009]
for definition), Σ̇irr the net irreversible entropy production
by all molecular diffusive processes, and Σ̇µ the net en-
tropy change linked to evaporation/precipitation freshwater

fluxes. Now, combining Eqs. (17) and (18) yields:

B = Wcarnot +
(

1 −
Tout

Tε

)

D(KE) − Tout(Σ̇irr + Σ̇µ)

(19)

where Wcarnot = (1 − Tout/Tin)Qin is reminiscent of the
power generated by an ideal Carnot heat engine. Assum-
ing that Tε > Tout and that Σ̇µ > 0, Eq. (19) suggests a
decomposition B = B+

I − B−

I with:

B+
I = Wcarnot +

(

1 −
Tout

Tε

)

D(KE), (20)

B−

I = Tout(Σ̇irr + Σ̇µ). (21)

This result, which can be regarded as a Gouy-Stoudola the-
orem for the oceans, is important, for it shows that B can
be in principle decomposed as the difference between a term
related to the external buoyancy forcing (plus a small term
associated with the recycling of a fraction of the Joule heat-
ing due to viscous dissipation into work) minus a term de-
pending on irreversible molecular diffusive processes. It is
important to realize here, however, that this decomposition
by no means imply that B+

I and B−

I are necessarily suit-
able estimates for B+ and B−, because it is not possible to
ascertain that B+

I and B−

I actually measure physical work
actually taking place in the system. In fact, as discussed
next, numerical estimates based on typical observed values
suggest that B+

I and B−

I most likely represent considerable
overestimates of B+ and B−.

2.3. Comparison with APE theory

Despite the fact that the above decomposition given by
Eqs. (20-21) is the one that seems to most naturally fol-
low from the direct application of the first and second laws
of thermodynamics, physical considerations suggest that it
fails to be really satisfactory for reasons clarified below. In
fact, as we now show, APE theory provides a physically
much more interesting decomposition. Indeed, as shown by
Tailleux [2009], it can be shown from first principles that
the mechanical energy balance can also be written under
the following form:

G(APE) + G(KE) = D(APE) + D(KE) (22)

where G(APE) is the production rate of APE, while
D(APE) is the dissipation rate of APE by molecular dif-
fusive processes, which naturally suggests the following de-
composition:

B+
II = G(APE), B−

II = D(APE). (23)

Oort et al. [1994] estimated G(APE) = 1.2±0.7 TW. Given
that the mechanical power input by the wind and tides is of
the order of O(2TW), e.g., Munk and Wunsch [1998], Oort
et al. [1994] concluded that the buoyancy power input was
comparable to that due to the mechanical forcing.

It is useful, for comparison, to estimate the Carnot work
Wcarnot, which can be done from the ocean entropy bud-
get. Recently, Pascale et al. [2010] estimated that the rate
of entropy production by the surface buoyancy fluxes was
O(1 mW.m−2.K−1). Taking Socean = 3.1014 m2 as an esti-
mate of the ocean surface area, and Tin = 20◦C = 293 K,
one obtains:

Wcarnot ≈ 10−3 × 3.1014 × 293 ≈ 90 TW, (24)

which is nearly two orders of magnitude larger than
G(APE)’s estimate. The fact that classical thermodynam-
ics and APE theory both provide a decomposition of B as
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the difference between a positive component controlled by
the surface buoyancy forcing minus a term controlled by
molecular diffusive processes strongly suggests that this is
also true of B+ and B−. However, because both approaches
are indirect, the precise link between Wcarnot and G(APE)
and B+ can only be tentative at present, so that additional
physical considerations are requiblack to clarify this link.
To that end, it is fundamental to realize that B+ is related
to the work done by buoyancy forces created at the surface
by surface buoyancy fluxes. To compute this work, as for
instance in the case of surface parcels made denser by cool-
ing, it is well known that the full knowledge of the strat-
ification along the path followed by the descending plume
is requiblack. On this account, it is very implausible that
Wcarnot can be a good estimate of B+, since its determi-
nation only requires the knowledge of the surface stratifica-
tion and buoyancy fluxes. By contrast, the computation of
G(APE) is well known to require the full knowledge of the
ocean stratification. In fact, G(APE) is also related to the
work done by buoyancy forces, but along paths involving
the reference stratification rather than the actual stratifica-
tion. Since the reference stratification only differs from the
reference stratification by relatively small adiabatic modifi-
cations to the density, it seems plausible that B+ should be
comparable with G(APE), but again, we need to stress that
this cannot be ascertained with full certainty yet owing to
the indirect character of APE theory in decomposing B.

3. Summary and discussion

In this paper, we argue that the current controversy about
the relative importance of the buoyancy forcing in the oceans
stems mostly from two incompatible views on how the latter
relates to the work of expansion/contraction. The current
prevailing view, mostly popularized over the past decade,
has been that Wbuoyancy should be identified with the net
value of B, which current theories, mostly based on the
Boussinesq approximation of B, suggest is several orders of
magnitude smaller than the mechanical energy input due to
the wind and tides, e.g., Wang and Huang [2005]. This view,
to a large extent, is very similar to that adopted in thermo-
dynamic engineering textbooks, which tends to regard ther-
modynamic systems as black boxes characterized only by
their bulk properties. The alternative view, defended here,
is that only the positive component of B should enter the
definition of Wbuoyancy, given that the negative component
of B acts as a non-viscous dissipation mechanism for me-
chanical energy. The basis for this view is that a heat engine
is by definition a device converting internal energy into me-
chanical energy; as a result, understanding how buoyancy
drives motion requires focusing on the positive part of B,
since the opposite conversion is of no interest for that pur-
pose. The current view, by contrast, has tended to interpret
the occurrence of a negative B as the “opposite” of a heat
engine, by itself a puzzling thermodynamic concept, or as
proof of the dominance of mechanical forcing, without ap-
parently fully realizing that a negative B simply correspond
to a non-viscous dissipation mechanism for mechanical en-
ergy. Two independent approaches, respectively based on
APE theory and on classical thermodynamics, support this
interpretation by providing in both cases a decomposition
of B in terms of a positive contribution controlled by the
large scale features of the ocean stratification and buoyancy
forcing, and negative contribution controlled by molecular
diffusive processes acting on the very small diffusive scales.

The proposition that Wbuoyancy should be identified with
the positive part of B appears to be new, because even
though APE theory can be regarded as offering a practical
way of decomposing B as the sum of a forcing and dissipa-
tive terms, the motivation and physical basis underlying the

construction of APE theory in Lorenz [1955] appears to be
very different. Indeed, Lorenz [1955]’s paper deals mostly
with how to construct APE, and how to estimate its rate of
production by diabatic effects, but fails to mention the need
or existence for any non-viscous dissipation mechanisms. If
one accepts Wang and Huang [2005]’s result that B is small,
and that B+ is potentially large, then B− must also be po-
tentially large. The possibility that non-viscous dissipation
mechanisms could play a significant role in the oceans is
very intriguing, and should be exploblack further, owing to
its potential implications for the design of numerical ocean
models for instance.

To make progress, further work is needed to further con-
strain the net value of B in the most general settings, as
well as for understanding how best to split B as the sum of
a forcing and dissipative terms. Recently, significant new in-
sights into the net value of B for horizontal convection was
achieved by Nycander [2010] and McIntyre [2010], which
represent important generalizations of Paparella and Young
[2002]’s work for a realistic nonlinear equation of state. Re-
garding the second issue, an important question is whether
it is possible to demonstrate the superior dynamical signifi-
cance of B+ over B to characterize the buoyancy power in-
put. That this is indeed the case is suggested by the recent
work of Gregory and Tailleux [2010], in which the authors
found a strong correlation between the decadal variations of
the numerical ocean model equivalent of B+ and the corre-
sponding variations in the strength of the Atlantic merid-
ional overturning circulation. The next step would be to
examine in more details the precise link between G(APE)
and B+ in the context of numerical ocean models, since the
present theoretical considerations developed here could not
fully address this link.
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Notes

1. Turbulence increases the area of isothermal surfaces, thereby
enhancing the net diathermal molecular diffusive heat flux, as
discussed by Winters and d’Asaro [1996]

2. Tidal forcing introduces an additional forcing term in the grav-
itational potential energy equation, e.g., Wunsch and Ferrari
[2004], which can be simply added to the left-hand side of Eq.
(12). We avoid discussing tidal forcing here, however, because
we remain uncertain about how to generalize APE theory for
a time-dependent geopotential Φ.
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