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1. Introduction

Recently, Killworth and Blundell (1999, hereinafter
KB99) used the ray approach of Wentzel–Kramers–Bril-
louin (WKB) theory to investigate the question of
whether the large-scale topography could by itself speed
up the long extratropical planetary waves of linear stan-
dard flat-bottom theory in a way consistent with the
observational findings of Chelton and Schlax (1996,
hereinafter CS96). By considering particular rays ex-
cited along the eastern boundary at the annual frequency
in ocean basins with realistic topographies [obtained
from a highly smoothed version of the ETOPO5 dataset
(National Geophysical Data Center 1988)], they show
that the wave speed along a ray is alternatively faster
and slower than that of the standard flat-bottom first
baroclinic mode, with the slower (faster) propagation
occurring on the eastern (western) flanks of hills. They
also find the rays’ meridional excursions to remain quite
small in general; that is, the propagation remains pre-
dominantly westward, suggesting that the steering effect
of the topography is considerably smaller for baroclinic
waves than for barotropic waves in a homogeneous
ocean. From this, they conclude that, although the to-
pography can locally have large effects on the speed of
the first internal mode topographic waves, these cancel
out when averaged over the basin scale.

The first intriguing point of KB99 is that their con-
clusions are at odds with early results from two-layer
models showing that the speed of baroclinic Rossby
waves can be systematically faster by the factor H/H2

over a steep (Rhines 1977; Veronis 1981) as well as
over a rough (Samelson 1992) topography; here, H2 and
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H are the lower-layer thickness and total depth, respec-
tively, and are extended to the continuously stratified
case by Tailleux and McWilliams (2001, hereinafter
TM01).

The second confusing point comes from that the ray
approach of KB99 is presented implicitly as methodo-
logically equivalent to the local approach of Killworth
et al. (1997, hereinafter KCS97) and others, as both
come under the label ‘‘WKB theory,’’ whereas it is not.
In fact, the two approaches are based on different pre-
mises, and thus lead in general to different conclusions.
Specifically, the strategy in the ray approach is to chose
the eigenvalues to lie a priori on a given dispersion
surface that is a continuous function of its defining pa-
rameters (a and H in KB99; see definitions in section
2a), and which includes the standard first baroclinic
mode of a particular case (for a 5 0). The underlying
assumption is therefore that all the observed waves orig-
inate from the eastern boundary, that their properties
are determined according to single-mode WKB theory,1

and that other dispersion surfaces are either not relevant
to account for some of the observed waves or not ex-
cited. In contrast, the strategy in the local approach is
to select the eigenvalues yielding elevated phase speeds,
if there are any, for fixed values of the defining param-
eters (the zonal background mean flow in KCS97). It
is thus perfectly possible to jump from one dispersion
surface to another as the defining parameters are varied
in the local approach, whereas one is bound to stay on
a given dispersion surface in the ray approach. The local
approach therefore implicitly assumes that all waves
supported by the system are excited and thus are po-
tentially observable in the sea surface height (SSH). In
KB99, the difference between the local and ray ap-
proaches arises because there is a dispersion surface
yielding elevated phase speeds in the parameter regime

1 Single mode refers to the assumption of no energy exchange
between rays. This is not necessarily verified in the ocean, particularly
over topography, see Hallberg (1997) and Tailleux and McWilliams
(2002).



JULY 2003 1537N O T E S A N D C O R R E S P O N D E N C E

a . 0 where KB99 find propagation slower than stan-
dard, as discussed in section 2. Arguably, the existence
of this dispersion surface, overlooked by the authors,
must be accounted for to properly assess the role of
topographic effects on baroclinic Rossby wave propa-
gation. This comment discusses the issue extensively.

Our last objection concerns the overall conclusion of
KB99 that the local topographic effects cancel out when
averaged over the basin scale. We find it a very am-
biguous statement in view of all the assumptions it relies
on, which strangely enough introduces a basin-averaged
viewpoint, whereas the common view so far was to
examine the too-fast Rossby wave issue from a local
viewpoint. Clearly, this basin-averaged viewpoint tends
to minimize the role of topographic effects in favor of
the background mean flow effect advocated by KCS97
and many others; yet, a conclusion of KB99 and TM01
is also that the bottom boundary condition alone may
have a dramatic impact on the properties of the eigen-
solutions. In this respect, topography appears to be at
least equally important as the mean flow in setting the
local propagation characteristics of Rossby waves. Ar-
guably, the local viewpoint is the only one that is math-
ematically well defined and nonambiguous. Further-
more, one should recall that the dependence upon the
mean flow and the bottom boundary condition is non-
linear in nature, so one must be cautious about making
definitive statements from the study of one particular
effect taken in isolation in absence of a clear under-
standing of how the various relevant effects interact in
more complex models [as, for instance, the one recently
considered by Killworth and Blundell (2003a,b)].

The purpose of this comment is to reexamine the
eigenvalue problem studied by KB99 in order to clarify
the above issues. To that end, we shall first express in
mathematical terms the different strategies underlying
what we referred to as the local and ray approach to the
too-fast Rossby wave issue. We will then compare the
predictions of each approach and show that they are
different because of the existence of the pseudobaro-
tropic mode n 5 0, which is always faster than standard
first-baroclinic Rossby waves. Although the barotropic
mode is commonly thought to be too fast by several
orders of magnitude to match the observed speeds of
propagation, we show that the topography can slow it
down or speed it up in the same way that it does on the
first baroclinic mode, and that in its slow regime its
phase speed can become comparable with those ob-
served. The final section summarizes and discusses the
results.

2. Formalization of the local and ray approaches

a. The local WKB eigenvalue problem

In WKB theory, the dispersion relation for the to-
pographically modified long Rossby waves in absence

of any other effects can be written in dimensionless form
as follows:

2k glv 5 2 , (1)
2sin f

where g 2 is obtained by solving the following locally
defined eigenproblem:

2 2d F n
1 F 5 0 (2)

2 2ds g

dF
2F(0) 5 eg (0) (3)
ds

dF
F(2h) 5 m (2h), (4)

ds

where

a k ]H ]Hfm 5 2 ; a 5 2tanf 2 . (5)1 2d k ]l ]fl

The above problem is the dimensionless equivalent of
that studied by KB99 with the difference that, instead
of the rigid-lid approximation2 made by the latter au-
thors, we retained the exact linearized free-surface
boundary condition (3), (e.g., Gill 1982) for reasons
clarified below. Although our notations differ somewhat
from that of KB99, note that the important parameter
a retains the same meaning in both studies. Dimen-
sionless quantities are

2z N(z/d) 2VR
s 5 ; n 5 ; v 5 v ;02 2d N N d0 0

2H N d0h 5 ; e 5 . (6)
d g

The notations used are p is the pressure divided by a
reference density r0, u is the horizontal velocity, w is
the vertical velocity, N 2(z) 5 2 gd /dz is the squared21r r0

Brunt–Väisälä frequency, where (z) is the backgroundr
density assumed to be function of depth only, g is the
gravitational acceleration, 2V is 2 times the earth’s ro-
tation rate and R is the earth’s radius, N0 5 N(0), d is
a length scale characterizing the depth variations of N,
H is the total ocean depth, and v0 is 2p times the di-
mensional frequency of the waves; kl and kf are zonal
and meridional wavenumbers defined from a phase
function S (l, f) by kl 5 ] S/]l and kf 5 ] S/]f,
where l and f denote longitude and latitude, respec-
tively. In general, e K 1 for typical ocean values.

b. Strategies for the ‘‘too fast’’ Rossby waves issue

To investigate the too-fast Rossby wave issue, it is
necessary to define the measure of propagation one

2 The rigid-lid approximation can be recovered by taking the limit
e 5 0.
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FIG. 1. Schematic dispersion curves for long Rossby over topog-
raphy depicting the quantity 1/G, i.e., the inverse of the squared
gravity wave speed, as a function of the parameter a, in the (a) rigid-
lid case and (b) free-surface case; (a) also illustrates the difference
between the local and ray approaches for three different values of a
visualized by the three vertical dashed lines. In the ray approach,
illustrated by a black square, the relevant value of G is systematically
chosen to lie upon the curve n 5 1; in the local approach, illustrated
by circles, values may be picked up on other curves if they yield a
higher ratio than unity.

wishes to compare with the observations of CS96. Ar-
guably, the most relevant choice (e.g., Tailleux 2003a),
is the zonal phase speed

v G
c 5 5 2 , (7)p 2k sin fl

which was also used in KCS97, where G 5 g 2. Since
the eigenproblem (2)–(4) depends only upon the param-
eters a/H and h, formally G 5 G(a/H, h) [e.g., see
Tailleux 2003b, manuscript submitted to J. Phys. Ocean-
ogr., hereinafter T03) for details]. In the context of the
too-fast Rossby wave issue, one thus wishes to under-
stand the behavior of the following ratio

a G (a/H, h)nr , h 5 , (8)n1 2H G (0, h)1

where G1(0, h) refers to the flat-bottom value of G for
the first baroclinic mode, while n is the index of the
mode considered. In practice, G usually depends much
less on h than on a/H so that the interesting physics is
essentially contained in the latter parameter. With the
above notations, it is possible to define formally the
local approach as seeking to determine the values of n
for which rn . 1 for fixed values of a/H and h.3 The
ray approach, on the other hand, consists in studying
the ratio r1 along a ray, the values of a/H and h being
then determined from the integration of the ray equa-
tions. To compare the predictions of the local and ray
approaches, it is therefore necessary to understand the
qualitative properties of the ratios rn for all n.

c. Qualitative properties of the eigensolutions

To understand the qualitative properties of the ratios rn,
recall first that the eigenproblem (2)–(4) which is similar
to the standard eigenproblem in nature, admits an infinite
number of discrete eigensolutions, which can be ordered
such that for fixed values of a/H and h, Gn11(a/H, h) ,
Gn(a/H, h); that is, the phase speeds decrease with in-
creasing n. For each particular mode, one may show (e.g.,
T03) that 1/Gn is an increasing (decreasing) function of
a(h). This results in the qualitative picture of Fig. 1 show-
ing both the rigid-lid case (Fig. 1a) and free-surface case
(Fig. 1b). For comparison, we also show the results of a
computation using an exponential buoyancy frequency
profile in Fig. 2.

Figure 1 makes it clear that the rigid lid has a pro-
found impact on the structure of the pseudobarotropic
mode n 5 0. In the rigid-lid case, the pseudobarotropic
mode n 5 0 combines with the bottom-trapped mode
[the mode n 5 21 in the free-surface case, first de-
scribed by Rhines (1970)], and is defined only for a .

3 Of course, nothing forbids one to also study the cases rn , 1 if
one is interested in a more general understanding of the effect studied.

0. Furthermore, G0 becomes infinite for a 5 H.4 In the
free-surface case, the pseudobarotropic mode is defined
for all values of a, and its propagation speed remains
finite for all finite values of a (but one shows that G0

→ 1` when a → 2`). These remarks are important
for future study of the pseudobarotropic mode n 5 0
in case it is further confirmed to be relevant to the too-
fast Rossby wave issue; one will then have to decide
whether the structural differences between the rigid lid
and free surface are important or not in order to con-
struct a more appropriate model than the planetary geos-
trophy (PG) system for its study. In contrast, the first-

4 To see this is the case, set G 5 ` in (2). This yields F0 5 0;
hence F 5 Az to satisfy the rigid lid, with A being an arbitrary
constant. The bottom boundary condition (4) then imposes a 5 H.
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FIG. 2. As in Fig. 1 but for an exponential stratification, with the
differences that 1/G is here plotted as a function of a/H instead of
a, and (b) is a zoom of the free-surface case near a 5 H and 1/G
K 1. To help to assess the differences between the rigid-lid and free-
surface cases, we also depicted the dispersion curve for the rigid-lid
mode n 5 0 as a dashed line in (b). Locally, the dashed line appears
to be an asymptote to the dispersion curves for the modes n 5 0 and
n 5 21.

TABLE 1. Comparison of the phase speed for the local rigid-lid and
free-surface approach vs the ray approach.

2` , a/H
, 0

0 , a/H
, 1

1 , a/H
, 1`

Local approach,
rigid lid

Faster
r1 . 1

Slower
r1 , 1

Faster
r0 . 1

Local approach,
free surface

Faster
r1 . 1, r0 k 1

Faster
r0 k 1

Faster
r0 . 1

Ray approach Faster
r1 . 1

Slower
r1 , 1

Slower
r1 , 1

baroclinic mode n 5 1 studied by KB99 is largely un-
affected by the rigid-lid approximation.

d. Consequences for the too-fast Rossby wave issue

Since 1/G is a strictly increasing function of a, it
follows that the ratio r1 studied by KB99 will be

• slower than unity, meaning propagation slower than
standard, for a . 0;

• faster than unity, meaning propagation faster than
standard, for a , 0.

Furthermore, this ratio will be bounded by its upper and
lower limits at a 5 6`; that is,

G (2`, h) a G (1`, h)1 1, r , h , . (9)11 2G (0, h) H G (0, h)1 1

Here we note that the upper and lower bounds for G are
solutions of the eigenvalue problem using the bottom
pressure compensation boundary condition F9(2h) 5 0
studied in TM01. In particular, the upper ratio r1(1`,
h) is the one considered in the latter study and compared
with good agreement with the observed amplification
factors of CS96 using hydrological data. We therefore
expect the upper values of r1 computed by KB99 to be
comparable with the enhanced phase speed ratio com-
puted by TM01. Using realistic stratification, KB99
finds this upper ratio to lie within the range (1.75, 2.25),
which is indeed consistent with the values found by
TM01.

As argued in the introduction, the existence of the
mode n 5 0 causes the predictions of the ray approach
to differ from those of the ray approach. Table 1 sum-
marizes these differences by showing 1) whether there
are any elevated phase speeds for fixed values of the
defining parameters and 2) how the elevated phase
speeds, as measured by the ratio rn, compare with the
standard case; specifically, r k 1 means values are very
far from observations, whereas r . 1 means that they
are much closer to observations.

This shows that the three approaches coincide over
the interval a , 0, but that otherwise they all yield
different predictions. It is therefore important to reason
on the most general and physical case, which in the
present context is the local approach retaining a free
surface. This approach predicts modes faster than stan-
dard for all values of a. For a , 0, both the ratios r0

and r1 are greater than unity, but for a . 0 this is true
only of r0. These results are consistent with the findings
of KB99 that the ratio r1 is slower than unity for a .
0 and greater than unity for a , 0.

e. Observational restrictions on the pseudobarotropic
mode n 5 0

From a local viewpoint, the above analysis demon-
strates that there are modes with elevated phase speeds
for all values of a/H and h. We should not conclude,
however, that all of these modes are necessarily relevant
to the interpretation of the observed amplification ratios
of CS96, which are bounded from above by a maximum
value of about 4–5. To clarify this point, it is useful to
depict the ratio r0 and r1 as a function of a/H along
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FIG. 3. The ratio r0(a/H, h) (upper curves) and r1(a/H, h) (lower
curves) as a function of a/H for an exponential stratification N(z) 5
N0ez/d. The calculations use the values H 5 4500 m and N0 5 1022

s21. The dashed and solid lines correspond respectively, to h 5 H/d
5 4 and h 5 H/d 5 1, respectively. The horizontal lines (marked
‘‘1’’) delineate the observational domain of interest, chosen to lie
between the amplification factors 1 and 5.

with an admissible observational domain. This is done
in Fig. 3 for two particular instances of exponential
buoyancy frequency (to show the sensitivity to the
choice of the e-folding depth) with an observational
domain chosen here to lie within 1 and 5 (indicated by
the two horizontal lines marked with ‘‘1’’).

Not surprisingly, r1 lies within the observational do-
main only for a/H , 0. In the latter interval, r0 is also
greater than unity, but orders of magnitude too large to
fit in. For a/H . 0, only the ratio r0 is greater than
unity. However, it enters the observational domain only
beyond some critical value ac/H depending upon the e-
folding scale d. For the examples chosen, ac/H ø 2 for
H/d 5 1 and ac/H ø 4–5 for H/d 5 4.

It is here possible to conclude that r0 should system-
atically overestimate observed amplification ratios with-
out the need for estimating the corresponding values of
ac for a realistic stratification. This stems from the con-
clusions of TM01 that the ratio r0(1`) 5 r1(2`) over-
estimates observations, which implies that r0(a), which
is always greater than r0(1`) for all finite values of a,
should overestimate observations even more. [In con-
trast the ratio r1(a), smaller than r1(2`) for finite a ,
0, could potentially improve the comparison with ob-
servations.] While this may seem to build a strong case
against the pseudobarotropic mode, we believe never-
theless that this is not all the story in view of the fol-
lowing.

• Topographic effects do not act alone in reality, but in
combination with the background mean flow. In the

full eigenproblem, as considered for instance by Kill-
worth and Blundell (2003a,b), the eigenvalues are ex-
pected to depend in a strongly nonlinear way upon
both effects; it is therefore not implausible to imagine
that the mean flow may act to further slow down the
pseudobarotropic mode n 5 0, although of course this
should be substantiated by precise calculations that
remain to be done.

• Planetary geostrophy is a dubious approximation to
study the dynamics of the pseudobarotropic mode, as
dispersive effects are likely to be important; as a first
guess let us assume that these remain roughly as pre-
dicted by standard quasigeostrophic theory (e.g., Ped-
losky 1987); if so, the expected consequence is that
they reduce the ratio r0 by the factor 1 1 \k\ 2;2R0

they would then help to bring r0 closer to observed
amplification ratios.

• Small-scale topography could be an important effect,
as they can potentially increase values of a and thus
help reduce the ratio r0; the question, however, is
whether the present framework remains physically
meaningful to infer conclusions about this effect, a
priori excluded by construction. A rigorous assess-
ment of this effect remains a challenge in physical
oceanography.

3. Summary and conclusions

In this comment, we sought to clarify the following
conceptual issues arising from the conclusions of KB99
regarding the role of topographic effects on baroclinic
Rossby wave propagation.

1) Discrepancy between two-layer studies and KB99:
In two-layer models, the reason for the systematic
speed-up of the waves over steep/rough topography
is well-understood and attributed to the surface in-
tensification of the waves.5 This mechanism of sur-
face intensification is often encountered in the lit-
erature and has an observational basis that forms the
starting point of Samelson (1992). It was extended
to the continuously stratified case by TM01, in which
the faster surface-intensified modes are linked to the
solutions of the standard eigenproblem using a bot-
tom boundary condition of vanishing pressure in-
stead of one of vanishing vertical velocity; that is
F9(2H) 5 0 instead of F(2H) 5 0. From the view-
point of the eigenproblem studied by KB99, which
uses the bottom boundary condition F9(2H) 5
2aF(2H), the faster modes studied by TM01 can
be regarded either as the first baroclinic mode n 5
1 in the limit a 5 2`, or as the pseudobarotropic

5 The speed of long surface-intensified Rossby waves is 2g9bH1/ f 2,
while that of the standard flat-bottom waves is 2g9bH1H2/( f 2H). The
notations are that g9 is the reduced gravity, f is the Coriolis parameter,
b 5 df /dy is the latitudinal derivative of f , and H1 is the upper-layer
thickness.
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mode n 5 0 in the limit a 5 1`. In other words,
one needs to consider two distinct dispersion sur-
faces in the continuously stratified case to recover
the results of two-layer models over steep/rough to-
pography; this is impossible in KB99 because their
focus is only on the dispersion surface corresponding
to the first baroclinic mode n 5 1.

2) Differences between the local and ray approach: In
order to determine whether any particular effect can
potentially contribute to the the propagation speedup
observed by CS96, it seems natural to study all ei-
gensolutions associated with phase speeds comparable
in magnitude with that of the first-mode baroclinic
mode, regardless of which dispersion surface they are
evolving on. Indeed, although the waves observed by
CS96 are usually interpreted as too-fast first-mode
baroclinic Rossby waves, nothing preclude them a
priori to be potentially too-slow barotropic waves, as
first suggested by Zang and Wunsch (1999). In this
study, we find support for the latter hypothesis in the
parameter regime a . 0, provided that a can become
large enough. This possibility is missed by the ray
approach of KB99, because of the a priori restriction
to the dispersion surface corresponding to the first-
baroclinic mode n 5 1.

Although we find that the pseudobarotropic mode
n 5 0 may have propagation speeds comparable in
magnitude to those observed in the regime a . 0,
we also find that the latter are bound to remain too
fast in the context of PG dynamics and in absence
of other effects. Nevertheless, plausible arguments
suggest that both dispersion and/or small-scale to-
pography could help bring the phase speeds closer
to those observed. In any case, we believe that the
dynamics of the pseudobarotropic mode n 5 0 war-
rants further study, which we hope to report on later.

3) Topographic versus mean flow effects on Rossby
wave propagation: On the basis that both KB99 and
TM01 demonstrate a strong local effect of the bottom
boundary condition on the properties of the eigen-
solutions of the linear standard theory, we must ex-
pect the same to be true for the eigenproblem in-
cluding both the mean flow and topographic effects
recently considered by Killworth and Blundell
(2003a,b). In other words, we believe that the present
published evidence provides no convincing indica-
tion that the topography is less important than the
background mean flow in setting the properties of
the eigensolutions. In any case, separating the re-
spective impacts of the two latter effects on Rossby

wave propagation is complicated by the nonlinear
nature of the problem. We do not see that any firm
conclusions can be drawn from the study of each
effect in isolation, unless one can also provide con-
vincing arguments that the nonlinear interactions be-
tween the two effects are negligible, which remains
to be done.
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