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In classical WKB theory the only way wave energy density, as a surrogate for
wave action density, can increase or decrease along a ray is as a result of the ray
focusing or widening. This occurs when the group velocity is divergent. There are
particular regions, however, where the wave can resonantly exchange action with
another wave mode with approximately the same wavenumbers; a situation known
as Landau–Zener transition, mode conversion, linear (adiabatic) resonance, etc. This
effect invalidates locally the underlying assumption of WKB theory that no scattering
of energy occurs between WKB wave modes. In this paper this effect is investigated
theoretically for free long baroclinic Rossby waves in a two-layer planetary geostrophic
model of the ocean with a purely zonal topography, here taken as a Gaussian ridge.
The waves are excited along the east coast by an unspecified wavemaker at a fixed
frequency ω. In the computation considered, mode conversion is found to occur
principally near the ridge’s top and on the eastern flank. The predictions of mode
conversion theory are tested against the results of direct numerical simulations. This
shows excellent agreement, both for the locations of mode conversion points, and for
the amplitude of the transmitted and converted WKB wave modes.

1. Introduction
Recently, the effects of a realistic varying environment on the propagation of

baroclinic Rossby waves in the ocean have received increased attention, motivated
by the TOPEX/Poseidon altimeter data analysis by Chelton & Schlax (1996) show-
ing: (i) evidence that first-mode baroclinic Rossby waves propagate faster at mid-
and high-latitudes than expected from the linear standard normal modes theory
(Leblond & Mysak 1978; Gill 1982); and (ii) a marked increase of baroclinic wave
activity westward of major topographic features suggesting a topographic role in
creating/amplifying incident baroclinic Rossby waves. In order to account for these
effects, most recent theoretical investigations have focused on the influence of the
background mean flow and topography, which are both ignored in the linear stan-
dard theory. Assuming a scale separation between the ‘varying environment’ and the
waves, a reasonable first step, the issue can be addressed by means of WKB theory.

Within that framework, the first issue, i.e. the anomalous propagation of Rossby
waves, can be addressed by solving a modified eigenvalue problem. This is the
approach pursued by most studies so far, the majority focusing on only the mean
flow effect, (e.g. Killworth, Chelton & deSzoeke 1997; Dewar 1998; Liu 1999); the
effects of topography were discussed by Killworth & Blundell (1999, hereinafter
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Figure 1. The root-mean square of the interface displacement as computed by (a) direct numerical
simulation, and (b) from the wave action ray tube conservation equation of single mode WKB
theory. Note that the contour lines represent isolines, not rays.

referred to as KB99) and Tailleux & McWilliams (2000, hereinafter referred to as
TM00). Since this issue is beyond the scope of this paper, the interested reader
is referred to Tailleux & McWilliams (2001) for further references and discussion.
The latter paper also provides a discussion of the impact of the bottom boundary
condition on the solution of the eigenvalue problem.

Addressing issue (ii) – related to the increase of wave activity westward of major
topographic features – poses interesting questions within the framework of WKB
theory that constitute the motivation for this paper. Indeed, in classical WKB theory,
the only way energy – here taken as a surrogate for the more general concept of action
– can increase or decrease along a ray is as a result of the ray focusing or widening,
which occurs when the group velocity is divergent. In this view, action is conserved
along a ray without exchange with rays of a different nature, i.e. representing other
allowable wave modes. On this basis, KB99 invoked ray focusing to account for
the observed increase of baroclinic wave activity westward of major topographic
features. However, on the basis of direct numerical computations, TM00 found that
an initial purely baroclinic mode systematically transferred part of its energy to the
barotropic mode over a ridge surrounded by flat-bottom regions on its western and
eastern parts. Starting with only one mode in the eastern flat-bottom part, two modes
were systematically found in the western flat-bottom part. TM00 concluded that the
assumption of no energy scattering between modes, made by KB99 in a continuously
stratified fluid, was not valid in their two-layer model. The failure of single-mode WKB
theory in that case is demonstrated in figure 1 which compares a direct numerical
computation (figure 1a) with the solution predicted by single-mode WKB theory
(figure 1b) for an ‘eastern wavemaker experiment’ similar to that used previously in
KB99 and TM00 and described in more detail later in the text. The geometry of the
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Figure 2. Model geometry and notation.

two-layer model is depicted schematically in figure 2. Figure 1 makes it clear that the
energy does not stay with a single ray, but that it successively splits as it propagates
westward. In that case, a first separation appears to occur at the bottom of the ridge,
whereas a second separation, more pronounced, is visible near the top of the ridge.

The purpose of this work is to gain insight into the coupling of the WKB modes,
because this appears to be necessary to provide a complete descriptor of the energy
propagation of baroclinic Rossby waves in a varying environment, here limited for
simplicity to a purely zonally varying topography without a background mean flow.
In the early stages of this work, it was at first unclear how to interpret this issue
within the framework of WKB theory because the coupling of the WKB modes is
intrinsically associated with a case of WKB breakdown unrelated to caustics (the
latter being well understood). In contrast, it was easy to interpret this coupling in
terms of JEBAR (joint effect of baroclinicity and relief), which is somehow the
natural ‘reflex’ in oceanography, e.g. Sakamoto & Yamagata (1997). The invocation
of JEBAR merely amounts to saying that the standard modes are coupled everywhere
over topography, which is somewhat obvious given that they are no longer dynamical
modes. Theoretically, it is also very difficult to quantify precisely the energy transfer
between the standard modes over topography (TM00). A different approach was
followed by Hallberg (1997, hereinafter referred to as H97) who suggested, based
on comparisons between ray calculations and direct numerical simulations, that the
coupling of WKB modes be regarded as localized and thus pointwise in nature. In
the coupling region, H97 speaks of an ‘incident’ ray splitting into a ‘reflected’ and a
‘transmitted’ ray, drawing an analogy with classical wave reflection theory. Arguing
that mass conservation locally strongly constrains the solution, H97 also derived
empirical arguments to quantify the transmitted and reflected wave energy.
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Although little studied in oceanography, the topic of WKB mode coupling has
been nevertheless extensively studied in other fields, most notably in plasma physics
where the phenomenon is dealt with by so-called mode conversion theory (e.g.
Kaufman & Friedland 1987; Flynn & Littlejohn 1994). Physically, mode conversion
appears as a particular case of linear resonance occurring when the frequency and
wavenumbers of two distinct wave modes locally satisfy approximately the same
dispersion relation. In other words, mode conversion occurs at points where two
different branches of a given dispersion relation osculate. In an oceanographic context,
the main ingredients of the theory were derived independently by Grimshaw &
Allen (1979) to understand a case of mode conversion involving Kelvin and coastal-
trapped waves investigated by Allen & Romea (1980), but the study stopped short
of quantifying the possible transmission between branches. Recently, Kaufman et al.
(1999) made a technology transfer from plasma physics to oceanography in order
to address the mode conversion of coastal Kelvin and Yanai waves in the Gulf of
Guinea. Vanneste (2001, hereinafter referred to as V01) discussed the relevance of
mode conversion theory to account for the results of H97, yet did not test the theory
in the particular settings considered by Hallberg. Instead, he simply showed how to
apply the theory to the particular case of a purely meridional topography that is
the most tractable, but arguably less relevant for H97’s study, while questioning the
validity of Hallberg’s mass conservation arguments suggesting widespread coupling.
In reply, Hallberg (2001, hereinafter referred to as H01) maintained the previous
claims of widespread coupling. By using mode conversion theory to compute the
transmission coefficient for a purely zonal topography in the long-wave limit, he
furthermore argued that mode conversion theory did not contradict the previous
estimates based on mass conservation arguments.

Even though undoubtedly relevant to the issue of linear WKB mode coupling, none
of these studies offers a direct comparison between the predictions of mode conversion
theory and an exact solution. Furthermore, these studies are only concerned with the
strength of the linear coupling, although another interesting prediction of mode
conversion theory concerns the physical location of the linear coupling. In this paper,
we go beyond the studies by H97, V01 and H01 by offering a detailed analysis of
mode conversion theory by comparing its predictions directly with an ‘exact’ solution
computed numerically. In addition, attention is paid to simplifying the ray equations,
in order to obtain a semi-analytical description of all WKB quantities. Similarly to
H01, we consider the case of a purely zonal topography, but planetary geostrophy is
used in place of quasi-geostrophy. This allows for the propagation of Rossby waves
to vary with latitude.

The manuscript is organized as follows. The model features are introduced in § 2.
The WKB analysis is presented in § 3. This section analyses and greatly simplifies
the ray and action conservation equations. Section 4 focuses on the qualitative
and quantitative aspects of mode conversion for the present model. The results are
discussed and conclusions are drawn in § 5.

2. Model features
2.1. The model

We use a two-layer model of the ocean circulation – as we did in TM00. Furthermore,
we use the planetary geostrophic approximation since we are interested only in large-
scale disturbances on time scales much longer than a pendulum day. The model
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geometry and notation are summarized in figure 2. Specifically,H1 andH2 = H(φ)−H1

represent the unperturbed layer thicknesses, respectively, with H(φ) the total ocean
depth assumed here to be a function of longitude only; η1(φ, θ, t) and η2(φ, θ, t)
represent the perturbed surface and interface displacements, with θ the latitude and
t the time; the total layer thicknesses are thus h1 = H1 + η1 − η2 and h2 = H2 + η2;
ρ1 and ρ2 are the densities of the homogeneous inviscid upper and lower layers,
respectively; ε = (ρ2 − ρ1)/ρ0 is a dimensionless measure of the density difference
across the layer interface; U i = hiui ≈ Hiui is the (linearized) horizontal transport
in layer i = 1, 2; pi is the horizontal part of the hydrostatic pressure divided by the
reference density ρ0 involved in the Boussinesq approximation; f = 2Ω sin θ is the
Coriolis parameter, where Ω is the Earth’s rotation rate; R is the Earth’s radius;
g is the Earth’s acceleration due to gravity, and g′ = gε. The planetary geostrophy
equations thus read

fẑ ×U i +Hi∇pi = 0 (i = 1, 2), (2.1)

∂(η1 − η2)

∂t
+ divU 1 = 0, (2.2)

∂η2

∂t
+ divU 2 = 0. (2.3)

Equation (2.1) is the classical geostrophic approximation, whereas (2.2) and (2.3)
express mass conservation in each layer. For hydrostatic motions, p1 and p2 are
related to the surface and interface displacements by p1 = gη1 and p2 = g(η1 + εη2).
By combining (2.1) with (2.2) and (2.3), a system of equations for only the pressure
perturbations can be derived; it can be written concisely as follows:

S
∂p

∂t
+

g′

R2 cos θ

[
Dφ
∂p

∂φ
+ Dθ

∂p

∂θ

]
= 0, (2.4)

where S , Dφ and Dθ are the following symmetric matrices:

S =

(
1 + ε −1
−1 1

)
, (2.5)

Dφ =

( Uφ
1 0

0 Uφ
2

)
, Dθ =

( Uθ
1 0

0 Uθ
2

)
, (2.6)

with p = (p1, p2)
T , the vector for the pressure perturbations. For the reader unfamiliar

with the planetary geostrophy equations, note that (2.4) can also be obtained from
the more widely known two-layer quasi-geostrophy equations, used for instance in
Hallberg (1997), by (i) taking the long-wave limit, obtained by neglecting the Laplacian
terms, (ii) retaining the latitudinal variations of f and β, (iii) by replacing the
streamfunctions Ψi by the pressure perturbations pi, and (iv) by rewriting everything
in spherical-polar coordinates. The vectors Ui are related to the potential vorticity
field Hi/f associated with the layer i by

Uφ
i =

∂

∂θ

(
Hi

f

)
, Uθ

i = − ∂

∂φ

(
Hi

f

)
. (2.7)

It follows that the matrices Dφ and Dθ satisfy the property ∂φDφ + ∂θDθ = 0. In the
following, the problem is further simplified by making the rigid-lid approximation
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that consists of taking the limit ε −→ 0 for the matrix S in (2.5). The consequence of
the rigid-lid approximation is to render S singular which is then no longer positive
definite. It has a null-space generated by W = (1, 1)T , the standard barotropic
mode.

2.2. Eastern wavemaker experiment

In this paper, baroclinic Rossby waves are assumed to originate from the eastern
boundary, where an unspecified wavemaker excites them at the annual period. Such a
procedure is useful to study the propagation of free Rossby waves and was previously
used in KB99 and TM00. Furthermore, we assume that the wavemaker excites waves
only in the finite interval [θmin, θmax]. Denoting the middle of the latter interval by
θmid, the interface displacement is specified at the eastern boundary at all times by

η2(φE, θ, t) = η0

(
1 + cos

(
2π

θ − θmid
θmax − θmin

))2

eiωt + c.c. (θmin 6 θ 6 θmax).

We verify that both η2 and dη2/dθ vanish at θmin and θmax so that η2 goes smoothly
toward zero at the bounds of the interval. The zonally varying topography is taken
as a Gaussian ridge,

H(φ) = H0 − δH exp

{
−1

2

(
φ− φ0

δφ

)2
}
, (2.8)

whereas the ocean basin is assumed to be bounded in longitude between the two
meridians φ = 0 and φ = φE . In latitude, we assume only that we are sufficiently far
away from the equator for geostrophy to remain valid and that f > 0 corresponding
to the northern hemisphere. The numerical experiment that constitutes the main
illustration of this paper uses the following specific values: H1 = 1000 m, H0 = 4500 m,
δH = 1500 m, g′ = 2× 10−2 ms−2, ω = 2π/(1 year), δφ = 9.6◦, θmax − θmin = 26.33◦,
θmid = 35◦, φ0 = 60◦, φE = 120◦ and η0 = 5 m.

2.3. Remark on using spherical-polar coordinates

Using spherical-polar coordinates for WKB theory requires attention to the scale
factors which introduce some differences with the familiar form of the equations
usually given in Cartesian coordinates. To that end, it is useful to introduce the
notation,

U?
i =

g′

R2 cos θ
Ui, (2.9)

and (D?φ,D
?
θ ) = g′(Dφ,Dθ)/(R2 cos θ). This allows us to rewrite (2.4) as follows:

S
∂p

∂t
+ D?φ

∂p

∂φ
+ D?θ

∂p

∂θ
= 0, (2.10)

which will prove more convenient for the WKB analysis. Furthermore, the transfor-
mation matrix

C =
1

R

(
1 0
0 1/ cos θ

)
, (2.11)

allows Ui to be written in terms of the coordinate-independent notation CUi =
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−ẑ × ∇(Hi/f) so that div(CUi) = 0 for i = 1, 2. As a consequence,

1

R2 cos θ

[
∂(AUφ

i )

∂φ
+
∂(AUθ

i )

∂θ

]
= div(ACUi), (2.12)

for any arbitrary scalar quantity A.

2.4. Energetics

A conservation equation for the energy is obtained by multiplying the left-hand side
of (2.4) by pT ; it can be written as

∂E
∂t

+ divF = 0, (2.13)

with

E = 1
2
pTSp = 1

2
[(p2 − p1)

2 + εp2
1] = 1

2
[g′2η2

2 + εg2η2
1], (2.14)

F = 1
2
g′[p2

1CU1 + p2
2CU2]. (2.15)

The energy (2.14) is the available potential energy of the system for planetary
geostrophic motions. This energy reduces to E = 1

2
g′2η2

2 when the rigid-lid approxi-
mation made here is used, as this amounts to setting ε to zero in (2.14). For purely
time periodic solution (p1, p2) = (p̂1(φ, θ), p̂2(φ, θ)) e−iωt, it is possible to show that the
energy equation yields

div(|p̂1|2CU1 + |p̂2|2C2U2) = 0, (2.16)

where |p̂i| = (p̂ip̂
∗
i )

1/2 is the modulus of p̂i, the asterisk denoting complex conjugation.

3. WKB analysis and solution
3.1. Dispersion relation and eigenmodes

To analyse (2.4) with WKB theory, we seek a purely time periodic solution using the
so-called physical optics approximation,

p ≈ q0(Φ,Θ) ei(Σ(Φ,Θ)/ε−ωt), (3.1)

where Σ/ε is a rapidly varying phase function, and q0 a vertical modal structure
function of the slow variables (Φ,Θ) = ε(φ, θ), where ε is the assumed small WKB
parameter, i.e. the ratio of the wavelength of the studied wave to the spatial scale of
the topography. As usual, we define a local wavevector k = ε−1(∂ΦΣ, ∂ΘΣ)T . Inserting
(3.1) into (2.4) yields at leading order:

(kφD
?
φ + kθD

?
θ − ωS)q0 = 0. (3.2)

Equation (3.2) is a generalized (singular) eigenvalue problem which admits two non-
trivial solutions. The first is associated with the solvability condition det(kφD

?
φ +

kθD
?
θ − ωS) = 0, which yields the following dispersion relation:

ω =
(U?

1 · k)(U?
2 · k)

(U?
1 +U?

2) · k = $(k;φ, θ), (3.3)

or explicitly in terms of the parameters of the problem,

$(k;φ, θ) = − g′H1kφ

2ΩR2 sin2 θ

H2 + µ

H + µ
, (3.4)
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where

µ = tan θH ′(φ)
kθ

kφ
. (3.5)

The regular eigenmode ν = (n1, n2)
T associated with (3.3) has components satisfying

U?
1 · kn1 +U?

2 · kn2 = 0. If the normalization condition νTSν = 1 is imposed, which
simply means that |n1 − n2| = 1, we show that

n1(k;φ, θ) = − U?
2 · k

(U?
1 +U?

2) · k = −H2 + µ

H + µ
, (3.6)

n2(k;φ, θ) =
U?

1 · k
(U?

1 +U?
2) · k =

H1

H + µ
, (3.7)

The other non-trivial solution of (3.2) belongs to the null-space of S and is thus
proportional to W = (1, 1)T , provided that k satisfies the compatibility condition:

(U1 +U2) · k = 0⇔ J

(
Σ,
H

f

)
= 0, (3.8)

which is the dispersion relation for this mode, where J(. , .) is the standard Jacobian
operator. It is degenerate because it does not involve ω at all, and it is obtained
in the limit of vanishing ε in the original system (i.e. before making the rigid-lid
approximation). In the following, this degenerate solution plays no role and is thus
ignored from now on. As for the solution of (3.2), we chose it proportional to ν; thus,
we pose q0 = Aν . The determination of A is linked to the so-called transport equation
and will be addressed later in the text.

3.2. Remarks about the number of dynamical modes

The number of dynamical modes in a layered model is determined by the number
of layers. The present system has two layers and thus possesses two dynamical
modes. This is not immediately apparent here because the degeneracy introduced
by the rigid-lid approximation yields only one dispersion relation of the form ω =
$(k;φ, θ), giving the impression that the system supports only one mode. The problem
occurs because in the limit of vanishing ε, the dispersion relation for the flat-bottom
barotropic mode behaves like ω ∼ kφ/ε→∞, which is ill-behaved. It follows that
although the mode still exists physically, it can no longer be written down explicitly.
All is well, however, if the dispersion relation is rewritten in terms of kφ, because
then kφ ∼ εω remains finite. This points to the correct way to retain the two modes
explicitly: simply use kφ instead of ω as the eigenvalue of (3.2). This is achieved by
rewriting (3.2) as follows:

(ωS − kθD?θ )V± = k±φD
?
φV±, (3.9)

with (k+
φ ,V+) and (k−φ ,V−) the two eigensolutions. Equation (3.9) is a generalized

eigenvalue problem which is regular because D∗φ – unlike S – is definite positive, hence
regular. Note that over a flat-bottom, one root is zero, yielding an infinite phase speed,
as noted above, which is the consequence of the rigid-lid approximation. The two
eigenvalues k+

φ and k−φ are the roots of the following second-order polynomial in kφ:

k2
φ +

(
U?θ

2 kθ

U?φ
2

− ωU?φ

U?φ
1 U?φ

2

)
kφ − ωU?θkθ

U?φ
1 U?φ

2

= 0, (3.10)

where U? = U?
1 + U?

2. Equation (3.10) can also be obtained directly from (3.3);
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formally, this yields the two desired dispersion relations under the form kφ =

k±φ (ω, kθ;φ, θ). The two eigenmodes V+ and V− satisfy the orthogonality condi-

tion V−TD?φV+ = 0, owing to all matrices being symmetric. The components of the

two eigenmodes can be obtained by successively inserting k+
φ and k−φ into (3.6) and

(3.7); as a result, we obtain

V+ =V(k+
φ ) =

 −
H2 + µ

H + µ

H1

H + µ

 , V− =V(k−φ ) =


H2

µ

H2 + µ

µ

 . (3.11)

The flat-bottom case is obtained in the limit µ→ 0, in which case,

V+ → 1

H

( −H2

H1

)
, V− → 1

µ

(
1
1

)
.

These are recognized as the standard flat-bottom baroclinic and barotropic modes,
respectively. This shows that using kφ as the eigenvalue of (3.2) instead of ω yields
the expected modes over a flat bottom. Another limit of interest is that achieved for
µ� H , which corresponds to the steep topographic case encountered over the ridge’s
flanks;

V+ → 1

µ

(
1
0

)
, V− → 1

µ

(
0
1

)
.

These are recognized as the surface and bottom trapped modes, respectively. Finally,
note that the properties of these two modes can be exchanged when µ is such that
|H2 + µ| � 1, in which case

V+ ≈ 1

H1

(
0
1

)
, V− ≈ − 1

H2

(
1
0

)
.

Abrupt changes from bottom-trapped to top-trapped and conversely occur in the
present simulations; the same was also described by Hallberg (1997).

3.3. Ray equations

The canonical ray equations are given by the well-known Hamiltonian system:

Dφ

Dt
=
∂$

∂kφ
= c?g,φ,

Dθ

Dt
=
∂$

∂kθ
= c?g,θ, (3.12)

Dkφ
Dt

= −∂$
∂φ

,
Dkθ
Dt

= −∂$
∂θ
. (3.13)

By differentiating (3.4) successively with respect to kφ, kθ , φ and θ, (3.12) and (3.13)
are shown to take the form

Dφ

Dt
= c?g,φ = − g′H1

2ΩR2 sin2 θ

(H2 + µ)2 +H1H2

(H + µ)2
, (3.14)

Dθ

Dt
= c?g,θ = − g′H1

2ΩR2 sin θ cos θ

H1H
′(φ)

(H + µ)2
, (3.15)

Dkφ
Dt

=
g′H1kφ

2ΩR2 sin2 θ

H1

(H + µ)2

(
H ′ + tan θH ′′

kθ

kφ

)
, (3.16)

Dkθ
Dt

=
g′H1kφ

2ΩR2 sin2 θ

[
H1µ

(H + µ)2

(
tan θ +

1

tan θ

)
− H2 + µ

H + µ

2

tan θ

]
. (3.17)
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For completeness, the ray equations (3.14)–(3.17) must be supplemented with initial
conditions. For the eastern wavemaker, these are

φ(t = 0) = φE, θ(t = 0) = ξ, (3.18)

kφ(t = 0) = − H0

H1(H0 −H1)

2ΩωR2 sin2 ξ

g′
, kθ(t = 0) = 0, (3.19)

which implicitly assumes Σ to be independent of latitude along the eastern boundary
through the last condition. The condition for kφ comes from (3.4) assuming a flat
bottom (i.e. H = H0) near the eastern boundary.

The group velocity c?g = (c?g,φ, c
?
g,θ)

T is obtained by differentiating (3.3) with respect
to kφ and kθ; this yields

c?g =
g′

R2 cos θ

[( U2 · k
(U1 +U2) · k

)2

U1 +

( U1 · k
(U1 +U2) · k

)2

U2

]
= n2

1U?
1 + n2

2U?
2.

(3.20)

For later use, it is useful to define the two related quantities cg = n2
1U1 + n2

2U2, and
γg = Ccg , where C is the transformation matrix (2.11).

3.4. Simplification of the ray equations

The rather complicated canonical ray equations (3.14) to (3.17) can be simplified
owing to the fact that the only pieces of information needed to integrate them are:
(i) the position, and (ii) the value of the quantity Z = tan θkθ/kφ, as shown for the
continuously stratified case over a general topography in Tailleux (2002a). Indeed,
knowing Z yields µ = ZH ′(φ) (since H is known everywhere as a function of position),
which in turn yields kφ (using 3.4) and then kθ from the following expressions:

kφ = −2ΩωR2

g′H1

H + µ

H2 + µ
sin2 θ, (3.21)

kθ =
Zkφ

tan θ
= −2ΩωR2

g′H1

Z(H + µ)

H2 + µ
sin θ cos θ. (3.22)

To further simplify the problem, we also use φ as the pseudo-time coordinate to
describe the ray evolution. This is possible here because cg,φ < 0 everywhere, for this
makes φ a one-to-one function of t. To describe the ray position, we thus only need
an evolution equation for θ in terms of φ, which is obtained by dividing (3.15) by
cg,φ, yielding

dθ

dφ
=

Dθ

Dt

/Dφ

Dt
=

H1H
′ tan θ

(H2 + ZH ′)2 +H1H2

. (3.23)

This equation admits the following first integral:

sin θ = sin ξ exp

{∫ φ

φE

H1H
′

(H2 +H ′Z)2 +H1H2

dφ′
}

︸ ︷︷ ︸
χ(φ,ξ)

, (3.24)

which yields the following analytical formula for θ:

θ(φ, ξ) = arcsin (χ(φ, ξ) sin ξ), (3.25)
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Figure 3. (a) ——, the function Z(φ) for the eastern wavemaker experiment corresponding to
figure 1, along with · · ·, the solution for a flat bottom (dashed line) which is given by Z = 2(φ−φE),
and is thus simply proportional to the distance from the eastern boundary. (b) The corresponding
function χ(φ).

which will prove convenient in the following. To derive an equation for Z , we note
that

1

Z

dZ

dφ
=

(
tan θ +

1

tan θ

)
dθ

dφ
+

1

kθ

dkθ
dφ
− 1

kφ

dkφ
dφ

. (3.26)

Using (3.23) in combination with (3.16) and (3.17) divided by cg,φ, (3.26) becomes

dZ

dφ
= 2 +

H1Z(3H ′ +H ′′Z)

(H2 +H ′Z)2 +H1H2

. (3.27)

By construction, the function χ as defined in (3.24) is always strictly positive. In
general, it will depend on both φ and ξ. We see, however, that χ can be made
independent of ξ provided that φE and Z are themselves independent of ξ. We
verify that this is the case for the wavemaker experiment considered in this study,
because (i) the eastern boundary is a meridian, (ii) ξ does not enter (3.27) explicitly,
and Z(φE, ξ) = 0 from (3.19) is independent of ξ. The functions Z(φ) and χ(φ)
corresponding to the experiment depicted in figure 1 are illustrated in figure 3.

3.5. Consequences for the existence of caustics

Since the phenomenon of mode conversion is intrinsically a case of WKB breakdown,
it seems important to eliminate concern for the possible occurrence of caustics to
ascertain that the effects discussed in this paper are unrelated to caustics. By definition,
a caustic occurs when two neighbouring rays θ(φ, ξ) and θ(φ, ξ + dξ) meet at the
same longitude, say φc. This condition implies

θ(φc, ξ + dξ) = θ(φc, ξ) =⇒ ∂θ

∂ξ
(φc, ξ) = 0. (3.28)

This condition is identical to that derived by KB99 (cf. KB99, equation A.15), but
simpler in form here owing to the use of the (φ, ξ) coordinates. By differentiating
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(3.24) with respect to ξ, the condition (3.28) becomes

∂θ

∂ξ
=

cos ξ

cos θ
χ(φc, ξ) +

sin ξ

cos θ

∂χ

∂ξ
(φc, ξ) = 0. (3.29)

Given that χ is always strictly positive, as well as sin ξ in the northern hemisphere,
caustics can only exist if ∂ξχ < 0. If χ depends on longitude only, as in the present
case, ∂ξχ = 0, so that caustics cannot exist here because (3.29) cannot be satisfied.
Therefore, some necessary (but not necessarily sufficient) conditions for caustics are
that (i) the eastern boundary condition for Z depends on ξ, and (ii) the topography
is fully two-dimensional. These results can be shown to extend to the continuously
stratified case (Tailleux 2002a).

3.6. Transport equation (wave action conservation)

The simplest way to obtain an amplitude equation for A is directly from the energy
conservation (2.13), or more exactly from (2.16) since we are dealing with purely
time-periodic solutions. Thus, inserting p̂1 = An1 and p̂2 = An2 into (2.16) yields

div( 1
2
γgA

2) = 0, (3.30)

using the result that 1
2
[n2

1CU1 + n2
2CU2]A

2 = 1
2
γgA

2 from (3.20). This is the standard
‘ray tube’ conservation of action from Lighthill (1978), where γg = Ccg was introduced
at the same time as (3.20), thus showing that γg , not cg , is the form of group velocity
to be used to recover the usual Cartesian form of ray tube conservation of wave
action. As shown in the Appendix, or by direct integration over an infinitesimal
surface element bounded between two rays ξ and ξ + dξ and two meridians φ and
φ+ dφ, (3.30) can be written concisely in the (φ, ξ)-coordinate system as follows:

∂

∂φ
(θξcg,φA

2) = 0, (3.31)

where θξ = ∂θ/∂ξ. Physically, θξdξ represents the distance between two adjacent rays
ξ and ξ + dξ, i.e. the ‘width’ of the tube. Equation (3.31) is of the form ∂J/∂φ = 0,
where

J = θξcg,φA
2 (3.32)

is the standard ‘wave action density flux’ used in mode conversion theory.
The form (3.31) is particularly useful because it allows us to obtain an explicit

analytical expression for A. By integrating (3.31) between an arbitrary interior point
(φ, θ(φ, ξ)) and the eastern boundary (φE, ξ) along a ray ξ = cst, we thus obtain

A2(φ, ξ) =
(H0 −H1)(H + µ)2χ(φ)

H0((H2 + µ)2 +H1H2)
A2(φE, ξ), (3.33)

which expresses A in terms of known quantities of ξ and φ, as well as in terms
of the eastern boundary condition for A. As a consistency check, we verify that
A2(φ, ξ) = A2(φE, ξ) over a flat bottom, as χ(φ) = 1, and H ′ = 0 in that case. In order
to obtain an expression for A in terms of φ and θ, rather than in terms of φ and
ξ, simply replace ξ in (3.33) by ξ(φ, θ) = arcsin (sin θ/χ(φ)) which is deduced from
(3.25). The result is

A2(φ, θ) =
(H0 −H1)(H + µ)2χ(φ)

H0((H2 + µ)2 +H1H2)
A2(φE, arcsin (sin θ/χ(φ))). (3.34)

Since η̂2 = (p̂2 − p̂1)/g
′, using p̂1 = An1 and p̂2 = An2 show that η̂2 = A(n2 − n1)/g

′ =
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A/g′ given that n2 − n1 = 1. It follows that
√
η̂2η̂2

? = |η̂2| = A/g′, so that (3.34) can
be used to draw figure 1(b).

4. Predictions of mode conversion theory
4.1. Coupled and uncoupled ray dynamics

The eigenvalue problem (3.2) is already in a suitable matrix form allowing for an
easy application of the standard results of mode conversion theory (the most relevant
recent examples are Vanneste 2001 and Hallberg 2001), namely,

(ωS − kφD?φ − kθD?θ )q0 =

[
D11 D12

D21 D22

] [
An1

An2

]
= 0, (4.1)

where D11 = U?
1 · k − ω, D22 = U?

2 · k − ω, and D12 = D21 = ω. In fact, it is also
in the canonical form considered by Kaufman & Friedland (1987), for instance,
where the off-diagonal coefficients D12 = D21 = ω are independent of the wave vector
and position. This means that here the frequency ω plays the role of the coupling
parameter. The strength of the coupling is therefore stronger for higher frequencies
whereas it vanishes for steady solutions. The dispersion coefficients D11 and D22 are
regarded as functions of φ, kφ and ξ, with ξ treated as a constant as computations
are done along a given ray.

In this representation, the implicit equations D11(φ, kφ, ξ) = 0 and D22(φ, kφ, ξ) = 0
describe the uncoupled ray dynamics, while (D11D22 − D12D21)(φ, kφ, ξ) = 0, which is
the second-order polynomial (3.10) for kφ previously considered, describes the actual
coupled wave dynamics. Since U?

1 and U?
2 are independent of the wave vector, the

uncoupled dispersion relations D11 =U?
1 ·k−ω = 0 and D22 =U?

2 ·k−ω = 0 actually
describe non-dispersive propagation along the potential vorticity contours H1/f and
H2/f in the upper and lower layers, respectively. These represent the surface- and
bottom-intensified Rossby wave modes described by a number of authors, most
recently by H97.

Mode conversion occurs near an intersection point for the uncoupled dispersion
curves, as is schematically depicted in figure 4 in the (kφ, φ)-space. The evolution for
kφ and kθ for the baroclinic ray is given as a function of φ and ξ by (3.21) and (3.22).
With the notation of figure 4, we will have, therefore,

k+
φ (φ, ξ) = −2ΩωR2 sin2 ξ

g′H1

H +H ′Z
H2 +H ′Z

χ2(φ), (4.2)

which is (3.21) rewritten by replacing sin θ by χ(φ) sin ξ. The other root can be easily
determined from (3.10) which gives the sum of the roots as k+

φ + k−φ = Hk0/H2 −Kθ ,
where

k0 =
H2

H

ωU?φ

U?φ
1 U?φ

2

= −2ΩωR2 sin2 θ

g′H1

, Kθ =
U?θ

2 kθ

U?φ
2

=
tan θH ′kθ

H2

. (4.3)

This yields

k−φ (φ, ξ) =
2ΩωR2

g′H1

H ′Z
H2

sin2 θ =
2ΩωR2 sin2 ξ

g′H1

H ′Z
H2

χ2(φ). (4.4)

Over a flat bottom H ′ vanishes, so that the two roots reduce to k+
φ = Hk0/H2 =

H0k0/H2 and k−φ = 0, as expected. An example of coupled and uncoupled ray evolution
is depicted in figure 5 for ξ = 35◦, where the coupled rays are given by (4.2) and (4.4),
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Figure 4. Idealized depiction of mode conversion. The two thick lines of equations kφ = k+
φ (φ) and

kφ = k−φ (φ) represent two branches of the dispersion relation in the (φ, kφ)-space. Mode conversion
occurs in the shaded area where the incident ray originating from the right-hand side separates into
a converted and transmitted ray. The amount of wave action splitting between the two depends
on the nature and strength of the mode coupling. The thin lines represent the dispersion curves
D11(kφ, φ) = 0 and D22(kφ, φ) = 0 of the wave modes in the absence of coupling. These curves
intersect at the point (φc, kφ,c), where mode conversion is expected to occur for the coupled wave
modes.
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Figure 5. Evolution of the ---------, coupled and ——, uncoupled wave modes represented in the
(kφ, φ)-space, as in the previous figure, corresponding to a ray originating at ξ = 35◦N. The
uncoupled rays are the ones intersecting at two locations near the bottom and top of the ridge
eastern flank, respectively, where mode conversion must theoretically take place.

and an explicit expression for the uncoupled rays is given in the next section. This
figure shows that over the eastern and western flat-bottom parts surrounding the ridge,
the uncoupled and coupled wave modes are clearly distinct from each other. This is
expected, because the coupled wave modes are the standard flat-bottom baroclinic
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and barotropic modes, neither of which are either bottom- or surface-trapped. Over
the ridge, however, we see that the uncoupled and coupled wave modes very nearly
coincide, clearly evidencing the decoupling effect of the steep topography previously
pointed out by a number of authors, e.g. Hallberg (1997).

4.2. Mode conversion points

As seen above, the mode conversion points (kφc , φc) are located at the intersection
of two uncoupled rays; they must therefore simultaneously satisfy D11(kφ,c, φc) =
D22(kφ,c, φc) = 0. To obtain explicit results, it is useful to rewrite D11 and D22 explicitly
as:

D11(kφ, φ, ξ) =U?
1 · k − ω = − g′H1

2ΩR2 sin2 ξχ2(φ)
[kφ − k1(φ, ξ)], (4.5)

D22(kφ, φ, ξ) =U?
2 · k − ω = − g′H2

2ΩR2 sin2 ξχ2(φ)
[kφ − k2(φ, ξ)], (4.6)

where the two wavenumbers k1 and k2 are given by

k1(φ, ξ) = −2ΩωR2 sin2 ξ

g′H1

χ2(φ) = k0(φ, ξ), (4.7)

k2(φ, ξ) =

[
H1

H2(φ)
− µ(H + µ)

H2(H2 + µ)

]
k0(φ, ξ), (4.8)

using the diagnostic expressions (3.21) and (3.22) for kφ and kθ . With this notation, the
two implicit relations D11 = 0 and D22 = 0 can be written explicitly as kφ = k1(φ, ξ)
and kφ = k2(φ, ξ), respectively. The explicit expressions (4.7) and (4.8) are those used
to draw the intersecting uncoupled rays of figure 5. The equation for the intersection,
therefore, simply becomes k1(φc, ξ) = k2(φc, ξ), which provides an equation for φc,
which from (4.7) and (4.8) is given by

µ = −H2 ±
√
H1H2.

Only the root with the plus sign yields mode conversion points. This yields

H2(φc) + Z(φc)H
′(φc) =

√
H1H2(φc). (4.9)

Equation (4.9) shows that mode conversion occurs at the same critical longitude(s) for
all rays. A graphical solution of (4.9) depicted in figure 6 shows the mode conversion
points as the roots of H2 −√H1H2 + ZH ′. All roots are on the ridge’s eastern flank,
one near the ridge’s bottom and the second near the top, and they coincide with the
places where the two uncoupled rays intersect in figure 5.

4.3. Action splitting at mode conversion points

In mode conversion theory the converted and transmitted wave action fluxes Jconverted
and Jtransmitted are linked to the incident wave action flux Jincident by the connection
formula:

Jtransmitted = TJincident, (4.10)

Jconverted = (1− T )Jincident, (4.11)

where the transmission coefficient is usually written under the form T = e−2πν . A
general expression for ν is given by equation (4.12) of Flynn & Littlejohn (1994),
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Figure 6. The function H2(φ)−√H1H2(φ) + Z(φ)H ′(φ) = H2(φ) + µ(φ)−√H1H2(φ) whose zeros
determine the location of the mode conversion points. For this particular example, the coupling
points are located at φ1 ≈ 60.1864◦ and φ2 = 82.3144◦.

but this reduces to the simpler equation (3) of Kaufman & Friedland (1987) in the
present case, namely,

ν =
ω2√{D11, D22}2

∣∣∣∣∣
φc,kφ,c

, (4.12)

which involves the Poisson bracket

{D11, D22} = ∂φD11∂kφD22 − ∂φD22∂kφD11 + ∂θD11∂kθD22 − ∂kθD11∂θD22. (4.13)

(The seemingly different expression used by Hallberg 2001 is the same as (4.12) because
D11 = D22 = 0 at the point (φc, kφ,c)). To evaluate the Poisson bracket, we must regard
D11 and D22 as functions of all four variables φ, kφ, θ and kθ , i.e. we must use the

expressions D11 =U?
1 ·k−ω = U?,φ

1 kφ−ω and D22 =U?
2 ·k−ω = U?,φ

2 kφ+U?,θ
2 kθ−ω;

the evaluation of (4.13) is straightforward and yields

{D11, D22} =

(
g′

2ΩR2

)2
H1

sin2 θ
[3H ′(φ)kφ +H ′′(φ) tan θkθ]. (4.14)

This expression is to be evaluated at kφ,c, where

kφ,c = k1(φc, ξ) = k2(φc, ξ) = −2ΩωR2 sin2 θ

g′H1

, (4.15)

whereas kθ is evaluated along a ray from (3.22) at φ = φc, yielding

kθ = −2ΩωR2

g′H1

Z(φc)(H(φc) + Z(φc)H
′(φc))

H2(φc) +H ′(φc)Z(φc)
sin θ cos θ. (4.16)

By inserting (4.15) and (4.16) into (4.14), using the result (4.9), the following expression
for ν is obtained:

ν =
ΩωR2 sin2 θ

g′H1

∣∣∣∣ 2H1H
′

(H2 −H1)H ′′ − 3H ′2

∣∣∣∣
φ=φc

. (4.17)
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An alternative way to write ν makes use of Cartesian coordinates by replacing H ′
by R cos θHx in (4.17), where Hx = dH/dx; this yields

ν =
1

2

2ΩωR sin2 θ

g′H1 cos θ

∣∣∣∣ 2H1Hx

(H2 −H1)Hxx − 3H2
x

∣∣∣∣ . (4.18)

In (4.18), we recognize the quantity c1 = g′H1 cos θ/(2ΩR sin2 θ) = βR2
1 as the Rossby

wave speed of a reduced gravity model, with R1 = (g′H1)
1/2/f the Rossby radius.

Thus, kR = ω/c1 is the wavenumber of surface intensified Rossby waves with period
ω. Defining

LT =

∣∣∣∣ 2H1Hx

(H2 −H1)Hxx − 3H2
x

∣∣∣∣ , (4.19)

which has the dimension of a length scale, the expression for T becomes

T = exp(−πkRLT ). (4.20)

By (4.20), significant transmission occurs only when kRLT � 1. Our expression for
ν will be compared with equation (2.17) of H01 also derived for a zonally varying
topography, but for quasi-geostrophic motions. For easier comparison, we rewrite
H01’s ν in the same form, ν = 1

2
kRLT , as used in this paper. Using H01’s expression

(2.7), as well as the condition that k1 = k2 at mode conversion points (from H01
equation (2.4)), demonstrates that LT is required to be in the form

LT =

∣∣∣∣ 2ωfH2

g′`(HxxH2 −H2
x)

∣∣∣∣ =

∣∣∣∣ 2H1Hx

(H2 −H1)Hxx − (H2 −H1)/H2H2
x

∣∣∣∣ , (4.21)

where ` is H01’s notation for the meridional wavenumber. The comparison of (4.19)
and (4.21) shows that the two expressions differ only in the term proportional to
H2
x in the denominator. The two expressions are therefore expected to yield similar

results near a mode conversion point where the term proportional to Hxx is usually
dominant over that involving Hx. Thus, quasi-geostrophy and planetary geostrophy
give similar, but not identical, expressions for the transmission coefficient at mode
conversion points.

4.4. Quantitative and qualitative assessment of mode conversion theory

Figure 7 depicts the square root of the transmission coefficient computed from
(4.17) for the two longitudes φc (e.g. see figure 6) predicted by mode conversion
theory. Accordingly, transmission is predicted to be weak at the bottom of the ridge,
but significantly more important near the hilltop. Figure 8 shows the numerical
simulation reproduced from figure 1(a); we superimposed a pair of rays originating
from the eastern boundary, starting a new ray each time a mode conversion point
was encountered. According to this figure, mode conversion theory is found to be
a very good predictor of where to expect wave activity, since the latter is found
precisely within the limits delineated by the various rays. To test the theory more
quantitatively, we decomposed the numerical solution for p̂ on the basis constituted
by the two modes V+ and V− as follows:

p̂ = g′[η̂+
2V(k+

φ ) + η̂−2V(k−φ )] (4.22)

whereV(k+
φ ) andV(k−φ ) are the two eigenmodes (3.11), while η̂+

2 and η̂−2 represent the
respective contributions of each mode to the layer interface. From the orthogonality
condition for V+ and V−, the latter are given by g′η̂±2 = p̂TD?

φV±. This decompo-

sition is easily achieved in the present case, owing to V+ and V− depending only
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Figure 7. Square root of the transmission coefficient as a function of latitude corresponding to
the mode conversion point near the ridge’s top (upper curve) and that on the eastern flank (lower
curve).
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Figure 8. A pair of rays (denoted by the heavy solid and dashed lines) originating from the eastern
boundary and their successive bifurcations predicted by mode conversion theory superimposed on
the direct numerical computation of the r.m.s. interface displacement (reproduced from figure 1a).

on φ and not on the ray index ξ. Were mode conversion negligible, we would simply
have η̂−2 ≈ 0 and |g′η̂+

2 | = A. The computed moduli of |η̂+
2 | and |η̂−2 | are depicted in

figures 9(b) and 9(c), respectively, whereas figure 9(a) shows the prediction of single-
mode WKB theory accounting for the two aforementioned mode conversion events.
Figure 9(b) shows two distinct regions: one originating from the eastern boundary,
and one seemingly created near the hilltop. The former is the one expected from
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Figure 9. (a) The root mean square of the layer interface displacement as computed by single WKB
mode theory modified to account for the two mode conversion events described in the text. (b) The
root mean square of the layer interface of the true solution projected on the WKB normal mode.
(c) The root mean square of the residual of the true layer interface minus the part depicted in (b).
A pair of rays originating from the eastern boundary and their successive bifurcations predicted by
mode conversion theory were superimposed on (b) and (c).

single-mode WKB theory, and thus the one to be compared with figure 9(a). The
secondary signal and that depicted in figure 9(c), illustrate the importance of mode
conversion to explain the numerical simulation, as they would vanish in absence of it.
Figures 9(a) and 9(c) show clearly that mode creation occurs precisely at the predicted
mode conversion points where the ray bifurcations occur. Finally, various latitudinal
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Figure 10. Latitudinal sections of |η̂2| computed by: – – –, single WKB mode theory; ---------, single
WKB mode theory accounting for mode conversion; ——, direct numerical simulation projected
on WKB normal mode for various longitudes: (a) φ = 5◦; (b) φ = 20◦; (c) φ = 40◦; (d ) φ = 65◦;
(e) φ = 75◦; ( f ) φ = 90◦. In (d )–( f ) the three curves are almost indistinguishable from each other.
In (a)–(c), the additional peak on the right-hand side appears only in the numerical solution, so
that the comparison is to be made only for the peak on the left-hand side.

sections of figures 9(a) and 9(b) are depicted in figure 10 to obtain a more precise
idea of the accuracy of mode conversion theory. For comparison, we also added the
corresponding sections of the single WKB mode solution of figure 1(b). East of the
ridge’s top (figures 10d–10f ) there is little difference between the true solution and
the predictions of single WKB mode theory, with or without accounting for mode
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conversion, because transmission remains small. The situation is somewhat different
westward of the ridge’s top (figures 10a–10c); there is now a large discrepancy be-
tween the true solution and the prediction of single WKB mode theory, as expected,
which is considerably reduced by accounting for mode conversion, the remaining
error being only a few per cent. Mode conversion appears therefore to be successful
both qualitatively and quantitatively.

4.5. Location of the mode conversion points

To conclude this section we briefly examine the link between the mode conversion
points and the strength of the linear mode coupling. According to (4.20), significant
transmission requires low values of LT . We therefore expect it to occur preferentially
near places where LT is close to zero. To estimate LT for the Gaussian topography
(2.8), we rewrite the expression for H as follows:

H(x) = H0 − δH exp

{
−1

2

(
x− x0

`T

)2
}
,

where `T = R cos θδφ, and x− x0 = R cos θ(φ− φ0). From (4.19), we see that LT is
trivially close to zero near a local extremum of H , where Hx ≈ 0 whereas Hxx 6= 0.
As a result, we expect significant transmission to occur at mode conversion points
near the ridge top; but how near should they be? Equation (4.9) shows that linear
resonance cannot occur precisely at the top unless H2(φc) = H1. We disregard this
as too particular a case. To treat the general case, we therefore assume |xc − x0|/`T
small and then expand H as a Taylor series expansion about x0 in (4.19); this yields
the leading-order relation,

LT ≈ 2H1

|2H1 + δH −H0| |xc − x0|. (4.23)

By combining (4.23) with (4.20) we obtain the following condition on xc for trans-
mission to be greater than an arbitrarily specified critical value Tmin:

|xc − x0| < 2H1

|2H1 + δH −H0|
| lnTmin|
πkR

. (4.24)

For example, taking H0 = 5000, δH = 1000 m, H1 = 1000 m, and Tmin = 0.1 yields
|xc − x0| < 0.125 λR , where λR = 2π/kR . Increasing the ridge height to δH = 2000 m
yields |xc−x0| < 0.22λR . This suggests that significant transmission is possible only if
linear resonance takes place within significantly less than the Rossby wavelength λR
from the ridge’s top. To determine whether xc falls within this interval, we must solve
the implicit equation (4.9) for φc. Assuming this has been done, expanding (4.9) as a
Taylor series around φc yields the additional condition:

|φc − φ0| ≈ |H1 +
√
H1(H0 − δH −H1) + δH −H0|

δH

δφ2

|Z(φc)| , (4.25)

which relates |xc− x0| to the parameters of the problem, and to the value of Z at the
mode conversion points. This shows that some control of |φc − φ0| can be achieved
by toying with the values of H1, δH and H0, provided that Z(φc) does not vary much
while the parameters are modified.

Another less obvious case where LT can become close to zero is in the asymptotic
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limit where |x− x0|/`T becomes arbitrarily large; indeed, at leading order,

LT ≈ 2H1`T

|2H1 −H0|
`T

|x− x0| ,
|x− x0|
`T

−→ +∞. (4.26)

As in the previous case, this implies a condition on xc in order for transmission to be
greater than the critical value Tmin, given in this case by

|xc − x0|
`T

>
2H1

|2H1 −H0|
πkR`T

| lnTmin| . (4.27)

Unlike the previous case, significant transmission occurs this time only sufficiently
far away from the top of the ridge. It is difficult to say much more, as (4.9) defies a
simple analytical treatment in this case.

5. Discussion
In this study, we address the issue of energy propagation for long baroclinic Rossby

waves in a two-layer ocean with purely zonal topography within the framework of
WKB theory. Of particular interest to us is the problem of mode conversion previously
raised by H97, V01 and H01. V01 is ambiguous on whether mode conversion theory
is applicable to the particular settings considered by H97, suggesting in particular
the possibility of other unspecified non-WKB effects to account for the localized
coupling described by H97. H01 is more conclusive in this respect, but does not
support its conclusions by the analysis of a specific case. Our study, by comparing
a direct numerical simulation to the predictions of WKB and mode conversion
theories, definitely establishes the relevance of mode conversion theory. In particular,
the possibility that significant transmission may occur is demonstrated. Our study
also indicates that WKB theory is a very good descriptor of the ‘real’ solution, even
though the topography considered in this study is quite steep (in the sense that
the topographic β effect dominates planetary β, i.e. fH ′(x)/(βH)� 1). This is in
agreement with H97’s conclusions. We speculate that this is due to the particular
mathematical structure of the planetary geostrophic equations which often has a
quasi-non-dispersive hyperbolic structure. This appears particularly clearly in figure 5
where the uncoupled non-dispersive behaviour is often seen to be very close to the
coupled dispersive one. When propagation becomes non-dispersive, WKB theory
becomes nearly exact except at mode conversion points which structurally require the
solution to be locally expressed in terms of two wave modes.

In this study, our analysis is restricted to only zonal variation of the topography;
this is the main cause for the modifications undergone by the zonal wavenumber dur-
ing westward propagation, which for fixed frequency is responsible for the changes
in the zonal phase speed cp,φ = ω/(R cos θkφ) (seen in measurements by Chelton &
Schlax 1996). The main problem in extending the present analysis to a more general
topography is the lack of an analytical form for the WKB quantities. However, we do
not anticipate meridional variations to affect dramatically our conclusions on mode
conversion since these depend essentially on the zonal wavenumber’s behaviour. How-
ever, meridional topographic variations may yield interesting complications, since they
can induce caustics, so that the full two-dimensional case should be studied in detail
before definitive conclusions can be drawn (Killworth 2002, personal communication).

A pressing question concerns the extension to a continuously stratified (CS) fluid.
In KB99, the scattering of energy between WKB wave modes is neglected, whereas
it is shown to be significant in the two-layer simulations of TM00. KB99 argues
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plausibly that two-layer models often exaggerate many effects in comparison to
their continuously stratified counterpart. As an example, the meridional excursions
of the rays are significantly larger in the present two-layer model than in the CS
solutions of KB99. Sometimes, however, the opposite occurs. For instance, the speed
of surface-intensified first-baroclinic Rossby mode is, in general, underestimated in
two-layer model compared to the CS case, as shown in Tailleux & McWilliams (2001).
This argument comes back to the qualitative and quantitative differences between
a two-layer ocean model and a continuously stratified model, analysed in detail in
Flierl (1978). To assess the relevance of mode conversion to the CS case, Tailleux
(2002a) and Tailleux (2002b) numerically computed instances of rays for the same
kinds of experiment as presented here, but for a continuous exponential stratification
and constant buoyancy frequency, respectively. In both cases, the top of the ridge is
found to be associated with very rapid changes taking place within less than 2◦, which
is much shorter than the wavelengths of interest. For this reason, we are strongly
inclined to believe that mode conversion is also relevant to the continuously stratified
case. According to Killworth (2002, personal communication), the ridge’s top appears
to be a region associated with stiff numerics, which make it difficult to conserve the
frequency along the rays. All this indicates that the ridge’s crest is a place associated
with non-standard ray dynamics, which we must now look at more closely.

To make further progress, the details of mode conversion theory for a continuously
stratified fluid must be determined. In particular, we must understand how the length
scale LT which enters the definition of the transmission coefficient, is related to the
topography and stratification in the general case. Only then will we be able to settle
definitely the question of whether mode conversion is relevant to the actual ocean. To
address mode conversion in a continuously stratified fluid, the main difficulty probably
consists in reducing the problem to the standard form. This requires identifying the
‘uncoupled’ wave modes and the coupling mechanism. In the two-layer model, the
uncoupled wave modes are found to be the layer modes propagating non-dispersively
along the Hi/f contours, whereas the coupling parameter is found to be ω. Since
there is no obvious equivalent to the layer thicknesses Hi in a continuously stratified
fluid, the identification of the relevant quantities in this case is an interesting topic
for future study.
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Appendix. Action conservation in (φ, ξ) coordinates

To demonstrate (3.31), we first establish the following lemma:

Lemma 1. Let (Fφ, Fθ) be an arbitrary differentiable vector field. Then,

∂Fφ

∂φ
+
∂Fθ

∂θ
=

1

θξ

[(
∂(θξFφ)

∂φ

)
ξ

+

(
∂

∂ξ

(
Fθ − θφFφ))

φ

]
. (A 1)
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Proof. For an arbitrary scalar field Q, the chain rule yields(
∂Q
∂φ

)
ξ

=

(
∂Q
∂φ

)
θ

+

(
∂Q
∂θ

)
φ

(
∂θ

∂φ

)
ξ

, (A 2)

(
∂Q
∂ξ

)
φ

=

(
∂Q
∂θ

)
φ

(
∂θ

∂ξ

)
φ

. (A 3)

These relations are inverted as follows:(
∂Q
∂θ

)
φ

=
1

θξ

(
∂Q
∂ξ

)
φ

, (A 4)

(
∂Q
∂φ

)
θ

=

(
∂Q
∂φ

)
ξ

− θφ

θξ

(
∂Q
∂ξ

)
φ

, (A 5)

where for conciseness, we use the notation (∂ξθ)φ = θξ and (∂φθ)ξ = θφ. (Note that
θφ = cg,θ/cg,φ.) From the passage relations (A 4) and (A 5), it follows that

∂Fφ

∂φ
+
∂Fθ

∂θ
=

(
∂Fφ

∂φ

)
ξ

− θφ

θξ

(
∂Fφ

∂ξ

)
φ

+
1

θξ

(
∂Fθ

∂ξ

)
φ

. (A 6)

Furthermore, we also have(
∂(θξFφ)

∂φ

)
ξ

= θξ

(
∂Fφ

∂φ

)
ξ

+ θφξFφ, (A 7)

(
∂(θφFφ)

∂ξ

)
φ

= θφ

(
∂Fφ

∂ξ

)
φ

+ θφξFφ. (A 8)

By differentiating (A 1), accounting for (A 7) and (A 8), we see that (A 1) and (A 6)
are equivalent. This concludes the proof. Now, since θφ = cg,θ/cg,φ, it follows that
cg,θA

2 − θφcg,φA2 = 0, so that applying the lemma to (3.30) yields (3.31).
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