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RÉMI TAILLEUX* AND JAMES C. MCWILLIAMS

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

(Manuscript received 23 August 1999, in final form 24 August 2000)

ABSTRACT

In layered models of the ocean, the assumption of a deep resting layer is often made, motivated by the surface
intensification of many phenomena. The propagation speed of first-mode, baroclinic Rossby waves in such
models is always faster than in models with all the layers active. The assumption of a deep-resting layer is not
crucial for the phase-speed enhancement since the same result holds if the bottom pressure fluctuations are
uncorrelated from the overlying wave dynamics.

In this paper the authors explore the relevance of this behavior to recent observational estimates of ‘‘too-
fast’’ waves by Chelton and Schlax. The available evidence supporting this scenario is reviewed and a method
that extends the idea to a continuously stratified fluid is developed. It is established that the resulting amplification
factor is at leading order captured by the formula,

2F9 (2H )1 0C /C 5 1 1 . 1,fast standard 01
2F9 (z) dzE 1H0 2H0

where Cfast is the enhanced phase speed, Cstandard the standard phase speed, is the standard first mode forF9(z)1

the velocity and pressure, and H0 is the reference depth serving to define it. In the case WKB theory is applicable
in the vertical direction, the above formula reduces to

2NbC /C 5 1 1 ,fast standard N

where Nb is the deep Brunt–Väisälä frequency and its vertical average.N
The amplification factor is computed from a global hydrographic climatology. The comparison with obser-

vational estimates shows a reasonable degree of consistency, although with appreciable scatter. The theory
appears to do as well as the previously published mean-flow theories of Killworth et al. and others. The link
between the faster mode and the surface-intensified modes occurring over steep topography previously discussed
in the literature is also established.

1. Introduction

a. Motivation and background

In layered models of the ocean the assumption of a
deep resting layer is often made, motivated by the sur-
face intensification of many phenomena. The propa-
gation speed of first-mode, baroclinic Rossby waves in
such models is always faster than in models with all the
layers active. For example, in the so-called reduced-
gravity or 1.5-layer model, baroclinic Rossby waves are
faster than in the full two-layer model by the factor H/
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H2, where H2 is the lower layer thickness and H the
total ocean depth.

This behavior is qualitatively similar to the recent
finding by Chelton and Schlax (1996) from TOPEX/
Poseidon altimetry that observed extratropical, baro-
clinic Rossby waves are systematically faster than pre-
dicted by the standard linear theory. The discrepancy is
illustrated in Fig. 1 (bottom), which displays the ratio
of observed to theoretical phase speeds. This ratio is
seen to increase poleward and can reach values as high
as two to three at high latitudes. Given that the mixed
layer and the pycnocline also increase with latitude on
average, such a behavior is also expected for H/H2.

The ‘‘Radon Transform’’ method used by Chelton and
Schlax (1996) does not distinguish between low- and
high-frequency motions within the altimetric dataset
that resolves periods of months and longer; this method
simply provides a global phase-speed estimate based on
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FIG. 1. The ratio of observed to theoretical phase speed for three
different theories: (top) pressure-decorrelation theory, (middle) mean-
flow theory, (bottom) standard theory. Note the logarithmic scale for
the ordinate.

the assumption that the propagation is quasi-nondis-
persive. Subsequently, Zang and Wunsch (1999) com-
puted frequency/wavenumber diagrams from TOPEX/
Poseidon to determine an empirical dispersion relation-
ship for the observed first-mode baroclinic Rossby
waves. They found a discrepancy with the standard the-
ory only for the higher frequency motions. This is in
agreement with the study by Hong et al. (1998); they
did not find enhanced phase speeds necessary to account
for decadal sea-level variability in the North Atlantic
subtropical gyre. Currently it is unclear what distin-
guishes these methods of analysis or lower and higher
frequency Rossby waves, although the latter seem to
have shorter zonal length scales in extratropical regions.
In the present study, we focus on motions of subbasin
length scale, though still in the nondispersive limit of
Rossby wave propagation, hence we only attempt to
compare our results with that of Chelton and Schlax
(1996). Future studies should include dispersive and fi-
nite-domain effects as well to allow a more complete

comparison with the frequency/wavenumber analysis of
the altimetric data.

There have been several theoretical attempts to ex-
plain Chelton and Schlax’s (1996) results. The most
popular explanation to date is that mean-flow effects
account for most of the discrepancy (e.g., Killworth et
al. 1997; Dewar 1998; de Szoeke and Chelton 1999;
Liu 1999). Estimates from this theory are shown in Fig.
1 (middle panel). They do better than the standard the-
ory but are still systematically too low, suggesting that
other effects might also be important.

Among the other theoretical possibilities, the speed
doubling mechanism due to a periodic forcing proposed
by White (1977) and Qiu et al. (1997) can be rejected
because it is only a visual effect that is filtered out by
the radon transform method used by Chelton and Schlax
(1996). The radon transform is able to distinguish be-
tween individual propagating components so that it does
not see the sum

cosvt 1 cos(vt 1 kx)

as a spatially modulated wave,

2 coskx cos(vt 1 kx/2),

propagating at twice the standard-theory speed (as ar-
gued by White 1977), but as two waves yielding two
peaks. The first has an infinite phase speed, and the
second has the standard speed. This is easily verified
by running the radon transform on the above expression.

An explanation involving the coupling with the at-
mosphere is investigated by White et al. (1997), but the
analysis is not very convincing due to the coarse-res-
olution data and the limited time series used. The effect
of a smooth topography in a continuously stratified fluid
is investigated by Killworth and Blundell (1999) by
means of a WKB theory, but the authors do not find a
systematic phase-speed enhancement in this case. On
the other hand, Tailleux and McWilliams (2000) find a
systematic phase-speed enhancement over a steep to-
pography in a two-layer model, a possibility previously
raised by Rhines (1977) and Veronis (1981) and related
to the faster phase speed of the reduced-gravity model.

The simplest way to address the possibility of phase-
speed enhancement in a two-layer model is by exam-
ining the evolution equation for the baroclinic mode
written as follows:

]h g9bH ]h bH ]p2 1 2 1 22 5 2 , (1)
2 2]t f ]x f ]x

where p2 is the bottom pressure, h2 the displacement of
the layers interface, g9 the reduced gravity of the density
difference across the interface between the layers, H1

the upper layer thickness, f the Coriolis parameter, and
b 5 df/dy its latitudinal derivative; see Tailleux and
McWilliams (2000) for details about the derivation of
(1). In the standard theory, the bottom pressure is pro-
portional to the interface according to p2 5 2H1/H2h2

so that the right-hand side contributes to the propagation
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to define an effective phase speed, c 5 2g9bH1H2/
( f2H). However, if we assume that for some reason ]x p2

is uncorrelated to ]xh2, then the effective speed becomes
c 5 2g9bH1/ f 2, which is faster by the factor H/H2.
This condition is obviously realized in a reduced-gravity
model that assumes p2 5 0.

In order to assess the relevance of this idea for the
interpretation of Chelton and Schlax’s (1996) results,
we confront two main difficulties. First, we have to
decide whether there is a reasonable basis for assuming
either bottom pressure compensation or decoupling (i.e.,
decorrelation from pressure fluctuations in the upper
ocean). Second, we need to determine how to estimate
the analog of the enhancement factor H/H2 for a realistic
stratified ocean.

b. Basis for bottom pressure decoupling

In Tailleux and McWilliams (2000), the phase-speed
enhancement occurs as the result of the decoupling of
]x p2 with ]xh2. In this case, the responsible mechanism
is the steep topography. Past studies investigating the
effects of the topography on the baroclinic modes have
shown the existence of top-trapped modes, but they gen-
erally failed to associate this feature with faster prop-
agation (Rhines 1970; Straub 1994; Samelson 1992;
Reznik and Tsybaneva 1994; Hallberg 1997).1

The possibility of top-trapping does not appear to be
uniquely related to the existence of topography. For
instance, surface intensification occurs in the calcula-
tions of McWilliams et al. (1986) for the nonlinear prop-
agation of a vortex over a flat bottom, with the resulting
phase-speed enhancement noted by the authors. How-
ever, the physical mechanisms responsible for the sur-
face intensification in these calculations are still largely
unexplained. Certainly, the effects of nonlinearities, ed-
dies, small-scale topography, and weak stratification of
the deep ocean may all play a role in decoupling the
abyss from the upper ocean. Potentially relevant are the
concepts of arrested Ekman layers [e.g., see Garrett et
al. (1993), Mellor and Wang (1996) and references
therein], which can give rise to bottom pressure decou-
pling when isopycnals intersect topography. We also
note that circumstances in which eddy–topography in-
teractions are detuned in the deep ocean have been found
in the numerical experiments of two-layer quasigeo-
strophic (QG) turbulence by Rhines (1975) and Rhines
(1977).

The studies cited above compose the present theo-
retical evidence that bottom pressure compensation or
decoupling and/or strong surface intensification fre-
quently occur in the ocean, along with the accompa-
nying phase-speed enhancement. In this paper, we pro-
pose a method to estimate the latter effect in a contin-

1 However, Samelson (1992) points out that surface-trapped waves
have higher frequencies by the ratio H/H2, whose consequence is
higher phase speeds.

uously stratified fluid. The pressure-decorrelation esti-
mates are displayed in Fig. 1 (top), along with those
from the mean-flow (middle) and standard (bottom) the-
ories, and the pressure-decorrelation estimates are in
reasonable agreement with the observational estimates.

c. Quantification of the phase-speed enhancement
factor

If one tries to estimate the value of the enhancement
factor by using typical values for H and H2 based on
the depth of the pycnocline (e.g., H2 5 4000 m, H 5
5000 m), H/H2 appears to be quite small (1.25 in this
example) compared to the observed phase-speed en-
hancement factor of 2 or more (Fig. 1, bottom). Ac-
cording to Flierl (1978), however, the value of H/H2

depends on which physical process one is interested in
modeling accurately. For instance, Flierl (1978) finds
that H2 5 H/2 is required to model strong topographic
effects accurately (thus implying H/H2 5 2), whereas
the choice of a much thinner upper layer is better suited
to modeling the response to wind forcing. In this paper,
we propose a method that eliminates the concern for the
right two-layer calibration by focusing on a continu-
ously stratified fluid.

d. Methodology and organization

In order to facilitate a comparison between our ap-
proach and those mentioned above, it is useful to pro-
ceed by analogy with the situation described by the
following schematic dynamical problem:

]p ]p
1 A 5 0, (2)

]t ]x

where p is a state vector of dimension N, and A an N
3 N square matrix. Within this simple framework, the
standard theory is analogous to the case where A is a
diagonal matrix with constant coefficients. In this case,
the modal amplitudes (the components pi of p) are in-
dependent of each other, each obeying a scalar equation
of the type ]tpi 1 ci]x p i 5 0. In order to include realistic
effects, like that of the mean flow (Killworth et al. 1997)
or the topography (Killworth and Blundell 1999), the
matrix A must be transformed into one with variable
coefficients, including nonzero off-diagonal ones. As a
result, the pi become coupled. Under the assumption
that there is a scale separation between the spatial var-
iations of the environment and that of the waves, which
justifies the use of WKB theory, this coupling can be
interpreted in terms of anomalous propagation. In this
case, the coupled modes and their phase speeds are sim-
ply determined by diagonalizing the matrix A.

Implicit in the above-mentioned theories is that the
matrix A is somehow perfectly known. As a result, the
qi are expected to be well-behaved deterministic quan-
tities, with well-defined spatial and temporal character-
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istics. However, this might not be the case. Indeed, one
may easily conceive that the neglected nonlinearities,
small scales, temporal variations, etc. if included, would
have a significant impact on the dynamics of the system.
In this paper, we assume that the main consequence of
neglecting the above effects is to render aspects of the
model dubious and inaccurate. Our strategy thus con-
sists in modifying this dubious dynamics by an addi-
tional constraint that we believe may often be more
accurate. In some ways this strategy is equivalent to
making a closure assumption. In this paper, we assume
that a particular combination of the pi that constitute the
bottom pressure has, in fact, the behavior of a random
variable. In other words, we add to the usual dynamics
a constraint of the form with X aNS s p 5 X(x, t),j50 j j

random process with unspecified characteristics and sj

constants discussed later in the text. This constraint al-
lows the expression of one of the pi, pN say, in terms
of the others. After substitution of this constraint, our
schematic problem (2) is transformed into one of the
form,

]p* ]p*
1 A* 5 F(x, t), (3)

]t ]x

where p* 5 (p1, · · · , pN21) has one component less
than p; A* is a (N 2 1)-dimensional square matrix; and
F(x, t) is a random vector. In this paper, we argue that
the new wave properties are to be obtained by diago-
nalizing A*, not A.

This paper is organized as follows: The coupled equa-
tions for the planetary geostrophic standard modes over
topography that result from making the bottom pressure
decoupling hypothesis are presented in section 2. The
theory for the phase-speed enhancement resulting from
bottom pressure decoupling and application to several
illustrative examples are presented in section 3. The
issue of the vertical structure of the modes is addressed
in section 4. A comparison of our predictions with the
observational estimates is presented in section 5. A dis-
cussion concludes the paper in section 6.

2. Planetary geostrophic equations

As stated in the introduction, we are interested in
investigating how the coupling of the standard modes
resulting from any departure from the idealized as-
sumptions of the standard linear model—flat bottom,
horizontally uniform stratification, free, inviscid, small
perturbations to a state of rest, etc.—may modify the
propagation properties of the planetary Rossby modes.
Of course, all the effects neglected in the standard the-
ory—forcing, dissipation, topography, nonlinearities,
etc.—contribute to the coupling, so that the most general
problem is quite complicated. For the reasons given in
the introduction, we shall focus here on the topography
effects only.

a. Dynamical model

Our starting point is the standard linear model, com-
posed by the linearized primitive equations in absence
of forcing and dissipation,

]u
1 f ẑ 3 u 1 =p 5 0 (4)

]t

]p
5 b (5)

]z

]u ]y ]w
1 1 5 0 (6)

]x ]y ]z

]b
21 N w 5 0. (7)

]t

The notation is standard: u 5 (u, y) denotes the hori-
zontal velocity; w the vertical velocity; p 5 P/r0 the
pressure divided by a reference density r0; b 5 2gr/
r0 the buoyancy, with g the gravitational acceleration
and r the density; the Brunt–2N (z) 5 2(g/r )dr /dz0 0

Vaisälä frequency computed from the mean density pro-
file f the Coriolis parameter; and b 5 df/dy ther (z);0

latitudinal derivative of f . These equations are supple-
mented by the linearized boundary conditions,

]h
w 5 

]t  at z 5 0, (8)


p 5 gh

w 5 2u · =H at z 5 2H(x, y), (9)

where h(x, y, t) denotes the departure of the sea surface
height from its resting position z 5 0, while z 5 2H(x,
y) denotes the position of the ocean bottom. From a
mathematical viewpoint, the only departure from the
standard linear theory lies in the bottom boundary con-
dition (9) used in place of the standard (i.e., flat-bottom
boundary condition) w(2H0) 5 0.

b. Projection onto the standard modes

For any given reference standard depth H0 [taken here
as the maximum value of H(x, y)] and background strat-
ification with buoyancy frequency N(z), the standard
normal modes are defined as the eigenmodes of the
following Sturm-Liouville problem:

2 2d F Nk 1 F 5 0, (10)k2 2dz ck

with boundary conditions,

g
F9(0) 5 F (0), F (2H ) 5 0 (11)k k k 02ck

(Gill 1982). As is well known, the square root of the
constant of separation ck can be interpreted as the phase
speed of the gravity wave modes of the system. The set
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of modes , obtained by taking the vertical deriv-F9(z)k

ative of , form a complete orthogonal basis thatF (z)k

can be used to express the horizontal velocity and pres-
sure fields as the following series expansions:

1`

u(x, y, z, t) 5 U (x, y, t)F9(z) (12)O k k
k50

1`

p(x, y, z, t) 5 P (x, y, t)F9(z). (13)O k k
k50

The hydrostatic approximation (5) allows us to obtain
the buoyancy from p by taking the vertical derivative
of (13). Simplifying the result by means of (10) yields

1`

2 22b(x, y, z, t) 5 2N (z) c P (x, y, t)F (z). (14)O k k k
k50

Integrating the continuity equation (6) over depth and
accounting for the bottom boundary condition (9) allows
us to diagnose the vertical velocity from the horizontal
velocity as follows:

z

w(x, y, z, t) 5 2div u(x, y, z, t) dz. (15)E
2H

Inserting (12) into (15) yields the following series ex-
pansion for w:

1`

w(x, y, z, t) 5 C (x, y, t) 2 divU (x, y, t)F (z), (16)O k k
k50

where the function C (x, y, t) is defined by

1`

C (x, y, t) 5 div F (2H )U . (17)O k k[ ]k50

The term C involves the values of Fk at z 5 2H(x, y),
so it would vanish in the standard theory. It is therefore
responsible for the modal coupling here. We can get a
sense of the physical meaning of C by expanding
Fj(2H) in a Taylor series,

F (2H ) 5 F (2H) 2 (H 2 H)F9(2H) 1 · · · ,j 0 j 0 j

(18)

which vanishes from (11). It follows that at leading
order becomesF (2H) ø (H 2 H)F9(2H) so that Cj 0 j

1`

C (x, y) ø div F9(2H )BU 5 div(BU ), (19)O k k b1 2k50

where B 5 H0 2 H(x, y) is the topographic anomaly
and Ub the bottom velocity. In cases where the bottom
velocity is in approximate geostrophic balance, C re-
duces to

B
C (x, y) 5 J , p (20)b1 2f

with pb the bottom pressure. Equation (20) shows that
C is closely related to the bottom pressure torque ap-

pearing in joint effect of baroclinicity and relief (JE-
BAR) theories. This is expected, because JEBAR ap-
pears in any formulation that decomposes the circulation
into a vertically averaged part (the standard barotropic
mode) plus a part with zero vertical average (the sum
of all the baroclinic modes), which is equivalent to the
present approach. In the following, no use will be made
of (20) because our derivations are independent of the
precise form of C, as we show below.

In order to obtain the coupled modal equations, we
first insert the expressions (16) and (14) into the buoy-
ancy equation (7), yielding

1` 1 ]Pk 2 21 divU N (z)F (z) 5 N (z)C (x, y, t). (21)O k k21 2c ]tk50 k

The surface boundary condition (8) imposes w(0) 5
g21]p/]t(0). Using (13) and (16), this yields

1` 1`]PkF9(0) 5 2g divU F (0) 2 C . (22)O Ok k k1 2]tk50 k50

From (11), this can be rewritten as follows:

1` 1 ]Pk 1 divU F (0) 5 C (x, y, t). (23)O k k21 2c ]tk50 k

A second set of equations is obtained by inserting (12)
and (13) into the horizontal momentum equations (4);
namely,

1` ]Uk 1 f ẑ 3 U 1 =P F9(z) 5 0. (24)O k k k1 2]tk51

Equations (21), (23), and (24) are projected onto the
normal modes by using the following orthogonality con-
ditions:

0

2N F (z)F (z) dz 1 gF (0)F (0)E i j i j

2H0

0

5 F9(z)F9(z) dz 5 0 (25)E j i

2H0

when i ± j. As a result, the sought-for coupled modal
equations are given by

]Uj
1 f ẑ 3 U 1 =P 5 0 (26)j j]t

]Pj 21 c divU 5 G C (x, y, t) (27)j j j]t

with
0

2N (z)F (z) dz 1 gF (0)E j j

2H0
2G 5 c . (28)j j 0

2 2 2N (z)F (z) dz 1 gF (0)E j j

2H0
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As in Tailleux and McWilliams (2000), we focus on
planetary geostrophic motions with slow timescales (on
the order of a month and longer) and spatial scales large
compared to the first baroclinic Rossby radius of de-
formation. As a result, one can replace (26) by the geo-
strophic approximation. Furthermore, in the case of the
barotropic case ( j 5 0), one can also neglect the time
derivative in (27), which yields the classical Sverdrup
balance. These classical approximations permit the sim-
plification of (26) and (27) as follows:

bgH ]P0 02 5 G C (x, y), (29)02f ]x
2]P bc ]Pj j j

2 5 G C (x, y), j $ 1, (30)j2]t f ]x

where (29) is the Sverdrup balance for the barotropic
mode and (30) the coupled equations for the baroclinic
modes. This set of equations generalizes to an infinite
number of modes the two-layer equations used in Tail-
leux and McWilliams (2000) and constitute the starting
point of the following analysis. In this case, the baro-
tropic vorticity balance is between the meridional ad-
vection of planetary vorticity and the JEBAR term. In
absence of the latter, the baroclinic equations (30) would
simply correspond to nondispersive wave propagation
with the standard westward phase speed 52 2bc / fj

with Rj the jth baroclinic Rossby radius of defor-2bR ,j

mation.

c. The hypothesis of bottom pressure decorrelation

We proceed by analogy with the two-layer example
discussed in the introduction. The main objective is to
obtain a suitable form of the system (29)–(30) allowing
us to introduce naturally the bottom pressure decorre-
lation hypothesis discussed above. To that end, the main
idea is to confine any explicit reference to the bottom
topography to only one equation. Indeed, if one inspects
the system (29)–(30), one realizes that all the equations
depend explicitly on the topography through the term
C, as the form (20) establishes clearly. This is quite
unsatisfactory given the present state of uncertainty re-
garding what essential characteristics of H should be
retained for modeling purposes. For this reason, we first
use (29) to express C in terms of the barotropic mode
and insert the result into all the baroclinic equations
(30). This yields the system

bgH ]P0 02 5 G C , (31)02f ]x
2]P bc ]P G bgH ]Pj j j j 0 02 5 2 , (32)

2 2]t f ]x G f ]x0

which is strictly equivalent to (29)–(30), with the im-
portant difference that explicit reference to the bottom
topography is now solely confined to (31). The main
advantage of (32) is that all the coefficients that appear

in it depend uniquely on integral properties of the stan-
dard modes and thus depend uniquely on the back-
ground stratification and reference depth H0. Since we
are much more confident about how to choose N 2(z)
and H0 than H(x, y) in the actual ocean, we believe that
the equations constituting (32) have more informative
content and a more deterministic character than (30) and
(31).

In order to introduce the bottom pressure decorrela-
tion hypothesis, we need to insert information about the
bottom pressure into the system (32). To that end, we
first express the bottom pressure pb in terms of the nor-
mal modes. From (13), one has

p (x, y, t) 5 p(x, y, z 5 2H, t)b

1`

5 P (x, y, t)F9(2H ). (33)O k k
k50

From a Taylor series expansion, we can see that
5 1 [because 5 02F9(2H) F9(2H ) O(B ) F0(2H )k k 0 k 0

from (10) and (11)] so that differs fromF9(2H)k

only at second order in the topography anom-F9(2H )k 0

aly. For simplicity, we shall make this approximation
in the following. Note that the approximation F9(2k

5 is exact for the barotropic mode (k 5H) F9(2H )k 0

0) since F0(z) varies linearly with depth. Equation (33)
allows the barotropic amplitude P0 to be expressed in
terms of pb and the baroclinic amplitude Pj, j $ 1.
Inserting the result into (32) yields

1` 
 p 2 F9(2H )POb k 0 k2]P bc ]P G bgH ]  j j j j k5102 ø 2 . 2 2]t f ]x G f ]x F9(2H )0 0 0 

(34)

We rewrite this equation under the form

1`]P ]P Gb ]P bgH ]pj j jk 0 b22 c 1 s 5 2 ,Oj jk2 2[ ]]t f ]x ]x G f F9(2H ) ]xk51 0 0 0

(35)

where

G F9(2H )j k 0
s 5 gH . (36)jk 0G F9(2H )0 0 0

The system (35) is the generalization to an infinite num-
ber of modes of the two-layer model Eq. (1) discussed
in the introduction. If needed, the consistency between
the two approaches is further demonstrated in section
3b.

As stated in the introduction, this paper argues that
the randomness of the topography introduces a random-
ness in the system whose main consequence is to render
(31) greatly uncertain and inaccurate. Since (31) and
(35) are coupled, it follows that randomness must also
be present in (35). On the physical grounds detailed in
the introduction, which mainly stem from our previous
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analysis of the two-layer model solutions reported in
Tailleux and McWilliams (2000), we believe that the
main consequence of this randomness is that the right-
hand side of (35) does not have any influence on prop-
agating solutions of the system. It follows that the anom-
alous propagation due to the departure from the ideal-
ized assumptions of the standard linear model consid-
ered here can be understood by analyzing the
propagation properties of (35) with the right-hand side
taken as zero.

3. Propagation analysis

a. General theory

The system (35), with j $ 1, is an infinite-dimensional
system. We analyze its properties by considering suc-
cessive truncations. The truncated system of order n,
obtained by retaining only the terms k 5 1, · · · , n in
the infinite series in (35), is of the following form:

]P b ]P bgH ]p0 b2 M 5 2 G, (37)n2]t f ]x F9(2H ) ]x0 0

with the coefficients of the n 3 n matrix Mn being
the2m 5 s 1 c d , j 5 1, · · · , n, k 5 1, · · · , n; djk jk j jk jk

Kronecker d; G the n-dimensional vector with compo-
nents Gj/G0, j 5 1, · · · , n; and P the n-dimensional
vector of components Pj, j 5 1, · · · , n. As stated
previously, we assume that the right-hand side of (37)
does not contribute to the propagation of the wave
modes. Thus, the propagation properties of (37) are ob-
tained by diagonalizing the matrix Mn, with the enhanced
phase speed given by the greatest eigenvalue.

1) THE COEFFICIENTS sjk

In order to compute the eigenvalues of the matrix Mn,
the coefficients sjk are needed. As seen in the previous
section, those are given by the expression (36) whose
definition involves the coefficients Gj (28). We first sim-
plify the expression for the latter by establishing the two
relations

0

2 2N F (z) dz 1 gF (0) 5 c (F9(2H ) 2 F9(0))E j j j j 0 j

2H0

1 gF (0)j

25 c F9(2H ), (38)j j 0

0 0

2 2 2 2 2N F (z) dz 1 gF (0) 5 c F9 (z) dz. (39)E j j j E j

2H 2H0 0

The first is obtained by integrating (10) over depth,
while the second is obtained by integrating (10) mul-
tiplied by Fj over depth, in both cases accounting for
the boundary conditions (11). By using these two ex-
pressions, (28) becomes

F9(2H )j 02G 5 c . (40)j j 0

2F9 (z) dzE j

2H0

The expression (36) also involves quantities related to
the barotropic mode F0(z). We estimate those by making
the classical approximation consisting in regarding

as independent of depth so that withF9(z) F9(z) 5 B0 0 0

B0 a constant. As a result, 5 B0 and 0F9(2H ) #0 0 2H0

5 . From (40) one thus computes G0 52 2F9 (z) dz H B0 0 0

g/B0, yielding

gH0 5 H . (41)0G F9(2H )0 0 0

By combining the above results to simplify (36), the
latter becomes

F9(2H )F9(2H )j 0 k 0 2s 5 H G F9(2H ) 5 H c . (42)jk 0 j k 0 0 j0

2F9 (z) dzE j

2H0

2) SYMMETRIZATION OF THE PROBLEM

Given an arbitrarily normalized basis of eigenmodes
the expression for sjk in a differentF̃ , j 5 0, 1, · · · ,j

basis Fj such that Fj 5 with Bj a constant, will˜B F ,j j

be, according to (42),

˜ ˜F9(2H )F9(2H )H B j 0 k 00 k 2s 5 c . (43)jk j0Bj
2F̃9 (z) dzE j

2H0

It is mathematically straightforward to show that the
constants Bj only affect the eigenvectors of Mn, but not
its eigenvalues. Since symmetric eigenvalue problems
are the easiest to solve numerically, we therefore chose
the Bj that render Mn symmetric. Thus, solving sjk 5
skj for Bj /Bk yields

F9(2H )F9(2H )j 0 k 0
s 5 c c .jk j k0 01 1

2 2F9 (z) dz F9 (z) dzE j E k! !H H0 02H 2H0 0

(44)

Note that we have inserted the factor H0 in (43) in the
square roots of the denominator.

3) LEADING-ORDER PHASE-SPEED ENHANCEMENT

In practice the eigenvalues of Mn for n large have to
be estimated numerically. To shed some light on the
problem, however, it is of interest to derive the formal
anomalous phase speed at the lowest order of truncation.
In this case, M1 is simply the scalar

2M 5 c 1 s ,1 1 11 (45)
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corresponding to a phase-speed enhancement 1 1
. Computing s11 from (44) yields2s /c11 1

2s F9 (2H )11 1 01 1 5 1 1 . 1. (46)
02c 11

2F9 (z) dzE 1H0 2H0

This formula shows that the anomalous phase speed at
the lowest order of truncation is always greater than the
standard phase speed. The enhancement factor is seen
to depend primarily on the bottom values of soF9(z),1

it is linked to the bottom value of the velocity and pres-
sure perturbations. In order to better understand the na-
ture of the phase-speed enhancement, we consider next
three specific cases corresponding to buoyancy profiles
with distinct characteristics. First, the singular case of
a two-layer stratification is considered as a consistency
check. Second, the case of a slowly-varying N 2, which
allows WKB theory to be used to derive approximations
to sjk, is considered. Third, the case of an exponential
stratification, for which WKB theory fails, concludes
our investigation.

b. Application 1: Two-layer stratification

As an initial consistency check, we apply our theory
to the case of the two-layer stratification discussed in
the introduction. This case corresponds to the particular
case of a buoyancy frequency profile whose mathe-
matical expression is

2N (z) 5 g9d(z 1 H ),1 (47)

where g9 is the reduced gravitational acceleration, H1 is
the upper-layer thickness, and d the classical Dirac dis-
tribution. This singular profile admits only two eigen-
modes. With the usual approximations, the barotropic
mode takes the form F0(z) 5 B0(z 1 H0), while the
baroclinic mode is given by F1(z) 5 B1(z 1 H0) (2H0

# z # 2H1), F1(z) 5 2B1H2/H1z (2H1 # z # 0).
These expressions for F0 and F1 are used to compute
the coefficients G0 and G1,

F9(2H ) g0 02G 5 c 5 ,0 0 0 B0
2F9 (z) dzE 0

2H0

F9(2H ) H1 0 12 2G 5 c 5 c ,1 1 10 B H H1 2 0
2F9 (z) dzE 1

2H0

and then s11,

G F9(2H ) H1 1 0 1 2s 5 gH 5 c .11 0 1G F9(2H ) H0 0 0 2

Since this problem possesses only two eigenmodes, the
leading order problem,

H H1 02 2 2 2c 5 c 1 s 5 1 1 c 5 c , (48)1,faster 1 11 1 11 2H H2 2

is therefore exact. This amplification factor is the ex-
pected result.

c. Application 2: Slowly varying stratification

When N 2 is a slowly varying function of depth in the
usual WKB sense, approximate expressions for the stan-
dard normal modes can be obtained by making use of
WKB theory. Such a method was recently used with
success by Chelton et al. (1998) to study the spatial
variations of the first baroclinic modes in the ocean,
thus indicating that WKB theory can be used for N 2

profiles typical of the real ocean. When WKB theory is
applicable, we show in the appendix that the approxi-
mate WKB expression for the sjk is given by

2N 1 2Nb b2s ø c 5 c c , (49)jk 1 j kN jk N

where Nb denotes the value of the Brunt–Vaisälä fre-
quency near the ocean bottom and the vertical averageN
of the Brunt–Vaisälä frequency. The formal solution
(46) for the phase-speed enhancement at the lowest or-
der truncation is readily estimated from (49), yielding

s 2N11 b1 1 5 1 1 . (50)
2c N1

In this approximation, one sees that the phase-speed
enhancement depends critically on the value of the deep
Brunt–Vaisälä frequency. It follows that (50) can only
be valid if Nb remains large enough since cases for which
N comes close to zero would correspond to a turning
point situation where WKB theory is known to fail. One
can intuitively understand that (50) breaks down for Nb

too small since from (10) one has ) ø 0, where NF0 (zm

K 1, Fm must be approximately linear in such regions.
In such situation, Fm behaves independently of the local
values of N, so one does not except F1(2H0) to depend
on Nb. As a result, (50) must greatly underestimate the
phase speed enhancement if Nb ø 0. We shall further
clarify this issue in the following section.

The next step is to estimate the effects of retaining
more terms in the truncation on the phase-speed en-
hancement. To that end, we first note that (49) allows
Mn to be written under the particularly simple form

2M 5 c (I 1 jJ ),n 1 n n (51)

with In the n 3 n matrix of coefficients Ijk 5 djk/( jk) (djk

being the Kroenecker delta), Jn the matrix of coefficients
Jjk 5 1/( jk), and j 5 2Nb/ . Equation (51) shows thatN
the phase-speed enhancement can be obtained by com-
puting the largest eigenvalue of the matrix In 1 jJn. It
also shows that the amplification factor depends unique-
ly on the physical parameter j for all n. We computed
the largest eigenvalue of In 1 jJn for n varying between
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FIG. 2. The amplification factor as a function of 2Nb/ for differentN
orders of truncation: two modes (dotted–dashed line), three modes
(dashed line), and 300 modes (solid line). The amplification factor
for even higher orders of truncation is indistinguishable from the
solid line, indicating that convergence has been achieved. FIG. 3. Theoretical amplification factors for the exponential strat-

ification profile as a function of the ratio H0/d: prediction of zero-
order WKB theory (thick solid line) computed from Eq. (50), pre-
diction of formal zero order theory (thin solid line) computed from
Eq. (46), and prediction obtained by solving the modified Sturm-
Liouville problem as explained at the end of section 4 (dotted–dashed
line).

2 and 300 by standard numerical methods, for j regu-
larly sampled between 0 and 2. In Fig. 2 we display the
amplification factor as a function of j for the three cases
n 5 2, n 5 3, and n 5 300. For greater values of n,
the resulting curves are indistinguishable from that cor-
responding to n 5 300, indicating that convergence has
been achieved. We note that all the curves differ little
from each other for j # 1, which corresponds to a ratio
Nb / # 0.5. The maximum error between the linearN
relation 1 1 j and the asymptotic amplification factor
occurs for j 5 2, where the latter reaches the value of
4, while the former is only 3. The value j 5 2 corre-
sponds to the case Nb 5 , that is, the case N 2 5 const.N

d. Application 3: Exponential stratification

In order to better appreciate when the WKB approx-
imation (50) breaks down as a result of Nb becoming
too small, we analyze the idealized case of an expo-
nential stratification,

z /dN(z) 5 N e ,0 (52)

where N0 is the surface value and d the e-folding scale.
For large values of H0/d, one verifies that (52) will in
general violate the conditions (72) in the deep ocean.
On the other hand, we expect the WKB expression (50)
to remain valid for low values of H0/d. In this paragraph,
we seek to understand how (50) compares with the more
accurate (46). For N given by (52), (50) becomes

2H /d0s 2H e11 01 1 5 1 1 j 5 1 1 (53)
2 2H /d1 2 0c d 1 2 e1 WKB

and is seen to depend uniquely on the ratio H0/d. We
compare (53) with the more general (46),

2s F9 (2H )11 1 01 1 5 1 1 (54)
021 2c 11 exact 2F9 (z) dzE 1H0 2H0

with being estimated numerically by solving theF9(z)1

Sturm-Liouville problem (10) with N given by (52). The
two formula were computed for H0/d varying between
0.1 and 10. The result, depicted in Fig. 3, shows the
expected difference for high values of H0/d the two
approaches becoming similar for H0/d ø 1. For com-
parison, we also added the curve corresponding to the
‘‘exact’’ amplification factor for this particular stratifi-
cation, which would be obtained in the asymptotic limit
of an infinite number of modes. A simple method to
compute this limit is given at the end of the following
section.

4. Interpretation of the nonstandard modes

A legitimate question is what is the vertical structure
of the faster modes. The main result of this section is
to link the present modes to the eigenmodes of the stan-
dard Sturm-Liouville problem for which the bottom
boundary condition of vanishing vertical velocity is re-
placed by that of vanishing pressure. These modes cor-
respond to the surface-intensified Rossby waves occur-
ring over steep topography, which have been extensively
discussed by Rhines (1970), Veronis (1981), Charney
and Flierl (1981), and Straub (1994) among others. The
following paragraphs present a demonstration of this
result in three steps. First, we formally derive the the-
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oretical series expansion for the vertical structure of the
faster modes. Second, this series expansion is computed
numerically for the case N 2 5 const and compared with
the solution of the Sturm-Liouville problem with van-
ishing bottom pressure. Third, the result is demonstrated
in the general case.

a. Formal general solution

In order to determine the vertical structure of the
nonstandard modes, we first need to understand more
about the general solution for the pressure perturbation
p. To that end, we first rewrite Eq. (37) more concisely
as follows:

]P b ]P
2 M 5 F , (55)n2]t f ]x

with F to be regarded as a forcing term. From the theory
of forced linear systems, the general solution of (37) is
the sum of a particular solution satisfying (55) plus an
arbitrary linear combination of solutions of the asso-
ciated homogeneous problem. Without loss of gener-
ality, the solutions of the homogeneous system are taken
as plane waves with period v. Thus, if Ri and mi denote
the ith eigenvector and eigenvalue of Mn, the general
solution of (55) takes the form

n

i(k x1vt)lP 5 P 1 s R e , (56)Opart l l
l51

where sl is a constant, kl 5 vf 2/(bml), and Ppart a par-
ticular solution satisfying the equation

]P ]Pbpart part
2 M 5 F . (57)n2]t f ]x

Inserting (56) into (13) allows the general solution to
be written for the pressure perturbation p as the follow-
ing series expansion:

p(x, y, z, t) 5 p 1 P (x, y, t)F9(z)part 0 0

n n

i(k x1vt)l1 s R F9(z)e , (58)O O l j,l j1 2j51 l51

where Rj,l is the jth component of the eigenvector Rl.
After permuting the two sums, the above expression
becomes

p(x, y, z, t)

n n

i(k x1vt)l5 p 1 P (x, y, t)F9(z) 1 s e R F9(z)O Opart 0 0 l j,l j1 2l51 j51

n

i(k x1vt)l5 p 1 P (x, y, t)F9(z) 1 s e F9 (z),Opart 0 0 l l,new
l51

(59)

where the notation
n

F9 (z) 5 R F9(z) (60)Ol,new j,l j
j51

has been introduced. Although it would only seem nat-
ural to identify the new mode F l,new as the vertical struc-
ture associated to the l th anomalous mode (the case l
5 1 therefore corresponds to the structure of the
‘‘faster’’ first baroclinic mode), one needs to be aware
that the term proportional to P0 might also contribute
to it. Indeed, any term contained in P0 proportional to

would combine to F l,new to give a different ver-i(k x1vt)le
tical structure. We note, however, that is inde-F9(z)0

pendent of depth (since it represents the vertical struc-
ture of the standard barotropic mode) so that the effect
is only to shift the mean value of Obviously,F9 (z).l,new

the ambiguity arises because our approach replaces one
deterministic equation of the initial system by a state-
ment of randomness for the bottom pressure, with a
resulting loss of information. It follows that removing
the ambiguity would require making further assump-
tions beyond the scope of this paper. For this reason,
we shall restrict ourselves to understanding the nature
of keeping in mind that the true (if any) verticalF9 (z),l,new

structure should be shifted by an unknown constant.

b. Application to the case N2 5 const

In order to illustrate the above concepts, we compute
the vertical structure for l 5 1, in the case ofF9 (z)l,new

a constant N 2. After suitable normalization, a possible
set of standard modes is given by

1 mp (z 1 H )0F (z) 5 sinm 2 1 2m H0

in which case the coefficients sjk become

2
2s 5 c .jk 1jk

This result can also be obtained from the WKB case
with j 5 2Nb/ 5 2 since Nb 5 N when N 2 is constant.N
The resulting coefficients for the matrix M are m 5n jk

, where dj,k is the Kronecker d. If we de-2c (2 1 d ))/jk1 j,k

note by R1 the eigenvector of Mn associated with the
largest eigenvalue, the expression for is thusF9 (z)1,new

n Rp jp (z 1 H )j,1 0F9 (z) 5 cos . (61)O1,new 1 2H j Hj510 0

The coefficients Rj,1were estimated numerically, as well
as the sum (61). We find empirically that n 5 300 is
more than sufficient for reaching numerical conver-
gence. In this case, we find that the resulting vertical
structure is indistinguishable from that given by the fol-
lowing analytical expression (up to an unimportant mul-
tiplicative constant):

p p (z 1 H ) 10F9 (z) 5 2 sin 1 , (62)1,new 1 22H 2H H0 0 0

hence F1,new(z) 5 cos[p(z 1 H0)/2H0] 1 z/H0. Inter-
estingly, the function F1,new(z) 2 z/H0 5 cos[p(z 1 H0)/
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2H0] can be obtained from the standard Sturm-Liouville
problem by changing the bottom boundary condition to
F9(2H0) 5 0 instead of F(2H0) 5 0, that is, by re-
placing the condition of vanishing vertical velocity by
that of vanishing bottom pressure.

c. Eigenmode with zero bottom pressure

The previous result suggests that there is a link be-
tween F1,new(z) and the gravest eigenmode V of the
Sturm-Liouville problem

2 2d V N
1 V 5 0, (63)

2 2dz g

with boundary conditions V (0) 5 0, dV /dz(2H0) 5 0,
such that

1`

V 5 a F (z) 1 Az. (64)O m m
m51

| |
z

F (z)1,new

By construction, this expression satisfies the upper and
lower boundary conditions provided that the constant A
is taken as

1`

A 5 2 a F9 (2H ). (65)O m m 0
m51

As a result, (64) becomes

1`

V 5 a (F (z) 2 F9 (2H )z). (66)O m m m 0
m51

In order to determine the coefficients am, (66) is inserted
into the Sturm-Liouville problem (63). This yields the
following problem:

1` 1`1 1 1
2 2a 2 N F 5 a F9 (2H )N z. (67)O Om m m m 02 2 21 2g c gm51 m51m

After projection onto the basis of the Fm one obtains

01 1
2 2a 2 N (z)F (z) dzn E n2 21 2g cn 2H0

01`1
25 a F9 (2H ) zN F (z) dz. (68)O m m 0 E n2g m51 2H0

The latter integral can be simplified by using the rela-
tionship and integrating by parts so that2 2N F 5 2c F0n n m

0 0

2 2zN (z)F (z) dz 5 2c zF0(z) dzE n n E n

2H 2H0 0

25 2c F9(2H )H . (69)n n 0 0

After some manipulation, the above system can be re-
written as follows:

1`

2 2s a 1 c a 5 g a (70)O mn m n n n
m51

with

F9 (2H )F9(2H )m 0 n 0 4s 5 H c . (71)mn 0 n0

2 2N F dzE n

2H0

By using (39) [with Fj(0) 5 0, j $ 1, using the rigid-
lid approximation], one realizes that (71) is identical to
the expression for sjk (42) originally derived in section
3. This establishes that the anomalous phase speeds can,
in fact, also be determined by solving the modified
Sturm-Liouville problem (63). The main interest of this
result is to offer a computationally efficient way to com-
pute the anomalous phase speeds that is much cheaper
than using the series expansion introduced in section 3.
On the other hand, the latter series expansion remains
the better way to get approximate theoretical results for
the anomalous phase speeds. The reason is that WKB
theory does not seem to work satisfactorily on the mod-
ified Sturm-Liouville problem for reasons that appear
related to the bottom pressure boundary condition. Sim-
ilar difficulties were encountered by Killworth and
Blundell (1999) (Killworth 1999, personal communi-
cation) to compute approximate solutions for the WKB
modes over topography.

5. Interpretation of TOPEX/Poseidon
measurements

We test the relevance of the pressure-decorrelation
theory by comparing its predicted amplification factors
with the ratios of observed to standard phase speed from
Chelton and Schlax (1996), as well as with the ratio
predicted by the mean-flow theory reported in Killworth
et al. (1997). The extended Levitus dataset (Boyer and
Levitus 1997) is used for the computation in the regions
investigated by Chelton and Schlax (1996). The ampli-
fication factors predicted by WKB theory are compared
with those predicted by solving the Sturm-Liouville
problem with a vanishing bottom pressure instead of a
vanishing vertical velocity.

a. Predictions of WKB theory

Values of the ratio Nb/ are easily estimated fromN
hydrographic data, allowing us to compute the ampli-
fication factor for the global ocean by using the com-
putational relationship obtained for n 5 300 (the upper
curve depicted in Fig. 2). The dataset used is the Levitus
climatology extended to ¼8 resolution by Boyer and
Levitus (1997). The result, shown in Fig. 4, demon-
strates that the amplification factor thus obtained in the
midlatitudes has a value around 2. Values close to 3 are
obtained in the regions of the Antarctic Circumpolar
Current, as well as in the subpolar gyre in the North
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FIG. 4. Global map of the theoretical enhancement factor, 1 1 2Nb , computed from the extended Levitus 94 climatology. ModestN
smoothing has been applied. Regions in black (other than continents) correspond to data with singular behavior (e.g., negative buoyancy
frequency at some level or excessive shallowness for our analysis to be meaningful). The contour interval is 0.2, and the thick contour
represents an amplification factor of 2.0.

Atlantic, due to the weak stratification that exists there;
this implies high values for the ratio Nb/ . The ratioN
Nb/ is strongly affected by topographic features so thatN
the original map at the ¼8 resolution of the extended
Levitus dataset is quite noisy. The small scales are fil-
tered by successive application of a 58 averaging filter
in longitude, and a 18 averaging filter in latitude.

Estimates of the zonal phase speed from TOPEX/
Poseidon altimetric data are generally determined from
use of the radon transform at a given latitude over lon-
gitudinal bands spanning approximately 308. Amplifi-
cation factors are computed over the same longitudinal
bands and displayed in Fig. 1 (top). For comparison,
the results of the standard theory are displayed in Fig.
1 (bottom), and the results of the mean-flow theory are
displayed in Fig. 1 (middle). A logarithmic scale is used
so that overestimates are put on the same footing as
underestimates. The standard theory clearly underesti-
mates the observations. The mean-flow theory does bet-
ter, but still underestimates observations. In contrast,

the present theory overestimates observations, with dis-
crepancy similar in magnitude to that of the mean-flow
theory. Error bars are computed as one standard devi-
ation of our estimates for the amplification factor over
the aforementioned longitudinal bands.

b. Predictions of exact asymptotic theory

The above comparison is repeated with the amplifi-
cation factors computed from solving the Sturm-Liou-
ville problem with a vanishing bottom pressure instead
of a vanishing vertical velocity. This method was shown
in the previous section to yield the asymptotic value of
the anomalous phase speed due to bottom pressure de-
correlation; therefore, its predictions are intrinsically
more accurate than those of WKB theory. The modified
Sturm-Liouville problem was solved by interpolating N
on a regular vertical grid every Dz 5 20 m. Given the
greatly increased computational cost of this approach
compared to that of the WKB method, we solved the
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FIG. 5. Same as in Fig. 4 but with the theoretical enhancement factor computed by solving the Sturm-Liouville problem with a bottom
boundary condition of vanishing bottom pressure instead of vanishing vertical velocity. [The Levitus (1994) analysis grid is subsampled by
a factor of four in each direction by averaging N profiles over 18 square boxes.] The contour intervals is the same as in the previous figure
but the levels of gray are different. White areas denote regions with amplification factor greater than 2.2.

above eigenvalue problem on a 18 3 18 grid, obtained
by averaging our ¼8 3 ¼8 N vertical profiles dataset on
one-degree square boxes. The result, shown in Fig. 5,
shows significantly smoother patterns than Fig. 4, with
values generally smaller than those predicted by WKB
theory. For instance, amplification factors in the North
Pacific are about 0.2 less than with the WKB method.
However, both approaches appear consistent with each
other, in the sense that they both show systematically
higher amplification factors in the southern Hemisphere
than in the Northern Hemisphere, in agreement with the
Chelton and Schlax (1996) findings.

Although the two approaches yield somewhat differ-
ent looking patterns on the global maps of Figs. 4 and
5, we find little differences between the two methods
when restricting the comparison to the regions analyzed
by Chelton and Schlax (1996), as depicted in Fig. 6
(note that the lower panel of Fig. 6 is the same as the
upper panel of Fig. 1). Indeed, the main difference ap-

pears in the error bars, which are smaller for the as-
ymptotic theory owing to lesser variance and resolution.

As an additional comparison between the two meth-
ods, we depicted in Fig. 7 a nonsmoothed longitudinal
section of the deep Brunt–Väisälä frequency around
358N (top panel), along with the theoretical phase-speed
enhancement predicted by the asymptotic ‘‘exact’’ and
zero-order WKB theories (bottom panel). The latter
shows that WKB estimates are closely related to that of
the deep Brunt–Väisälä frequency, as theory suggests,
whereas such sensitivity is absent in the other theory.
The two methods have both significant differences, but
without any obvious bias between them, and many re-
gions where they roughly coincide. Therefore, it appears
difficult to say when WKB theory will overestimate the
asymptotic ‘‘exact’’ theory and conversely. Neverthe-
less, even though WKB theory may not always be ac-
curate, it does capture the phase-speed enhancement re-
sulting from bottom pressure decorrelation at very little
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FIG. 6. The ratio of observed to theoretical phase speed for the
present theory computed from solving the (top) modified Sturm-Liou-
ville problem and (bottom) by using WKB theory. Note that the
bottom panel is the same as the upper panel of Fig. 1.

FIG. 7. (top) Zonal section of the deep Brunt–Väisälä frequency
(in s21) at 358N. The nonvanishing values correspond to the Medi-
terranean, Pacific, and Atlantic, respectively, from left to right. (bot-
tom) Zonal section of the theoretical amplification factor at the same
latitude: zero-order WKB theory, 1 1 2Nb/ (thin solid line), andN
prediction obtained from solving the modified Sturm-Liouville prob-
lem (thick solid line).

computational cost, with the additional advantage of
relating the amplification factor to observable physical
quantities in a simple way.

6. Discussion

The main result of this paper is to quantify the phase-
speed enhancement that occurs when the bottom pres-
sure fluctuations are decoupled from the overlaying
ocean dynamics in a continuously stratified fluid. When
WKB theory is applicable in the vertical direction, the
amplification factor has a particularly simple form that
depends only on the ratio of the deep Brunt–Väisälä
frequency to its vertical average. Results are also es-
tablished for more general conditions, but they are more
difficult to interpret physically. In particular, we for-
mally show that the amplification factor can be very
generally related at leading order to the bottom value
of the vertical modal function for the first baroclinic
standard mode. We also show that the faster phase
speeds can be obtained by solving the Sturm-Liouville
problem for the standard modes by replacing the bottom
condition of zero vertical velocity with that of vanishing
pressure. Thus, the faster modes are related to the clas-

sical theoretical surface-intensified modes believed to
occur over steep topography.

Although regarding the faster modes and phase
speeds as solutions of the modified Sturm-Liouville
problem may appear much simpler than regarding them
as asymptotic solutions of a series expansion in terms
of the standard modes, we believe this is only advan-
tageous from a numerical viewpoint. Indeed, it turns out
that the eigenmodes of the modified Sturm-Liouville
problem are very difficult to study analytically, except
in the very idealized case of a constant Brunt–Väisälä
frequency. In particular, we failed to find approximate
WKB solutions for realistic N 2 profiles. Apparently,
Killworth and Blundell (1999) encountered the same
problem (Killworth 1999, personal communication)
when attempting to find approximate WKB solutions to
the vertical modes over slowly varying topography.

The physical mechanism responsible for the phase-
speed enhancement is the dynamical coupling between
the standard modes that can occur in a realistic ocean
because of the violation of the basic assumptions made
in the standard theory. In this paper we make the ad
hoc assumptions that this coupling is independent of
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time and location and that the normal modes cancel each
other exactly at the ocean bottom. In this respect, this
paper extends to a continuously stratified fluid the well-
known result that baroclinic Rossby waves are faster in
a reduced-gravity, layered model than in the same model
with all the layers active.

Of course, the assumption of a time- and spatially
independent coupling between the standard modes is an
idealization unlikely to occur in the real ocean. Still,
we find evidence in the literature—albeit indirect and
based on fragmentary results of numerical calculations,
theory, and laboratory experiments—that it is not an
unreasonable one. Our theoretical predictions outside
the tropical band (108S–108N) show reasonable agree-
ment with observational estimates. In contrast to the
mean-flow theory whose estimates are generally sys-
tematically too low, ours are generally too high. On the
other hand, since the assumption of total bottom pres-
sure decorrelation is probably an exaggeration, then a
more realistic, partial decorrelation will cause a some-
what smaller phase speed enhancement that is even clos-
er to the observational estimates. Even so, the discrep-
ancy with the observational estimates, assuming total
decorrelation, is no greater than the discrepancy for the
mean-flow theory.

As it now stands our theory remains speculative in
part because the nature of the decorrelation is assumed
rather than deduced directly from the equations of mo-
tion. In order to achieve further progress one needs to
understand how other effects like nonlinearities, forcing,
and friction affect the coupling among vertical modes.
Further research on this topic might give a better un-
derstanding of the pressure decorrelation mechanisms,
as well as of the limits of validity in assuming a deep
resting layer in layered models of the ocean.
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APPENDIX

WKB Approximation of sjk

As Eq. (44) shows, the determination of the coef-
ficients sjk requires an explicit knowledge of the stan-
dard baroclinic modes. Here, we use WKB theory to
compute approximate expressions for the solution
Fm(z) of the Sturm-Liouville problem (10)–(11) by
following the methodology recently used by Chelton
et al. (1998). To be valid, WKB requires a scale sep-

aration between N/cm and Fm . Mathematically, this is
generally verified if for all m,

2 2 2 21 dN N 1 d N N
K , K . (A1)

2 2 2 21 2N dz c N dz cm m

Since cm decreases as the number of nodes of Fm in-
creases, the approximation is expected to improve as m
increases. In Chelton et al. (1998) the authors found that
WKB theory gave satisfactory results for the first bar-
oclinic mode, even though realistic N 2 profiles rarely
strictly comply with (A1), with a maximum error around
10%. The so-called physical optics approximation for
Fm is given by

21/2 zN(z) 1
F (z) 5 B sin N(z) dz , (A2)m m E1 2[ ]c cm m 2H0

where Bm is an arbitrary constant. The corresponding
approximation for is obtained by taking the ver-F9 (z)m

tical derivative of (A2),

21/2 z3B N(z) 1mF9 (z) 5 2 N9(z) sin N(z) dzm E1 2[ ]2 c cm m 2H0

1/2 zN(z) 1
1 B cos N(z) dz . (A3)m E1 2[ ]c cm m 2H0

An additional classical approximation consists in mak-
ing the rigid-lid approximation Fm(0) 5 0 for the bar-
oclinic modes (m $ 1) (Gill 1982). From (A2), this
imposes

01 NH0c 5 N(z) dz 5 , (A4)m Emp mp
2H0

denoting by the vertical average of N.N
In order to estimate sjk from (44), we use (A2) to first

compute

0

2 2N F dzE m

2H0

0 z1
2 25 c B N(z) sin N(z) dz dz. (A5)m m E E1 2cm2H 2H0 0

Using the identity sin2x 5 (1 2 cos2x)/2, it comes

0

2N F dzE m

2H0

2 2B c mpm m5
2

0 z2 2B c 2N(z) 2m m2 cos N(z) dz dz.E E1 24 c cm m2H 2H0 0

(A6)
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The last integral vanishes because its integrand is of the
form cosuu9 5 (sinu)9 so that

20 2 2 2 2B c mp B H Nm m m 02 2N F dz 5 5 , (A7)E m 2 2mp
2H0

using (A4). Now, by using the equivalence relation (39)
between the norms of F and F9, accounting for the
rigid-lid approximation, one obtains

0 2B mpm2F9 dz 5 . (A8)E m 2
2H0

From (A3), one computes 2H0) 5 Bm(Nb /cm)1/2,F9 (m

where Nb 5 N(2H0) denotes the bottom value of the
buoyancy frequency. By inserting this result in com-
bination with (A8) into (44), the resulting WKB ap-
proximation for sjk is given by

Ïc c NH 2N 1j k b0 b 2s 5 2 5 c , (A9)jk 1p N jkÏjk

since from (A4), one has c1 5 H0 /p and thus cm 5N
c1/m.
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