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Abstract

WKB theory has been used recently to construct global approximations of purely periodic long extra-
tropical baroclinic Rossby waves in a continuously stratified ocean, with the goal of building a global

theoretical framework that can serve to interpret observed features of the waves, such as sea surface height

wave activity and anomalous propagation. This study adopts the same approach in the idealized context of

an ocean with constant buoyancy frequency N and longitudinally varying Gaussian topography, to gain

insight into issues that have received little or no attention so far, namely: (a) the nature of the links between

the vertical structure of the wave field and its surface signature, and the extent to which constraints on the

interior dynamics can be derived solely from observing the surface; (b) which of the phase/amplitude

variations determine the visual impression of westward propagation, addressed by constructing longitude/
time plots of the signal in the attempt to mimic more closely the way the satellite SSH data of TOPEX/

Poseidon are analyzed; (c) the validity and accuracy of the classical leading order WKB theory, addressed

by estimating the residual a posteriori by computing the next-order term of the formal WKB series ex-

pansion. To a lesser extent, this also serves to assess the validity of the planetary geostrophic equations used

to describe the dynamics of long Rossby waves.

The main results are that: (a) faster propagation is unambiguously related to the surface intensification of

the waves, while slower propagation is associated with a vertical structure intermediate between that of the

first and second standard baroclinic modes; (b) westward propagation is dominated by the phase variations;
(c) the residual is inversely proportional to the frequency (or equivalently the wavelength by dividing by the

phase speed), and is found to vary strongly with position. The hilltop is where the residual is the highest,

and hence where WKB is the most likely to breakdown, in agreement with recent published predictions of

mode conversion theory in a two-layer model setting.
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1. Introduction

1.1. Background and physical issues of interest

Over the past decade, satellite altimetry has modified the way we look at the ocean, and posed
new theoretical challenges such as how to link the three-dimensional dynamical structure of
dynamical processes to their surface signature. Among the physical processes of interest, plane-
tary waves are of particular importance owing to their prominence in the sea surface height signal
(Chelton and Schlax, 1996; Polito and Cornillon, 1997) which make them potentially important
for decadal climate variability (Gallego and Cessi, 2000; Cessi and Paparella, 2001). Recently,
these waves have attracted considerable theoretical attention after Chelton and Schlax (1996)
(CS96 hereinafter) found them: (1) to propagate up to two to three times faster than expected
from the linear standard theory (e.g., Gill, 1982; Leblond and Mysak, 1978; Dickinson, 1978) at
mid- and high-latitudes; (2) to exhibit significant enhanced activity westward of major topo-
graphic features, suggesting a potential topographic influence in amplifying incident waves or/and
creating new ones. On this basis, CS96 concluded that the linear standard theory should be re-
visited. This prompted an intensive research effort aimed at developing an improved oceanic
Rossby waves theory, for which the consensus is that it should at least include the effects of the
background mean circulation and bottom topography, for both significantly alter the wave dy-
namics (e.g., Killworth et al., 1997; Dewar, 1998; de Szoeke and Chelton, 1999; Liu, 1999; Yang,
2000; Killworth and Blundell, 2001, for the mean flow effect; Killworth and Blundell, 1999;
Tailleux and McWilliams, 2000, 2002; Tailleux, 2002a,b, for topographic effects). An attempt at
unifying both effects––so far studied independently––within a single framework was recently
undertaken by Killworth and Blundell (2002a,b).

So far, the main approach to study the effects of a varying topography and background mean
flow on the propagation and energy dynamics of long, extratropical oceanic Rossby waves has
been WKB theory. For the most part, the principal questions addressed are related to the issues
raised by CS96, which can be formulated as follows: (I) How do the medium variations affect the
local zonal phase speed x=kx or group velocity ox=okx? and how do these modified speeds
compare with the observed ones? (II) How do the medium variations affect the rays, i.e., the paths
followed by the energy? and what are the consequences for the surface amplitude of the waves? In
this paper, we seek to extend the scope of the topics that can be addressed by WKB theory by
investigating three important issues that have received little or no attention so far:

(a) The first issue is concerned with linking the tridimensional structure of the waves to their sur-
face signature, taking for granted that the surface of the oceans is now much easier to observe
than the interior since the advent of satellite altimetry. Other practical motivations stem from
data assimilation, where vertical normal modes are often used, and from the potential possi-
bility of using OGCMs to test the new Rossby wave theories;

(b) The second issue is concerned with determining which of the amplitude/phase variations dom-
inate the visual appearance of westward propagation in longitude/time sections of the sea sur-
face height signal. To answer this question, the computation of the phase, which is often
neglected in WKB theory, is required in addition to that of the amplitude. Longitude/time sec-
tions, also called Hoevmuller diagrams, have been the traditional means by which the SSH
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altimeter data have been analyzed to evidence the westward propagation of the Rossby waves.
The principal motivation lies in determining which of the zonal phase speed x=kx or group
velocity ox=okx is the most likely to be measured by CS96, as both quantities have been pro-
posed in the literature. This issue and the previous one are the focus of Section 4.

(c) The third issue is concerned with the validity and accuracy of the classical leading order WKB
approximation, and to a lesser extent to that of the PG equations utilized to describe the dy-
namics of long Rossby waves; these topics are further detailed in the next paragraph, and ad-
dressed in Section 5.

1.2. Validity issues

The basic requirement for WKB theory to be valid is that there exists a scale separation be-
tween the medium of propagation and the waves. Since this is arguably not realized in the actual
ocean, the approach therefore imposes de facto a restriction to topographies and circulations
whose small scales have been filtered out. In terms of consequences, it is generally felt that this is
not really harmful to estimate the leading order effects of the mean circulation on wave propa-
gation, e.g., the non-WKB approach of Sirven and Frankignoul (2000) yields results similar to
that obtained by the WKB approach of Liu (1999), but there is less agreement that this is also true
for the topography whose small scales may be important (e.g., Samelson, 1992; Bobrovich and
Reznik, 1999; Reznik and Tsybaneva, 1999). The potential pitfalls of neglecting the smaller scales
of the topography come from that this directly affects the bottom boundary condition of the
eigenvalue problem, whose impact on the eigensolutions may be dramatic as shown by Tailleux
and McWilliams (2001) and further discussed in Tailleux (2002b). To date, however, there has
been no satisfactory treatment of the rough topographic effect whose study was pioneered by
Rhines and Bretherton (1973) (e.g., see Vanneste, 2003, for recent references).

Besides matters of relevance to the actual physical system, the second point of concern with
WKB theory is: does it a good job at approximating the actual solutions of the governing
equations of motion utilized? The classical view is that the accuracy of the WKB approximation is
controlled by the WKB parameter e, which can be defined here by e ¼ kkL, where kk is the zonal
wavenumber of the Rossby wave, and L a typical scale of (zonal) variations of the medium. If e is
small for a physically reasonable L (but whose choice remains usually quite subjective), then we
expect WKB theory to be uniformly valid. The truth, however, is that it is never quite possible to
guarantee a priori that WKB theory will work uniformly, except perhaps in the particular one-
dimensional case (e.g. see Bender and Orszag, 1978, chapter 10). In general, there are least two
well-documented cases of WKB breakdown which may occur even though the subjectively defined
e appears to be far smaller than unity, which are caustics and linear resonance, and whose
characteristics are detailed below.

• Caustics: A caustic is in some sense the nicest case of WKB breakdown, for its detection is
made easy by the fact that it corresponds to the crossing of two rays. At such points, energy
focusing occurs on a vanishingly small region and this causes the wave amplitude to become
infinite, clearly invalidating the WKB solution. In the present context, caustics may arise for
baroclinic rays in a continuously stratified ocean in presence of topography (e.g., Killworth
and Blundell, 1999) as a result of the latitudinal variations of the topography and/or those
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of the eastern boundary conditions for the wavenumbers (see Tailleux, 2002a). Near caustics,
the WKB approximation must be cured by a more accurate procedure which classically in-
volves the Airy function (e.g., Lighthill, 1978). Additional work remains to be done, however,
to demonstrate whether known available techniques are applicable in the present context. One
step in this direction was recently undertaken by Gorman and Yang (2001) in the context of
baroclinic rays propagating through a mean flow, but more work is required to fully elucidate
the nature of the wave dynamics near the caustics. In this paper, caustics can be excluded by
choosing the topography and the relevant eastern boundary conditions to be independent of
latitude (Tailleux, 2002a).

• Linear resonances: Linear resonance, which in the literature is often referred to as mode con-
version, constitutes a more deleterious case of WKB breakdown because it is not associated
to any discontinuity in the rays or leading order variations in the amplitude, so that its occur-
rence may easily go unnoticed if no specific steps are taken to detect it. Physically, mode con-
version occurs when the wavenumbers and frequency of two distinct WKB wave modes
supported by the system satisfy approximately the same dispersion relation locally. At such
points, the modes become linearly coupled and may resonantly exchange energy. In the present
context, this type of phenomenon was first pointed out by Hallberg (1997) (H97) in relation
with the linear coupling of bottom and surface intensified Rossby waves over topography in
a two-layer QG model of the ocean. H97 also provided empirical formula to predict the amount
of energy exchanged between the surface and bottom intensified modes using mass conserva-
tion arguments. Vanneste (2001) pointed out that H97�s results could be interpreted within
the framework of mode conversion theory, for which he pointed out the existence of an exten-
sive literature in plasma physics (e.g., Kaufman and Friedland, 1987; Flynn and Littlejohn,
1994). Actually, Grimshaw and Allen (1979) were arguably the first to study the problem in
an oceanic context in relation with the study by Allen and Romea (1980), but this work seems
to have been overlooked since. Mode conversion theory was given a fresh start in oceanogra-
phy by Kaufman et al. (1999), followed more recently by Hallberg (2001) and Tailleux and
McWilliams (2002) in the context of two-layer long Rossby wave dynamics over topography.

The main consequence of the existence of caustics and linear resonances is that one should not
rely excessively on the a priori (and apparent) smallness of the subjectively defined WKB pa-
rameter e, but always check a posteriori for possible occurrences of WKB breakdown. In this
study, this is achieved empirically by computing the next-order term in the formal WKB series
expansion, which provides an estimate for the residual of the leading order WKB approximation.
The analysis of its spatial structure proves particularly interesting, as it reveals the existence
of transition regions occurring over well-determined spatial scales which provide an upper bound
for the admissible wavelengths above which WKB will inevitably breakdown, as discussed
in Section 5.

1.3. Organization of the paper

This paper is organized as follows. Section 2 presents the planetary geostrophic equations used,
their energetics, and the particular configuration studied. Section 3 details the way the leading
order WKB approximation for the phase, amplitude and wavenumbers are computed, and pro-
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vides the formal way to compute corrections at all orders in e. Section 4 illustrates the two-
abovementioned issues of relating the vertical structure of the waves to their observed surface
signature, and to analyze westward propagation directly from longitude/time sections of the WKB
approximated sea-surface signal. The a posteriori assessment of the accuracy of the leading order
WKB approximation is addressed in Section 5. The results are further discussed in Section 6.
2. The model and its energetics

2.1. The planetary geostrophic model

Following Killworth and Blundell (1999) and Tailleux (2002a), we use the rigid-lid planetary
geostrophic equations (PGE) to describe the evolution of perturbations to a resting state char-
acterized by a basic stratification q0ðzÞ function of z only, with time scales long compared to a
pendulum day, and with spatial scales large compared to the first baroclinic Rossby radius of
deformation. In spherical polar coordinates, the PGE are given by
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R cos/
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where ðu; v;wÞ is the three-dimensional velocity field, p the pressure divided by a reference density
qref , b the buoyancy, f ¼ 2X sin/ is the local Coriolis frequency, 2X twice the Earth�s rotation
rate, R the Earth�s radius, and NðzÞ the Brunt–Vaisala or buoyancy frequency. Longitude, lati-
tude, and depth measured upward are denoted by k, / and z respectively. The boundary condi-
tions are
w ¼ 0; at z ¼ 0; ð2:6Þ
w ¼ �u � rH ; at z ¼ �Hðk;/Þ; ð2:7Þ
at the top and bottom of the ocean respectively, where Hðk;/Þ is the horizontally dependent total
ocean depth, and r the horizontal gradient operator.
2.2. The M-equation

As shown by Welander (1959), the rigid-lid PGE can be expressed in terms of a single variable
M , related to the variables of the problem by the relations
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These expressions automatically satisfy the geostrophic approximation (2.1) and (2.2), the hy-
drostatic approximation (2.3), and the continuity equation (2.4). To satisfy the density equation
(2.5) and boundary conditions, M must also satisfy the following equations:
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where non-dimensionalization has been carried out using the following dimensionless variables
and parameters:
r ¼ z
H0

; mðrÞ ¼ N
N0

; ~tt ¼ N 2
0H

2
0

2XR2
t; h ¼ H

H0

; ð2:11Þ
where H0 is the maximum ocean depth, and N0 ¼ Nð0Þ.
2.3. Energetics

The rigid-lid PGE are energetically consistent and thus admit an energy conservation equation
of the form
oEp

ot
þ divFp ¼ 0; ð2:12Þ
where the energy Ep and energy flux Fp are given by
Ep ¼
Z 0

�H
bðk;/; z; tÞzdz; ð2:13Þ

Fp ¼ �
Z 0

�H
p0ðzÞ
�

þ q0ðzÞgz
qref

�
uðk;/; z; tÞdz; ð2:14Þ
p0ðzÞ being the hydrostatic pressure of the reference state. The energy (2.13) is potential only, since
the geostrophic approximation filters out the kinetic part (Colin de Verdi�eere, 1988). Although
(2.12) is the standard form of energy conservation, it is inadequate to derive a wave action
conservation law (and thus an amplitude equation for the waves), which must be quadratic in the
perturbation amplitudes at leading order (e.g., Shepherd, 1990; Shepherd, 1993) whereas both Ep

and Fp are only linear in the perturbations amplitude. That is, rather than the potential energy,
we need the available potential energy in the sense of Lorenz (1955). In the present case, a con-
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servation equation quadratic in the perturbations amplitude can be easily obtained directly from
the M-equation. This is achieved by multiplying (2.8) by o2M=or2 after division by m2, and inte-
grating by parts accounting for the boundary conditions (2.9) and (2.10). After some algebra, the
following conservation equation is obtained:
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As far as we are aware, this important conservation law does not seem to have been recorded
before. In terms of the original dynamical variables and dimensional units, the energy and energy
fluxes take the following form:
E ¼ 1
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where pb ¼ pð�HÞ is the bottom pressure. The flux is purely westward over a flat-bottom, as
expected. Note that the energy is quadratic in the perturbations, so that it can be regarded as an
Available Potential Energy for the waves in the sense defined by Shepherd (1993). Note also that
the energy flux on a f -plane would follow isobaths in the usual Kelvin wave sense, while in a
barotropic ocean for which p ¼ pb, the energy flux would follow the celebrated f =H contours
whose importance was demonstrated in Holland (1967).
2.4. Eastern wavemaker example and numerical values

To illustrate our theoretical results, we consider the example of Rossby waves generated by an
eastern wavemaker, as done previously in Killworth and Blundell (1999) and Tailleux and
McWilliams (2002). We furthermore assume the buoyancy frequency to be constant, i.e., N ¼ N0,
and the topography to be a Gaussian ridge varying with k only,
HðkÞ ¼ H0 � dH exp

(
� 1

2

k � k0

kT

� �2
)
: ð2:21Þ
As particular numerical values, we use H0 ¼ 4500 m, dH ¼ 1000 m, k0 ¼ 60�, kT ¼ 9:6�. The
waves are excited at the eastern boundary of longitude kE ¼ 120� at the annual period.
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3. The formal WKB series expansion

3.1. The WKB problems at all orders

We seek to construct purely periodic global approximate solutions to (2.8)–(2.10). To that end,
we assume that particular (complex) solutions can be sought under the following formal as-
ymptotic expansion:
Mðk;/; r; tÞ ¼ ðM0ðK;U; rÞ þ eM1ðK;U;rÞ þ � � �ÞeiðRðK;UÞ=e�xtÞ; ð3:1Þ

where e is the assumed small WKB parameter, ðK;UÞ ¼ eðk;/Þ are slow horizontal variables, R
the usual rapidly varying phase function, while M0, M1 etc. are vertical shape functions varying
slowly in the horizontal. Real solutions can be obtained by adding the conjugate part. Inserting
(3.1) into (2.8)–(2.10) and collecting the terms of equal power in e, yields at leading order the
following eigenvalue problem:
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where kk ¼ oR=oK and k/ ¼ oR=oU are the locally defined zonal and meridional wavenumbers
respectively.

For nP 0, the next-order problems have the following generic form:
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Eqs. (3.4) and (3.5) show that the next-order term Mnþ1 will be in phase quadrature with the term
Mn. Thus, if M0 is real, M1 will be imaginary an so on. Owing to the particular form of the
problem, the real and imaginary parts ofM0 are effectively decoupled, which guarantees that there
is no induced geometrical phase (also called Berry�s phase), i.e., a phase shift induced by change in
the amplitude variations (e.g., see Vanneste and Shepherd, 1999). A geometrical phase, however,
would be expected to arise if dispersive effects were retained, as in the QG case for instance.
3.2. The leading order problem

The solution of the leading order problem can be written as M0 ¼ AF , where A is a multipli-
cative constant to be determined, while F is an eigensolution of:
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The eigenvalue problem (3.7) and (3.8) only involves the two parameters l and h. Its solution can
therefore be written formally
F ¼ F ðr; l; hÞ; C ¼ c2 ¼ Cðl; hÞ: ð3:10Þ

We illustrate the nature of the solution for a constant buoyancy frequency, previously considered
by Rhines (1970) and Straub (1994) for instance. The solution depends on whether c is real or
purely imaginary, i.e., depending on whether c2 is positive or negative. Specifically, the expressions
for F and F 0 are respectively given by
F ðrÞ ¼ F0 sinðr=cÞ if c2 > 0;
F0 sinhðr=cÞ if c2 < 0;

�
F 0ðrÞ ¼

F0
c cosðr=cÞ if c2 > 0;
F0
c coshðr=cÞ if c2 < 0;

(
ð3:11Þ
where F0 is a normalization constant. The bottom boundary condition imposes the following
constraint on c:
tanðh=cÞ ¼ � l
c if c2 > 0;

tanhðh=cÞ ¼ � l
c if c2 < 0:

(
ð3:12Þ
A condensed representation of the eigenvalues can be obtained if we pose X ¼ h=c and a ¼ l=h, in
which case (3.12) becomes
tan a þ aX ¼ 0 if c2 > 0;
tanh a þ aX ¼ 0 if c2 < 0:

�
ð3:13Þ
Such a problem admits an infinite number of discrete solutions, which we formally denote by
Xn ¼ SnðaÞ. As a result, we can write C ¼ c2 under the following form:
C ¼ c2 ¼ h2

S2
nðl=hÞ

) h2

Cðl; hÞ ¼ S2
nðl=hÞ: ð3:14Þ
Given that h is usually known, the complete knowledge of C is obtained from that of S2
n as a

function of l=h � a. The resulting dispersion curves are illustrated in Fig. 1. In this paper, we shall
mainly be concerned with the behavior along the curve n ¼ 1 which for l ¼ 0 corresponds to the
standard first baroclinic mode. Note, however, that this mode can actually become a second mode
for negative values of the parameter l=h, since then the mode n ¼ 0, which does not exist for
positive value of l=h, takes over the lead role of first mode there. In the wavemaker experiment
considered here, this occurs on the ridge�s eastern flank for instance. As a result, slower propa-
gation than standard ensues. It is important to realize, however, that the mode n ¼ 0, which is
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faster than the flat-bottom baroclinic mode, might also be present in the surface signal for neg-
ative values of l. Such a mode cannot be evidenced in the present single-mode WKB theory, but
we speculate that it may be present in wind-forced experiments for instance. We believe that the
existence of this mode, not discussed in Killworth and Blundell (1999), is potentially important to
determine whether topographic effects may significantly contribute to the ‘‘too fast’’ Rossby wave
issue (see Tailleux, 2002b, for further discussion).

3.3. Dispersion relation, ray dynamics, and phase determination

With the above notations, (3.9) provides the dispersion relation under the form:
x ¼ � kk

sin2 /
Cðl; hÞ: ð3:15Þ
The next step is to provide evolution equations for the wavenumbers along particular directions
called rays, which are given by (e.g., Lighthill, 1978):
Dx
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ok
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¼ � ox

ox
; ð3:16Þ
where x ¼ ðk;/Þ, while cg is the group velocity. By differentiating (3.15) with respect to kk and k/,
as shown in Tailleux (2002a), one shows that:
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where F 0 ¼ dF =dr and F 0
b ¼ dF =drð�hÞ. This result is similar to that obtained by Killworth and

Blundell (1999) using different notations. The expressions for K2
I , K

2
b and other related coefficients

are derived in Appendix A for the constant buoyancy case, and illustrated in Fig. 10.
In WKB theory, the phase usually receives less attention than the amplitude. It is nevertheless

important in the present context, as it is central to understand the observed propagation features
of Rossby waves, as discussed further in the text. There is several ways to compute it. One way
consists in deriving an evolution equation of the phase along the rays (e.g., Vanneste and
Shepherd, 1999). To that end, we introduce the factor J ¼ cg � k=x, 1 which allows to rewrite the
dispersion relation as x ¼ cg � k=J, or in terms of the phase function R,
cgk
oR
ok

�
þ cg/

oR
o/

�
¼ Jx ð3:19Þ
which can also be written as a first order ordinary differential along the rays as follows:
DR
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¼ Jx () DR
Dk

¼ Jx
cgk

; ð3:20Þ
where D=Dk ¼ ok þ cg/=cgko/ represents the k-derivative along the ray. In the present case, it is
easy to show that the factor J simply reduces to unity. This stems from the particular form of the
dispersion relation which can be written as x ¼ kGðhÞ, with GðhÞ ¼ �Cðl; hÞ cos h= sin2 /, where
ðk; hÞ is the polar representation of the wavevector, i.e., kk ¼ k cos h and k/ ¼ k sin h. This is be-
cause l ¼ tan/ðtan hokh� o/hÞ only depends on h. In polar coordinates, the group velocity reads
cg ¼ rkx ¼ ox
ok

ûuk þ
1

k
ox
oh

ûuh ¼ GðhÞûuk þ G0ðhÞûuh; ð3:21Þ
where ûuk ¼ ðcos h; sin hÞ and ûuh ¼ ð� sin h; cos hÞ are the unit vectors pointing in the direction of k
and rotated by p=2 respectively. Multiplying (3.21) by k ¼ kûuk yields immediately cg � k ¼
kGðhÞ ¼ x, hence J ¼ cg � k=x ¼ 1. 2

Since J ¼ 1 and x is constant, the integration of (3.20) yields R ¼ Rðs ¼ 0Þ þ xs, which re-
quires an expression for s. While this can be done in general, it appears simpler in the present case
e vector S ¼ k=x is often called the ‘‘slowness’’ vector in the seismological literature. Such a vector obeys the

projection rule for vectors, so that Sn ¼ S � n defines appropriately the slowness in the direction of unit normal

n. In this respect, S behaves better than the ‘‘fundamental’’ phase velocity vector Cp ¼ xk=kkk2, which does not

the projection rule for vectors (e.g., see Pedlosky, 1987). On the other hand, the inverse of the slowness in the

ion n, i.e., the quantity Cn ¼ ðS � nÞ�1 defines the phase speed in the direction n. Thus, one may write J ¼ cg � S,
terpret kcgk=J as the phase speed in the direction of the group velocity.
ore generally, one shows that if the dispersion relation is of the form x ¼ kaGðhÞ, then J ¼ a. Note that the

sion relation is of the form x ¼ kGðhÞ for all models based on the planetary geostrophic equations (see remark in

rth and Blundell, 2002a,b). For classical QG Rossby waves on the b-plane, one shows that

1� k2R2
oÞ=ð1þ k2R2

oÞ 6¼ 1, where Ro is the Rossby radius of deformation.
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to determine the phase directly from the knowledge of the wavenumbers. Indeed, it is a simple
matter to integrate the differential system:
kk ¼
oR
ok

; k/ ¼ oR
o/

; ð3:22Þ
provided that kk and k/ are known functions of k and /. In practice, this requires to invert the
function /ðk; nÞ to get nðk;/Þ, as integration along the rays yields the wavenumbers in the ðk; nÞ
coordinates system, rather than in the ðk;/Þ coordinates system. Here, n is a ray index repre-
senting the ray launching latitude along the eastern boundary. It turns out that this is easy to do
for the present idealized situation. To that end, we first invoke the results of Tailleux (2002a)
establishing that the canonical ray equations (3.16) can be reduced down to two ordinary dif-
ferential equations for Z ¼ tan/k/=kk and the function vðk; nÞ ¼ sin/ðk; nÞ= sin n. For a topo-
graphy varying with k only, the ODEs for Z and v are given by
DZ
Dk

¼ 2

CK2
I

þ K2
r Z Z

d2h

dk2

"
þ 1

 
þ m2bZ

2ðdh=dkÞ2

C

!
dh
dk

#
; ð3:23Þ

D lnv
Dk

¼ K2
r

dh
dk

; ð3:24Þ
where K2
r ¼ K2

b=K
2
I . The latter coefficient is illustrated as a function of l in Appendix A. The

equation for Z is obtained by combining the evolution equations for kk, k/ and /, while that for v
is deduced from that for / (see Tailleux and McWilliams, 2002, for details). The idea underlying
this decomposition is that the solution of the eigensystem depends on only one ray-depending
parameter, which is l ¼ Zh0ðkÞ for a topography varying with longitude only.

We integrate these equations westward with the eastern boundary conditions ZðkEÞ ¼
ln vðkEÞ ¼ 0, corresponding respectively to assuming R ¼ cst along the meridian of longitude
k ¼ kE, and /ðkE; nÞ ¼ n. We also use mb ¼ m ¼ 1. For such a case, i.e., the topography varying
with k only and the boundary condition independent of the ray index n, Tailleux (2002a) shows
that Z and v are functions of k only. The longitude of the ray /ðk; nÞ, and the wavenumbers are
related to Z and v by the following relations:
sin/ ¼ vðkÞ sin n; ð3:25Þ

kk ¼ �x sin2 /
CðkÞ ¼ �xv2ðkÞ

CðkÞ sin2 n; ð3:26Þ

k/ ¼ Zkk

tan/
¼ �x sin/ cos/ZðkÞ

CðkÞ : ð3:27Þ
The result for Z, v and C is displayed in Fig. 2. The top panel shows that Z on average decreases
westward (thick line). For comparison, the flat-bottom behavior of Z (dashed line) is also plotted.
Note that jZj over a flat-bottom increases westward because the latitudinal variations of f and b
are retained, i.e., the speed of long Rossby waves varies with latitude in the PG system. For the
classical QG Rossby waves over a b-plane, Z would remain constant, because the speed of long
Rossby waves is independent of latitude in this framework. The function v (middle panel) pro-
vides a direct indication of the ray behavior, since sin/ ¼ vðkÞ sin n. Here the ray is seen to be
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of longitude for the eastern wavemaker experiment using a constant buoyancy frequency, where n is the ray index

defined at the launching latitude of the ray along the eastern boundary. Physically, C represents the zonal phase speed

multiplied by sin2 /; it is also a measure of the vertical intensification of the flow (see text for details).
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deflected southward up to the ridge�s top, after what it is slightly deflected northward. We note
that v remains close to unity, which means that the ray departs little from a purely zonal behavior.
The function C (bottom panel) provides an indication of how the local zonal phase speed cpk
evolves along the ray. Here, we see that slower propagation than standard occurs on the eastern
flank, while faster propagation than standard is found on the western flank, in agreement with the
previous results of Killworth and Blundell (1999); Tailleux and McWilliams (2002) and Tailleux
(2002a). The same kind of behavior is also found if a different initial condition for Z is chosen
provided that it is negative. However, this behaviour may be reversed if a large enough positive
initial condition is chosen for Z, i.e., faster propagation on the eastern flank and slower on the
western one, because this reverses the sign l takes on each flank. The regions of fastest transition,
however, are not affected by the initial condition chosen for Z.

Eq. (3.25) yields either /ðk; nÞ ¼ arcsin½vðkÞ sin n� or nðk;/Þ ¼ arcsin½sin/=vðkÞ�. The expres-
sion (3.26) expresses kk both in terms of ðk;/Þ and ðk; nÞ. From the first form, integration in k
yields
Rðk;/Þ ¼ �x sin2 /
Z k

kE

dk0

Cðk0Þ : ð3:28Þ
This form is similar to that obtained previously by Killworth and Blundell (1999). As an illus-
tration, the function RHðkÞ ¼ R=ðx sin2 /Þ, which depends on k only, is depicted in Fig. 3. We



0 20 40 60 80 100 120
0

5

10

15

20

25

Longitude (degrees)

Σ*   (
λ)

Phase evolution

Fig. 3. The normalized phase function RHðkÞ ¼ R=ðx sin2 /Þ as a function of longitude.

204 R. Tailleux / Ocean Modelling 6 (2004) 191–219
note that the phase evolves in an essentially piecewise linear way. This comes from that R, as an
integral function of C, smoothes out relatively nonlinear variations of C (see Fig. 2, bottom).

3.4. Amplitude equations for jAj and jpsj

The evolution equation for the amplitude jAj can be constructed either as a compatibility
condition of the next-order problem, or more directly by inserting the leading order approxi-
mation RðMÞ � AF eiðR=e�xtÞ þ c:c: into the energy conservation equation (2.15), and averaging
over one period (R denotes real part). Choosing the latter method yields
E ¼ jAj2

2

Z 0

�h

1

m2
d2F
dr2

� �2

dr ¼ jAj2

2c4

Z 0

�h
m2F 2 dr ¼ jAj2

2C2

Z 0

�h
m2F 2 dr; ð3:29Þ

Fk ¼
jAj2

2

F 02
b

sin/
oh
o/

�
� cos/

sin2 /

Z 0

�h
F 02 dr

�
; ð3:30Þ

F/ ¼ � jAj2

2

F 02
b

cos/ sin/
oh
ok

: ð3:31Þ
We note that the energy flux components can be written in terms of the group velocity compo-
nents as follows:
Fk ¼ cos/cg/E; F/ ¼ cgkE ð3:32Þ
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so that, given that E is independent of time, yields the following conservation equation:
o

ok
cgkBjAj2
� �

þ o

o/
cg/BjAj2
� �

¼ 0; ð3:33Þ
where
Bðl; h;/Þ ¼ cos/

C2

Z 0

�h
m2F 2 dr: ð3:34Þ
Eq. (3.33) has the usual form of the ray tube conservation of action of Lighthill (1978), provided
that we see BjAj2 as the relevant action here. Since we are interested in the surface signature of the
waves, we also seek to derive a conservation equation for the surface pressure amplitude. To that
end, we use the result that at leading order,
psðk;/; tÞ ¼ R
oM
or

ð0Þ
� �

� AF 0ð0ÞeiðR�xtÞ þ c:c: ð3:35Þ
If we denote jp̂psj ¼ jAF 0ð0Þj, Eq. (3.33) can be rewritten as follows:
o

ok
cos/cgk

jp̂psj
2

C2K2
0

 !
þ o

o/
cos/cg/

jp̂psj
2

C2K2
0

 !
¼ 0; ð3:36Þ
where
K2
0 ¼ F 02ð0ÞR 0

�H m2F 2 dr
: ð3:37Þ
We simplify (3.36) using the result demonstrated in Tailleux and McWilliams (2002) (Appendix A)
that a conservation law of the form okðcgkFkÞ þ o/ðcg/F/Þ ¼ 0 can be rewritten in the coordinate
system ðk; nÞ as /�1

n okð/ncgkFkÞ ¼ 0, where the derivative in k is taken along the rays, while
/n ¼ o/=on. Physically, /n dn represents the infinitesimal spacing between the two rays of index n
and n þ dn. From (3.17), we have cgk ¼ �C2K2

I = sin
2 /, since o/h ¼ 0 here. In the end, (3.36)

becomes
o

ok
/n

cos/

sin2 /

K2
I jp̂psj

2

K2
0

" #
¼ 0; ð3:38Þ
where the derivative is understood to be taken along the rays, i.e., for fixed ray index n. Differ-
entiating (3.25) with respect to n yields
cos//n ¼ cos nvðkÞ ) /n ¼
cos n
cos/

vðkÞ
and the fact that sin/ ¼ sin nvðkÞ, we arrive at the formula
cos n

sin2 n

o

ok
1

vðkÞ
K2

I jp̂psj
2

K2
0

" #
¼ 0 ð3:39Þ
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because the terms involving n are constant along the rays, and thus can be taken out of the de-
rivative. The results of Appendix A yield
Fig. 4

value
K2
I

K2
0

¼ h
2

1� a þ a2S2
nðaÞ

1þ a2S2
nðaÞ

ð3:40Þ
which thus is a function of k only in the present case. This function (divided by h), is depicted in
Fig. 4. Eq. (3.39) is straightforward to integrate from the eastern boundary, along the rays,
yielding
jp̂psj
2ðk; nÞ ¼ vðkÞhðkEÞ

hðkÞ
1þ a2S2

nðaÞ
1� a þ a2S2

nðaÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G2ðkÞ

jp̂psj
2ðkE; nÞ; ð3:41Þ
where we assumed aðkEÞ ¼ 0 along the eastern boundary. To obtain the expression for jp̂psj as a
function of longitude and latitude, we invert the relation sin/ ¼ vðkÞ sin n, which yields
n ¼ arcsin½sin/=vðkÞ�, hence
jpsjðk;/Þ ¼ GðkÞjp̂psjðkE; arcsin½sin/=vðkÞ�Þ: ð3:42Þ

The latitudinal variations of jp̂psj when topography varies with longitude only are therefore entirely
linked to its latitudinal variations along the eastern boundary. If v is close to unity, the last term
does not differ much from jp̂psjðkE;/Þ. The equation for the amplitude jAj follows from that for jp̂psj,
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jAjðk; nÞ ¼ jp̂psj=F 0ð0Þ ¼ cðkÞGðkÞjAjðkE; nÞ; ð3:43Þ

using the result that F 0ð0Þ ¼ 1=c from (3.11) (taking F0 ¼ 1.) Note that since we chose M0 real, we
have A ¼ jAj here. The departure of GðkÞ from unity is depicted in Fig. 5. We see that the surface
height anomaly first decreases along the ridge�s eastern flank, to then increases by about 20
percent near its top, after which it fluctuates on the western flank. In the western flat bottom part,
the amplitude is about 4 percent less than it was initially along the eastern boundary. To be
consistent with the WKB assumption, GðkÞ should vary over scales much larger than k�1

k . This is
clearly not the case near the hilltop, which sees dramatic relative variations of G over much less
than a wavelength. This is a visual indication that WKB must breakdown there. For this reason,
the reader should be aware before to proceed to the next section that the WKB solution in the
western part of the basin is bound to misrepresent some features of the actual solution. This point
is further discussed in Section 5, and also in Tailleux and McWilliams (2002) in the two-layer
model case.
4. Illustrations for the leading order wave mode

4.1. Depth/longitude sections of the modal structure

In this paragraph, we investigate the evolution of the vertical structure of the modes along the
rays. This issue was recently studied in a two-layer QG model by Hallberg (1997), who found the
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modes to undergo fast variations in localized regions where he argued should exist linear coupling
between two different WKB modes. This was later interpreted by Vanneste (2001) within the
framework of linear mode conversion theory. Interest in the vertical structure of the perturbations
is also motivated by the possibility of using general circulation models, which in principle provide
access to it, for testing the various Rossby waves theories currently under development, and to
derive constraints on the interior dynamics from surface observations of the waves propagation.
The behavior of �M ¼ �cG sinðr=cÞ and dM=dr ¼ GðkÞ cosðr=cÞ is depicted in Fig. 6. The top
panel represents the perturbation wave field associated with the buoyancy and vertical velocity,
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while the bottom panel represents the perturbation wave field associated with the pressure, and
horizontal velocity. In the flat western and eastern parts, the wave perturbation exhibits the
classical standard first-mode baroclinic structure, characterized by a change of sign at mid depth
for the pressure perturbation, and by a maximum for the vertical velocity. The most salient
features are the increase in vertical complexity on the eastern flank, characteristic of a modal
structure closer to that of a second mode, with a phase speed slower than standard. In contrast,
the vertical structure appears equivalent barotropic on the western flank. Furthermore, we note
that the pressure perturbation there vanishes near the bottom, and thus possesses a vertical modal
structure close to that of the bottom pressure compensated modes studied in Tailleux and
McWilliams (2001). These modes are always associated with a faster propagation than standard,
which the latter study shows can be of the same order of magnitude as those observed by Chelton
and Schlax (1996) when using realistic buoyancy frequency profiles. We note that the transition in
vertical structure from the eastern to western flank occurs in a very confined region around the
hilltop, and thus resembles the rapid transition behavior evidenced by Hallberg (1997). The visual
impression is that of a quasi-discontinuous change. Less important, but nevertheless quite rapid is
the transition from the flat-bottom regions to the ridge�s flanks, especially in the western part. On
the other hand, the transition taking place in the eastern part appears quite smooth.

The examination of the solution suggests to isolate three different transition regions, for which
three different ‘‘critical’’ length scales Lw, Lt and Le can be defined, associated respectively with the
western, hilltop, and eastern transitions. The Fig. 6 shows that in the present example,
3 Th

becau
Lt < Lw < Le: ð4:1Þ

In the present model, these length scales depend essentially upon the particular geometry con-
sidered, and not upon the wavelength of the waves studied. This is because they are related to the
behaviour of the nonlinear ODE for Z, as well as upon the way the eigensolutions vary with
the parameter l and h, which do not depend explictly upon the wavenumbers. 3 Since Lt is the
smallest of the above length scales, it is the one which defines the most stringent condition on
the maximum wavelength admissible for WKB to remain accurate across the whole basin. In the
present case, a zoom of Fig. 6 centered on the hilltop, depicted in Fig. 7, shows that Lt is about 1–
1.5� wide, and hence O (50–150 km) depending on the latitude considered. Interestingly, we note
that this fast transition region appears to be slightly off the hilltop on the western flank. This
differs from the two-layer model case studied by Tailleux and McWilliams (2002) where the latter
occurred also slightly off the hilltop, but on the eastern flank.

The above-defined critical length scales are not easily related to the parameters of the problem,
as for instance the length scale kT entering the Gaussian topography (2.21). The problem is
complicated by the fact that it depends on both the variations of the amplitude and that of the
parameter l ¼ Zh0, for which no analytical solution exists. Clearly, further work is needed to solve
this issue. We postulate that the problem can be resolved by extending the results of mode
conversion theory to the present case. Assuming this can be done, we would expect the critical
length scales to be strongly controlled by the local curvature of the topography, provided that the
e wavenumber independence of the vertical structure is potentially altered if dispersive effects are retained,

se then the ray equations would depend on the wavenumbers.
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Fig. 7. Zoom of the previous figure centered on the basin center.
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two-layer model results (e.g., Vanneste, 2001; Hallberg, 2001; Tailleux and McWilliams, 2002) are
meaningful to interpret the continuously stratified case.
4.2. Hoevmuller diagrams

Another application of practical interest is the construction of longitude/time plots, also called
Hoevmuller diagrams, of the surface pressure anomaly. These diagrams constitute indeed the
simplest way to visualize the westward propagation of Rossby waves in the altimeter data. Such
diagrams form also the basis for all empirical determinations of the Rossby wave propagation, by
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means of the Radon transform for instance (e.g., Chelton and Schlax, 1996). Specifically, the
quantity of interest is
psðk;/; tÞ ¼ AðkÞF 0ð0Þ cos Rðk;/Þð � xtÞ ¼ GðkÞ cosðRðk;/Þ � xtÞ; ð4:2Þ
where
R � xt ¼ x sin2 /
Z kE

k

dk0

Cðk0Þ dk0

"
� t

#
: ð4:3Þ
To plot (4.2) for a given latitude /, we need the value of the dimensionless frequency x. The latter
is related to the dimensional frequency x0 by
x ¼ x0

2XR2

N 2
0H

2
0

(from (2.11)). Here, we used the values N0 ¼ 5� 10�3 s�1, H0 ¼ 4500 m, x0 ¼ 2p=ð1 yearÞ,
X ¼ 2p=ð1 dayÞ, and R ¼ 6:4� 106 m, yielding x � 2:3430. The expression (4.2) was plotted in
Fig. 8 assuming G constant over longitude (top panel), as well as by accounting for its full
variations (bottom panel), in order to assess the importance of the amplitude variations on the
visual impression of westward propagation. The figure shows that in this particular example there
is little difference between the two panels.

The visual impression of westward propagation is related to the slopes of the isolines for ps. An
expression for the latter is obtained by differentiating (4.2) for fixed /, yielding
dk
dt

¼ � x
kk

1

1� G0ðkÞ
kkGðkÞ

cosðR � xtÞ
sinðR � xtÞ

¼ cpk
1� jðk;/; tÞ ¼ � C

sin2 /

1

1� j
: ð4:4Þ
The little differences between the two panels of Fig. 8 indicate that the coefficient j entering Eq.
(4.4) has little impact on the visual impression of westward propagation. As a result, we expect the
slopes dk=dt for the isolines of ps to be essentially governed by cpk, and hence by CðkÞ for fixed /.
This provides evidence that the zonal phase speed cpk ¼ x=kk, not the zonal group velocity cgk, is
the relevant quantity to interpret the results of Chelton and Schlax (1996). This by itself is worthy
of note, because although several authors have advocated for the use of cpk, evidence that the
amplitude variations has no influence on the apparent phase speeds has been lacking so far.
5. A posteriori estimate of the approximation residual

The previous diagnostics provides empirical evidence for the existence of critical length scales
defining the upper admissible wavelength above which WKB breakdown becomes inevitable. We
can get further insight into this issue by looking into what controls the next-order correction term,
which is solution of the following problem:
�ix
d2M1

dr2
þ m2ikk

sin2 /
M1 ¼ R0 () � ix

d2M1

dr2

�
þ m2

c2
M1

�
¼ R0; ð5:1Þ



Fig. 8. Longitude/time plots for the surface pressure perturbations at the latitude 45�. (a) Assuming GðkÞ ¼
GðkEÞ ¼ cst; (b) Taking into account the longitudinal variations of GðkÞ.
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M1ð0Þ ¼ 0; ð5:2Þ
ikk M1ð



� hÞ � lM 0
1ð � hÞ

�
¼ B0; ð5:3Þ
where
R0 ¼ � m2

sin2 /

oM0

ok
; ð5:4Þ

B0 ¼ � oM0

ok
ð�hÞ þ tan/

o2M0

o/or
ð

�
� hÞ oh

ok
� o2M0

okor
ð � hÞ oh

o/

�
: ð5:5Þ
In the constant buoyancy case, we have M0 ¼ AF ¼ A sinðr=cÞ, which yields
R0 ¼ � 1

sin2 /

oA
ok

sinðr=cÞ
�

� A
c2

oc
ok

r cosðr=cÞ
�
: ð5:6Þ
With m ¼ 1, and R0 given by (5.6), it is straightforward to express the general solution of (5.1) in
the following analytical form:
M1 ¼
i

x sin2 /

A
4

oc
ok

��
þ c
2

oA
ok

�
r cosðr=cÞ þ A

4c
oc
ok

r2 sinðr=cÞ
�
þ C2 sinðr=cÞ; ð5:7Þ
or equivalently, using the dispersion relation (3.15),
M1 ¼ � i

Ckk

A
4

oc
ok

��
þ c
2

oA
ok

�
r cosðr=cÞ þ A

4c
oc
ok

r2 sinðr=cÞ
�
þ C2 sinðr=cÞ; ð5:8Þ
where C2 is constant which can only be determined from the consideration of the next-order
problem for M2. This is not done here, both because this is tedious and not needed to get a first
look at the validity of the leading order WKB approximation. As said previously, we can assume
M0, and hence A, purely real, in which case M1 is purely imaginary. The consequence is to induce
phase corrections. From the structure of M1, we can identify two kind of phase corrections. The
first one is related to the term proportional to C2; it introduces at leading order a a phase cor-
rection jDRj � jC2=Aj (provided that C2 � A) which depends only on the horizontal coordinates.
The remaining part of M1, however, induces a phase correction that also depends upon depth.

The solution (5.7) satisfies automatically (5.1), as well as the upper boundary condition (5.2).
That it satisfies the bottom boundary condition (5.3) is more difficult to check directly, but is
guaranteed from the way A was constructed (i.e., as the solvability condition for precisely (3.4)–
(3.6)). Eq. (5.8) makes it clear that the correction term is inversely proportional to the zonal
wavenumber. It follows that we can in principle make the leading order WKB approximation as
accurate as we want by increasing kk, or equivalently by considering smaller and smaller wave-
length. This is expected because acting on the wavelength is equivalent to acting on the WKB
parameter e. 4 The breakdown of the leading order WKB solution is thus dependent upon the
particular values of the parameters considered. As an illustration, the vertical structure of �iM1 is
depicted in Fig. 9, setting C2 ¼ 0 in (5.7), for the present case. The most interesting feature of the
ote that for a given configuration where the buoyancy frequency and topography are externally imposed, the only

decrease the wavelength is by increasing the frequency.
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Fig. 9. Vertical/longitude section of the next-order correction term for the buoyancy/vertical velocity perturbation at

/ ¼ 45�.
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correction term is its structure, which unlike its amplitude is independent of the wavelength
considered. We thus note that the correction term is very large in a confined region over the
hilltop, quite large over a broader region on the western flank, and relatively small on the eastern
flank. The structure of the correction term is therefore consistent with the ordering induced by the
critical length scales defined previously. With the particular numerical values considered for this
example, the leading order WKB approximation breaks down near the hilltop and on the western
flank, for the amplitude of the correction term becomes of the same order of magnitude or higher
than the leading order term there. By comparison, the WKB breakdown studied in Tailleux and
McWilliams (2002) occurred on the hilltop and eastern flank. To obtain a valid leading order
WKB approximation with the same stratification and topography would require considering
considerably higher frequencies for which the use of PG equations would become problematic.
6. Discussion

This paper complemented previous WKB studies on the altered dynamics of baroclinic Rossby
waves in presence of medium variations (here restricted to that of the topography only) by
focusing on three distinct topics that have received little or no attention so far, for which the main
results are:
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• The waves� vertical structure is unambiguously linked to their phase speed. Specifically, faster
propagation than standard is associated with an equivalent barotropic vertical structure that is
close to that of the surface intensified modes that is the focus of TM01, while slower propaga-
tion is associated with an increase in vertical complexity that is intermediate between that of the
first and second standard baroclinic modes. To go farther, it would be of interest to determine
whether such a characterization can also be made when the effects of the background mean flow
are retained. These results may provide a way to verify Rossby wave theories by means of ocean
general circulation models, as the information on both the surface and vertical structure is read-
ily available (although this may require some work to isolate the Rossby wave signal unambig-
uously).

• The visual impression of westward propagation in longitude/time sections of the sea surface
height anomalies is dominated in the present solution by the phase variations, even though
the amplitude does not necessarily vary smoothly everywhere. This supports the use the zonal
phase speed x=kx as the quantity to be compared with the propagation speeds measured by
Chelton and Schlax (1996), which have been advocated by a number of authors, but without
a clear indication that amplitude variations could be safely neglected;

• The residual of the solution, as estimated by the computation of the next-order term of the for-
mal WKB series expansion, is found to have a structure that varies strongly with longitude.
Furthermore, it is found empirically to reach local extrema in three particular transition regions
which coincide with the regions where the leading order approximation vary the most rapidly
over three distinct critical length scales Lw, Lt, and Le, corresponding respectively to the bottom
western flank, hilltop, and eastern bottom flank regions. Because of the existence of these three
length scales, the classical leading order WKB approximation can only be uniformly valid for
wavelengths smaller than the smallest of these critical length scales, i.e., Lt in the present case.
Since Lt is approximately of the order of 2� of longitude here, i.e., less than 200 km, this restricts
the study to wavelengths that are close to that of the Rossby radius of deformation, which can-
not be done without also rising concerns about the validity of using the PG equations. These
length scales are not easily related to the length scales of the problem, so that further work is
therefore needed to understand what determines their particular values. The empirical evidence
for localized regions where the leading order WKB approximation varies the most rapidly is
similar to the behaviour discussed by H97, and predicted by mode conversion theory. For this
reason, it is tempting to speculate that the transition regions discussed here should correspond
to the places of occurrence of mode conversion points. Furthermore, we also speculate that the
above critical length scales are the quantity Lc actually predicted by mode conversion theory
when writing the transmission coefficient under the form T ¼ e�kkLc , where kk is the zonal wave-
number of the Rossby wave (e.g., see TM02). To verify this, the results of mode conversion the-
ory need to be extended to the continuously stratified setting, which we hope to report on later.
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Appendix A. Derivation of the K-coefficients for c2 > 0

We seek analytical expressions for the coefficients K2
r , K

2
b, K

2
0 and K2

I which enter the ray
equations in various places. Given that F ¼ F0 sinðr=cÞ, we successively derive
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Z 0
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F 02 dr ¼ F 2
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�
:

To obtain the above expressions, we used the fact that tanðl=hÞ ¼ �l=c from (3.12) (restricting
here to the case c2 > 0), and the classical expressions linking cosð2uÞ and sinð2uÞ to tan u for any
argument u. From the above derivations, it is straightforward to establish the following expres-
sions (using a ¼ l=h):
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This shows that all the coefficients, as well as the gravity wave speed, are all separable function of
h and a ¼ l=h. These four coefficients are displayed in Fig. 10.
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