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its consequences for the magnitude of sea level rise and climate change”2

Attribution of inter-model variance in TCR and OHU3

If a quantity f (x) is a function of several parametersxi , which have uncertainties quantified by their4

variances var(xi ) and covariances cov(xi , x j ), these uncertainties propagate to give5
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The TCRT2× = F2×/(κ+α) is a function of the three parameters(F2×, κ, α). After exclusion of two6

models, as discussed in the text, these parameters have insignificant correlation, so their covariances7

can be neglected.8

In that case, the variance can be apportioned among the parameters. The part of the variance off9

due to parameterxi is (∂ f/∂xi )
2var(xi ). This can simply be estimated as the variance off obtained10

asxi is varied while all thex j 6=i are held constant at their mean values. Denoting a mean by〈〉 and11

recalling the definition of var(x) ≡ 〈(x − 〈x〉)2〉, this partial variance is12
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which is the required quantity since the first bracket can be identified as var(xi ). Thus, we can estimate13

the uncertainty in TCR due toκ alone by evaluating the variance ofF2×/(κ +α) from varyingκ over14

the values it takes in the model ensemble while holdingF2× andα at their ensemble-mean values15

〈F2×〉 and〈α〉.16

In the 1% CO2 experiment, the forcingF = F2×t/70 for t in years, and the rate of ocean heat17

uptake18
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At the time of doublingt = 70,20

H = H2× = 35F2×

κ

κ + α
.

The uncertainty due toκ in H2× can be estimated as for the TCR by varyingκ and keepingF2× and21

α constant. Because the sample has a finite size, the sample covariances are not exactly zero, even22

though we assume that in the theoretical infinitely large population of models the parameters would23

be independent. Therefore the partial variances do not add up exactly to give the total variance. The24

decomposition of variance can only be regarded as approximate. It is useful to give an indication of25

the relative importance of different sources of model uncertainty.26

In the case where covariances are not zero, we cannot apportion the variance off among thexi .27

We need to know the covariances in order to estimate var( f ) from var(x). One application of this is28

to estimate the variance ofH2× from the variances ofκ and TCR, which are correlated parameters.29

Recalling thatT2× = F2×/(κ + α) and definingδx ≡ x − 〈x〉, we have30
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to first order in small quantities, because〈δF2× δκ〉 = 0 and〈δα δκ〉 = 0 by the assumption that these31

parameters are independent. Thus32

cov(κ, T2×) = −
T2×

κ + α
var(κ),

using the formula forT2× and the definition of variance, and dropping the〈〉 notation. It is negative33

becauseκ and TCR are anticorrelated.34

Defining H1 = κT2×(= H2×/35) for convenience and using the general formula for propagation35

of uncertainty,36
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Then since∂ H1/∂T2× = κ and∂ H1/∂κ = T2×,37
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The model runs: scenarios and drift38

For most of the calculations we used the scenarios with a 1%/year increase of atmospheric CO2.39

This has the advantage that differences in forcing across the models are small. However, for the40

CMIP3 models more data were available for the historical 20C3Mand the future SRESA1B scenarios.41

Therefore we used these data for Fig. 4 in the main text.42

Some of the model runs have long-term temperature trends (“drift”) that reflect the model’s path43

into statistical equilibrium rather than real-world climate processes. We have excluded drift from our44

analysis, for all models, by subtracting the respective parts of the control run. For instance, the ocean45

heat uptake in Fig. 4 (main text) was calculated as46

OHU = 1OHCscenario− 1OHCcontrol

= [OHCscenario(21C) − OHCscenario(20C)] − [OHCcontrol(21C) − OHCcontrol(20C)]

where OHC is the vertical integral of potential temperaturemultiplied with the heat capacity of sea47

water and a reference density, and “21C” and “20C” denote 20-year averages over the periods 2080-48

2099 and 1980-1999, respectively.49

For calculations based on the 1%/year CO2 scenarios the calculation is simpler because they start50

directly from the control runs. To subtract the drift it is sufficient to subtract the respective part of the51

control run.52
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Table 1: Forcing at the time of CO2 doubling F2x (in W m−2), climate feedback parameterα (α4x from 4xCO2 andα1p from 1%CO2/year runs), ocean heat uptake
efficiencyκ, climate resistanceρ (all in W m−2 K−1), transient climate response (in K) and expansion efficiency of heatǫ (in m YJ−1) for the CMIP3 models (with
numbers, data forα1p, κ andρ from Gregory and Forster, 2008) and the CMIP5 models (with letters). For the CMIP3 models, F2x andα4x could not be diagnosed.

Model α1p κ ρ TCR ǫ Model F2x α4x α1p κ ρ TCR ǫ

1 bccbcm20 — — — — — A ACCESS1.0 2.91 0.75 0.73 0.67 1.40 1.98 —
2 cccmacgcm31 t47 1.28 0.55 1.83 1.90 0.139 B BCC-CSM1.1 3.37 1.20 1.22 0.56 1.78 1.76 —
3 cccmacgcm31 t63 — — — — — C CNRM-CM5 3.68 1.13 1.13 0.46 1.59 2.08 0.107
4 cnrmcm3 1.60 0.58 2.18 1.60 0.098 D CSIRO-Mk3.6.0 2.56 0.62 0.72 0.63 1.35 1.78 0.116
5 csiromk3 0 1.60 0.83 2.44 1.40 0.112 E CanESM2 3.81 1.03 1.03 0.49 1.52 2.41 0.120
6 csiromk3 5 — — — — — F GFDL-CM3 2.97 0.74 0.74 0.65 1.39 1.95 —
7 gfdl cm2 0 1.96 0.64 2.60 1.60 0.119 G GFDL-ESM2G 3.01 1.24 1.73 0.84 2.57 1.05 —
8 gfdl cm2 1 1.74 0.73 2.48 1.50 0.120 H GFDL-ESM2M 3.37 1.38 1.69 0.86 2.56 1.34 —
9 gissaom — — — — 0.115 I HadGEM2-CC — — — — — — 0.114

10 gissmodele h 1.46 0.77 2.23 1.60 0.124 J HadGEM2-ES 2.89 0.62 0.61 0.46 1.07 2.50 0.112
11 gissmodele r — — — — 0.101 K INM-CM4 3.02 1.46 1.38 0.71 2.10 1.29 —
12 inmcm30 1.77 0.48 2.24 1.60 0.109 L IPSL-CM5A-LR 3.15 0.78 0.82 0.62 1.45 2.04 0.092
13 ipsl cm4 1.03 0.70 1.73 2.10 — M IPSL-CM5A-MR 3.27 0.79 0.84 0.61 1.45 2.03 0.098
14 miroc32 hires 0.87 0.56 1.43 2.60 0.121N MIROC-ESM 4.24 0.91 1.11 0.70 1.81 2.16 0.118
15 miroc32 medres 0.97 0.81 1.77 2.10 0.116O MIROC-ESM-CHEM — — — — — — 0.117
16 miubechog 1.56 0.27 1.82 1.70 — P MIROC5 4.10 1.50 1.78 0.81 2.59 1.51 0.118
17 mpi echam5 1.01 0.66 1.67 2.20 0.130Q MPI-ESM-LR 4.06 1.11 1.23 0.61 1.85 2.06 0.127
18 mri cgcm23 2a 1.23 0.41 1.63 2.20 0.102 R MPI-ESM-MR 4.04 1.16 1.35 0.50 1.85 2.04 —
19 ncarccsm30 1.84 0.67 2.51 1.50 0.118 S MRI-CGCM3 3.10 1.17 1.38 0.54 1.92 1.56 0.122
20 ncarpcm1 2.08 0.45 2.52 1.30 0.117 T NorESM1-M — — — — — — 0.118
21 ukmohadcm3 1.09 0.53 1.62 2.00 0.114
22 ukmohadgem1 1.27 0.56 1.87 1.90 —

mean 1.43 0.60 2.04 1.81 0.116 mean 3.37 1.04 1.15 0.64 1.79 1.83 0.113
SD 0.37 0.15 0.38 0.35 0.011 SD 0.50 0.28 0.36 0.12 0.45 0.40 0.009
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Figure 1: Vertically integrated ocean heat uptake (colour shading; in GJ m−2) in the ensemble mean of the
1%CO2/year runs of 10 CMIP3 models for (a) the total water column, (b) the upper700 m and (c) below
2000 m. Thick black line: zonal total in 1015 J m−1 (scale in the upper left corner), with±1 standard deviation
(dotted). Note the different scales in (c). Thin black contours show the ratio R of ensemble mean and ensemble
standard deviation as in Fig. 4 in the main text. The Southern Ocean dominates heat uptake while the deep
water formation regions cool down.
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Figure 2: As in Fig. 1, but for the ensemble mean of the 1%CO2/year runs of 12 CMIP5 models. Note the
similarity of the geographical distribution of OHU with the CMIP3 ensemble mean. However, the spread of the
zonal total is smaller.
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