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Our understanding of the climate system has been revolutionized recently, by the
development of sophisticated computer models. The predictions of such models are used
to formulate international protocols, intended to mitigate the severity of global warming
and its impacts. Yet, these models are not perfect representations of reality, because they
remove from explicit consideration many physical processes which are known to be key
aspects of the climate system, but which are too small or fast to be modelled. The
purpose of this paper is to give a personal perspective of the current state of knowledge
regarding the problem of unresolved scales in climate models. A recent novel solution to
the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the
performance of models may be improved by adding random noise to represent the
unresolved processes.
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On
1. Introduction

It is difficult to think of a more complicated physical system than Earth’s
climate. Governed by a combination of the laws of fluid dynamics,
thermodynamics, radiative energy transfer and chemistry, the climate system
is composed of the atmosphere, the oceans, ice sheets and land. Each of these four
subsystems is coupled to each of the other three, through the exchange of
immense quantities of energy, momentum and matter (Peixóto & Oort 1984).
Nonlinear interactions occur on a dizzying range of spatial and temporal scales,
both within and between the subsystems, leading to an intricate and delicate
network of feedback loops. But climate modellers must not be dismayed by the
enormity of the challenge facing them, for, though it is difficult to think of a more
complicated physical system, it is equally difficult to think of one that has a
greater impact on all the people of the world.

The major difficulty of climate modelling stems from the coexistence of
climatological phenomena on a vast range of scales. As an example of this,
figure 1 shows that the atmosphere exhibits a quasi-continuous energy spectrum
on all observable length scales, from the planetary scale down to just a few
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Figure 1. Spectrum of atmospheric winds, in the wavelength range 3–10 000 km, as measured by
commercial aircraft during the NASA Global Atmospheric Sampling Programme. The zonal (i.e.
west–east) and meridional (i.e. north–south) components of the wind are shown separately. For
clarity, the meridional component has been shifted to the right by a factor of 10. Reproduced with
permission from Gage & Nastrom (1986).
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kilometres. Describing the ability of the atmosphere to sustain such a wide
spectrum of oscillations, Jule Charney, one of the pioneers of atmospheric
modelling, eloquently wrote in 1947 that ‘the atmosphere is a musical instrument
on which one can play many tunes’ (Daley 1993). Furthermore, a recent analysis
of satellite images (Lovejoy et al. 2001) has shown that the atmosphere is scale
invariant, i.e. that it looks the same at all magnifications (at least down to 1 km).
This fractal-like behaviour is to be expected for a turbulent fluid such as the
atmosphere.

In recent decades, our understanding of the climate has been revolutionized by
the development of sophisticated computer models, known as general circulation
models (GCMs). GCMs are a representation of the physical laws stated above,
Phil. Trans. R. Soc. A (2005)



Figure 2. Gravity waves in noctilucent clouds, photographed over Kiruna, Sweden, in August 2000.
The wavelength is a few kilometres, and so these waves would be located at the short-wavelength
end of the spectrum in figure 1. Reproduced with permission from Dalin et al. (2004).
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expressed in such a form that they are suitable for solution on fast
supercomputers. GCMs work by dividing the components of the climate system
into large boxes, known as grid boxes, each measuring around 100 km by 100 km
horizontally. Crucially, the many important processes and mechanisms that
take place on smaller spatial scales than this are too small to be explicitly
modelled. A consequence of this, as noted by Palmer (2001), is that the scale
invariance referred to above is destroyed.

The most important sub-grid-scale features in the ocean are eddies, which are
vortices with diameters in the approximate range 1–100 km. Eddies transport
heat, salt and momentum over large distances (McDonald 1999), and it is
believed that they contain perhaps as much as 99% of the kinetic energy of the
ocean (Open University 2001). In the atmosphere, important unresolved features
include gravity waves, which have wavelengths of around 1–10 km and are often
visible as stripes in clouds (figure 2). Gravity waves are particularly ubiquitous in
the upper troposphere and lower stratosphere (i.e. between around 5 and 20 km
above the Earth’s surface), and it has recently been shown that they can affect
the large-scale atmospheric circulation (Williams et al. 2003). Other important
sub-grid-scale features in the atmosphere include convection, convective clouds
and small-scale turbulence in the boundary layer (i.e. the part of the atmosphere
that is directly influenced by contact with the Earth). All of these features are
known to be key aspects of the climate system, owing to their nonlinear
interactions with the resolved scales, and yet they are too small to be explicitly
modelled. The presence of such critical unresolved processes must surely be one
of the most disheartening aspects of climate modelling.

It has been suggested that random noise should be added to climate models, in
an attempt to mimic the impacts of the unresolved processes (Hasselmann 1976).
Phil. Trans. R. Soc. A (2005)
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The theoretical justification for these stochastic climate models will be described
in detail in §2. For the moment, I simply note that it is truly remarkable that
random noise—the very epitome of the unknown and the unpredictable—can
actually increase the performance of models. But the list of success stories is
rapidly growing: random noise has demonstrated considerable skill in improving
weather forecasts (Buizza et al. 1999), in modelling El Niño events
(Zavala-Garay et al. 2003), in the study of the atmospheric quasi-biennial
oscillation (Piani et al. 2004), in modelling atmospheric convection (Lin & Neelin
2002), in enhancing ocean sea-surface temperature predictability (Scott 2003)
and in modelling the impacts of ocean eddies (Berloff 2005).

The purpose of this paper is to present a general review of the problem of
unresolved scales in climate models and then to describe some examples of
the most recent cutting-edge research using stochastic climate models. In §2,
the basic approach to computational climate modelling is briefly outlined.
An analogy between unresolved and resolved scales in climate models and
the microscale and macroscale in fluid dynamics is used to demonstrate the
inadequacy of conventional approaches to unresolved scales and to motivate the
need for a stochastic solution. In §3, examples are given of recent stochastic
studies of mid-latitude weather systems, El Niño events and the ocean
thermohaline circulation (THC). Finally, in §4, I look forward to future
developments in the field of climate modelling, by speculating that the stochastic
techniques described herein may need to be used widely in the next generation of
climate models.
2. Unresolved scales in climate models

Mindful of the crucial role played by sub-grid-scale processes in climate, the
development of GCMs has been accompanied by the development of
approximate techniques for representing, or parameterizing, their impacts on
the resolved flow. The key assumption of this approach is that the number of sub-
grid-scale events within each grid box is sufficiently large that a meaningful
statistical equilibrium can be defined. Despite the unquestioned partial success of
this technique, it cannot be rigorously justified or derived from first principles,
and Sardeshmukh et al. (2001) have shown that it contributes towards
systematic climatological errors. In order to understand the limitations of this
conventional approach to the problem of unresolved scales, we shall now
scrutinize the rationale behind the assumption of a statistical equilibrium of sub-
grid-scale events.

(a ) Computer models of the climate system

The differential equations governing the climate system are well known. In a
common approach to solving these equations, errors arise owing to the
replacement of the exact derivative terms with finite differences,1 in order to
permit a computational solution. To illustrate this, suppose that a climate
1 Spectral approaches, which involve a truncated projection onto a finite set of basis functions, are
sometimes used instead of the discretization approach (especially in atmosphere GCMs), but the
filtering out of small scales described here still occurs.
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Figure 3. Schematic diagram to show how some climate variable, T, might vary with position, x, in
the real world (thin line) and in a GCM with grid spacing Dx (thick line). The wiggles in the real-
world curve could, for example, be exaggerated versions of the gravity waves shown in figure 2.
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variable, e.g. temperature, T, varies with horizontal position, x, as shown in
figure 3. Substitutions such as the following are made in the exact equations

vT

vx
/

DT

Dx
: ð2:1Þ

These approximations replace the exact gradient with a mean gradient, which
has the effect of applying a low-pass filter. Structures with length scales smaller
than Dx are lost, and only structures with length scales larger than Dx remain.
The discretization in time, t, employs the same approximation

vT

vt
/

DT

Dt
; ð2:2Þ

removing structures with time-scales shorter than Dt. In present-day GCMs,
used for long-range climate prediction, the grid spacing and time-step are
constrained by computational power to be around DxZ100 km and DtZ30 min.
There are many active climatological processes with length scales smaller than
100 km (figure 1) and time-scales shorter than 30 min, as indicated schematically
in figure 3. The important task of representing the impacts of such processes on
the resolved flow is based upon an assumption that we shall now scrutinize.
(b ) The law of large numbers

Imagine tossing an unbiased coin 10 times. Though the most likely outcome is
that you will obtain five heads (25% probability), this outcome is far from
guaranteed, as shown in figure 4a. The chance of obtaining four or six heads is
almost as large (21% each), and there is even a reasonable chance of obtaining
three or seven heads (12% each). This wide spread in possible outcomes occurs
because statistical fluctuations are relatively large when the number of tosses is
only 10. Now imagine tossing the same coin 100 times. As shown in figure 4b, the
statistical fluctuations are much smaller in this case, and the probability
distribution is narrower. Figure 4c shows that the probability distribution is
narrower still when the coin is tossed 1000 times.

The probability that at least 60% of the tosses will result in heads is 38% for 10
tosses, 3% for 100 tosses and 0.000 000 01% for 1000 tosses! To use an analogy, if
Phil. Trans. R. Soc. A (2005)
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Figure 4. Probability distributions to show the number of heads resulting from (a) 10, (b) 100 and
(c) 1000 tosses of a fair coin. These are curves of the binomial distribution, B(N, p), with NZ10,
100, 1000 and pZ1/2. The width of the binomial distribution, relative to the mean, is proportional
to 1=
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there were two equally matched football teams, A and B, it would not be so
surprising if team A managed to win at least 6 out of 10 games played, since 10
games is not very many at all. On the other hand, it would be quite surprising if
team A won at least 60 out of 100 games and absolutely astonishing if it won at
least 600 out of 1000.

This finding—that the larger the number of random events under
consideration, the more predictable the outcome—is called the law of large
numbers. The classic application is to the theory of liquids and gases, in which
the integrated effect of random molecular motion on the microscale produces
predictable dynamics on the macroscale, allowing the thermodynamic quantities
(e.g. temperature) to be defined. This is possible only because, during a typical
temperature measurement, there are many billions of billions of collisions
between molecules and the measuring device.

In climate models, too, it is tacitly assumed that the effectively random sub-
grid-scale events are so large in number that their integrated effect on the
resolved scales is predictable, allowing it to be included in models. However, in
fluids there is an enormous separation of scales between the microscale and the
macroscale. There is no such ‘thermodynamic limit’ in the climate system, as
suggested by figure 1. Phrased differently, if there were a billion clouds, gravity
Phil. Trans. R. Soc. A (2005)
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waves or ocean eddies in a GCM grid box then their impacts on the resolved flow
would be predictable, like the temperature of a gas, and the current treatment of
unresolved scales in climate models would be defensible. But such a separation of
scales between the resolved and unresolved dynamics simply does not exist. The
number of sub-grid-scale events per grid box is not large enough to permit the
existence of a meaningful statistical equilibrium. This raises questions about the
applicability of conventional parameterization techniques, which are founded
upon the assumption of the existence of such an equilibrium. These techniques,
therefore, do not capture the variability of the sub-grid-scale features, which
arises because of departures from the strict validity of the law of large numbers.

Evidence in support of the above assertion was recently presented by Shutts &
Palmer (2004). They analysed the statistics of atmospheric convective events
that would be sub-grid scale in a standard weather prediction model (of
resolution 64 km by 80 km) by running an ultra-high-resolution cloud-resolving
model (of resolution 1 km by 40 km). There are 128 high-resolution grid boxes
per standard-resolution grid box. The probability distribution of the sub-grid-
scale temperature tendencies can, therefore, be estimated and is shown in
figure 5. The population of convective events within a standard model grid box is
observed to be low, and, correspondingly, in terms of the width relative to the
mean, the probability distribution most closely resembles that shown in
figure 4a. This means that the convective fluxes through a standard-resolution
grid box at any given instant will not necessarily equal the long-term mean, as is
assumed in conventional deterministic parameterization schemes.2
(c ) A new paradigm for climate models

It is tempting to believe that the problem of unresolved scales will be
ameliorated, and perhaps eventually eliminated altogether, by the development
of higher-resolution models running on faster computers. But how long must we
wait until the currently unresolved processes can be resolved? Suppose that we
require an increase in resolution by a factor of 10, i.e. that the grid boxes are each
reduced in size by a factor of 10 in each of their three dimensions (but see the
following paragraph). In order to satisfy a numerical stability criterion, we must
also reduce the time-step by a factor of 10, and so we would need a computer that
was 104 times as fast (assuming computational expense scales linearly with
resolution). This corresponds to around 13 doublings of the calculational speed of
the computer, and, since such speeds have historically doubled once every 18
months (Moore’s Law), it is not expected to be achieved for another 20 years.

There are many reasons why we must not simply wait until 2025, in the hope
that the problem of unresolved scales will naturally heal itself, as described above.
Reliable climate predictions are needed urgently, since after another 20 years of
greenhouse gas emissions at current rates it may be too late to take the required
mitigating action. Furthermore, even after an increase in model resolution by a
factor of 10, there will still be many unresolved processes (figure 1). The most
energetic of these will be those that are only just below the grid scale and that are,
2The use of a trigger function in deterministic convective cloud parameterizations may have the
effect of naturally introducing fluctuations about the long-term mean, but such fluctuations are
likely to be too small to reproduce the probability distribution of figure 5.

Phil. Trans. R. Soc. A (2005)



0.20

0.15

0.10

0.05

0

pr
ob

ab
ili

ty

–20 –10 0 10 20
1hr mean T  tendency (K d–1)

Z=1km

Figure 5. Probability distribution for the sub-grid-scale rate of change of temperature (K dK1) at a
height of 1 km in the tropical atmosphere. Reproduced with permission from Shutts & Palmer
(2004).
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therefore, not amenable to conventional parameterization because of their low
population within a grid box (§2b). Indeed, it seems highly unlikely that any
GCM will ever be capable of modelling, deterministically, all of the dynamically
important components on all of the relevant time-scales. Palmer (2001) has
shown that the impact of unresolved scales cannot be made arbitrarily small
simply by increasing the resolution, and Nicolis (2004) has shown that the mean-
square error resulting from the neglect of unresolved scales generally grows
initially as t2, whatever the resolution. These results perhaps explain why certain
model systematic errors have remained, despite many previous resolution
increases.

Is there a better solution to the problem of unresolved scales? One that can be
enacted now. There has recently been a renewed interest in the belief that, since
the sub-grid-scale events are effectively random, they should be explicitly
modelled as such by adding random noise to models (e.g. Palmer 2001). This
corresponds to an acceptance that the substitutions in equations (2.1) and (2.2)
are approximations. Using the spatial discretization as an example, the difference
between vT/vx and DT/Dx is expected to fluctuate rapidly in space and time,
suggesting that the approximation may be improved by adding a noise term, s,
to give

vT

vx
/

DT

Dx
Cs: ð2:3Þ

The amplitude of s may be determined from probability distributions such as
that in figure 5 (Shutts & Palmer 2004). The introduction of noise to climate
models is intended to re-inject that unresolved variability that is present in the
Phil. Trans. R. Soc. A (2005)
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Figure 6. The propagation of a baroclinic wave around a latitude circle, as simulated by a two-layer
quasi-geostrophic model in (a) the absence and (b) the presence of random noise. The quantity
shown is the perturbation potential vorticity in the lower layer. Adapted from Williams et al.
(2004).
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real climate but lost in the model owing to the somewhat inappropriate
application of the law of large numbers.

This stochastic approach represents a new paradigm for climate models.
Examples of the latest research are described in the following section.
3. Stochastic climate models

Recent studies in which random noise has been added to computer models of
mid-latitude weather systems, El Niño events and the ocean THC are now
described. These examples illustrate some of the phenomena that may be
exhibited by stochastically forced climate models, including noise-induced
transitions between different regimes.
(a ) Mid-latitude weather systems

The mid-latitude atmosphere exhibits large-scale baroclinic waves, which
travel slowly around the globe from west to east. The behaviour of baroclinic
waves in the presence of noise has been studied by Williams et al. (2004) in a
model of a rotating two-layer fluid. Models of such systems are less sophisticated
than full GCMs, since they omit unnecessary details (e.g. topography) in order to
expose the fundamental processes at work. The motion of a baroclinic wave of
wavenumber 2 (i.e. such that two complete wavelengths fit around the globe) is
shown in figure 6. Without noise, the wave propagates around the globe
unmodified (with a greater regularity than observed in the real atmosphere,
owing to the model’s simplifications). If (and only if) random noise is added, then
the wave undergoes a rapid transition to a baroclinic wave with wavenumber 1.
Phil. Trans. R. Soc. A (2005)
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Figure 7. Particle moving in a bi-modal potential well with two stable equilibria, corresponding to
mid-latitude baroclinic waves of wavenumbers 1 and 2.
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The transition may be explained by an analogy with a particle moving in the
potential well shown in figure 7. Without noise, the system has a tendency to
remain in the wavenumber 2 state. When noise is added, the random
perturbations increase the likelihood of the particle overcoming the potential
barrier and moving to the wavenumber 1 state. This is called a noise-induced
transition, and the concept has been used to explain transitions between glacial
and interglacial conditions in an energy balance climate model (Nicolis 1993), El
Niño and La Niña in a delayed-oscillator model (Stone et al. 1998), multiple
decadal-scale El Niño regimes in an intermediate complexity climate model
(Flügel & Chang 1999), multiple wind-driven ocean circulation regimes in a
double-gyre model (Sura et al. 2001) and multiple ocean THC regimes (§3c).
(b ) El Niño events

El Niño, which was first noticed (and given its name) by South American
fishermen, refers to the appearance of unusually warm surface water every 3–7
years in the eastern equatorial Pacific Ocean. It is now known that El Niño and
its cold-episode relative, La Niña, cause the strongest year-to-year climate signal
on the planet, with impacts on temperatures, rainfall and storms around the
globe. Effects attributed to recent El Niño events include fresh-water shortages in
India, drought conditions and forest fires in Australia, increased rainfall and
flooding in Peru and Ecuador and a greater incidence of hurricanes in Hawaii and
Tahiti.

Not least because of the economic impacts—global damage estimates can
reach £20 billion (Saunders 1999)—it is crucial to be able to predict El Niño
events as far in advance as possible. Evidence that the addition of random noise
can affect predictability has been presented by Flügel & Chang (1996). They
used a coupled ocean–atmosphere model of intermediate complexity to study
error growth in an ensemble of runs, i.e. a large number of simulations, which are
identical apart from the use of slightly different initial conditions. The purpose of
this approach is to represent uncertainties that arise because the initial state can
Phil. Trans. R. Soc. A (2005)
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never be perfectly observed. It is a general feature of models of chaotic nonlinear
systems that initial-condition errors grow exponentially in time, demonstrating
extreme sensitivity to the initial conditions. But the exponential error growth is
replaced with square-root error growth when random noise is added, as shown in
figure 8. This suggests that ensemble simulations with stochastic physics may
lead to better (i.e. larger) estimates of the uncertainty in forecasts of El Niño,
since uncertainty is systematically underestimated in conventional (non-
stochastic) simulations.
(c ) The ocean thermohaline circulation

The component of the global ocean circulation that arises owing to density
gradients is known as the thermohaline circulation (THC), since the density of
sea water depends upon both its temperature (thermo) and salinity (haline).
In the Atlantic Ocean, the THC brings warm equatorial surface waters
northwards to high latitudes, including in the Gulf Stream. Enormous quantities
of heat are transported, equivalent to the output of one million power stations,
helping to keep Western Europe many degrees warmer than it would otherwise
be. Owing to the relatively high surface temperatures, evaporation of water
molecules to the atmosphere is large. Salty, and, therefore, dense, surface waters
Phil. Trans. R. Soc. A (2005)
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are left behind. The waters eventually cool and become so dense that they sink
near Greenland, returning southwards near the ocean floor. The sinking water is
replaced by yet more warm surface water from the tropics.

At least, that is how the THC operates today, for observational evidence
suggests that it may in fact have two stable modes of operation. The
palaeoclimate record obtained from long Greenland ice cores reveals several
strong climatic oscillations, which Broecker et al. (1985) attribute to transitions
between two THC states. The two modes of operation have also been identified in
GCMs (e.g. Manabe & Stouffer 1988). One state corresponds to the ‘active’ THC
we observe today; the other corresponds to an ‘inactive’ THC in which the
aforementioned heat transport is switched off. The possibility of a future
transition from the active state to the inactive state is a vital concern for
scientists, policy makers and wider society, owing to its likely impacts on climate
(Vellinga & Wood 2002).

Detailed GCM investigations of the effects of random noise on the THC have
only just begun, but a foretaste of what they may reveal has been provided by
Monahan (2002), who studied transitions between the two THC states in a
simple ocean model. Starting from the present-day THC, he introduced
increasing amounts of fresh water to the North Atlantic Ocean. This fresh
water could represent the effects of melting ice sheets or increases in
precipitation, both of which are predicted consequences of anthropogenic climate
change. At some point, the THC undergoes a transition to the inactive state. The
fresh water is then gradually taken out of the North Atlantic, and at some point
the THC is re-established. The resulting hysteresis curves are shown in figure 9,
Phil. Trans. R. Soc. A (2005)
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in which the amount of added fresh water is denoted by the non-dimensional
parameter m. Without random noise, the THC undergoes a transition to the
inactive state at mZ0.25, but when random noise is added, the transition occurs
earlier, at mZ0.20. The reverse transition also occurs earlier when noise is added,
making the hysteresis curve substantially narrower. These are further examples
of noise-induced transitions (§3a).

Rahmstorf (1995) located the position of the present climate system on a
deterministic hysteresis curve similar to that in figure 9, but it is clear that this
may overestimate the stability of the THC, owing to the concomitant neglect of
sub-grid-scale variability. These results raise questions about the use of present-
day climate models to predict abrupt shifts in THC regimes, as even the most
sophisticated GCMs, including those used for policy formation (Houghton et al.
2001), generally display a bias towards low internal variance.
4. Discussion

A general review of the problem of unresolved scales in climate models has been
presented. Important unresolved features include ocean eddies, gravity waves,
atmospheric convection, clouds and small-scale turbulence, all of which are
known to be key aspects of the climate system and yet are too small to be
explicitly modelled. The law of large numbers and an analogy with the microscale
and macroscale in fluids have served to demonstrate the inadequacy of
conventional approaches to unresolved scales. The alternative stochastic
approach, proposed relatively recently, holds that a noise-based solution may
be more appropriate. Examples have been given of stochastic studies of mid-
latitude weather systems, El Niño events and the ocean THC.

Noise-induced transitions between different stable states (§3a,c) are poorly
understood at present, but they may play a crucial role in meteorology,
oceanography and climate. Indeed, one of the most important metrics with which
to assess the reliability of climate models must surely be their ability to predict
the probabilities of such rapid transitions accurately, since these are arguably
the climatological phenomena that threaten us most. Transition probabilities
are known to depend sensitively on noise levels, and yet we have seen that the
sub-grid-scale noise is filtered out of climate models as a necessity. Given that the
full spectrum of spatial and temporal scales exhibited by the climate system will
not be resolvable by models for decades, if ever, stochastic techniques offer an
immediate, convenient and computationally cheap solution. Yet much is still
unknown about the potential of stochastic physics to improve climate models,
even though it is 30 years since Hasselmann (1976) first raised this possibility.

So strong is the evidence that weather forecasts are improved by random noise
that it is now routinely added at the European Centre for Medium-range
Weather Forecasts (Buizza et al. 1999). Furthermore, a team at the UK Met
Office is currently testing various stochastic physics schemes in their weather
forecasting model (Glenn Shutts 2005, personal communication). But, if you look
at the contents of any climate journal, you will find that almost none of the
modelling studies include noise. In the guidelines for preparing articles for this
special issue, authors were encouraged to be more speculative, and perhaps more
provocative, than they would normally be in a review article. In response to this
Phil. Trans. R. Soc. A (2005)
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instruction, I speculate that climatologists may be missing out on the benefits of
noise that are currently being enjoyed by meteorologists. Given that the need for
reliable climate predictions is more urgent than ever, this situation must not be
allowed to continue. The case for including random noise in the next generation
of climate models is strong, and it is my hope that this paper will serve as part of
the manifesto for change.

I am grateful to Peter Dalin of the Institutet för rymdfysik (Swedish Institute of Space Physics) for
supplying the photograph shown in figure 2, and to four referees for their helpful comments.
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